Surviving without function types:

Life in an arithmetic universe

Talk given 22 Jun 2010
CT2010 Genova

Steve Vickers
School of Computer Science
University of Birmingham
Work in progress joint with Milly Maietti
- Arithmetic universes as generalized spaces
- An induction principle
- Classical logic – of

Part I
Arithmetic universes

Arithmetic universe

Originated: Joyal (1970s) unpublished
- constructed examples (inc. initial one)
- applied to Gödel’s theorem
General definition?
Pretopos + internal free algebras

Maietti:
Au = list-arithmetic pretopos
pretopos + parametrized list objects

A category is a pretopos if
- has finite limits
- has finite coproducts
- and they are stable and disjoint
- has stable, effective quotients of equivalence relations

cf. Giraud’s theorem
Similar conditions + all small coproducts
+ size constraint

⇒ Grothendieck topos

- has, hence free algebras
- cartesian closed
- power objects
Arithmetic universe = list-arithmetic pretopos
For every A : list (A) has
\[1 \xrightarrow{1} \text{List}(A) \xrightarrow{\text{cons}} \text{List}(A) \]
\[A \times \text{List}(A) \xrightarrow{\text{cons} \times B} \text{List}(A) \times B \]
\[\langle B, [], ! \rangle \xrightarrow{\text{rec}(y_0)} \text{List}(A) \times B \]
\[B \xrightarrow{y_0} A \xrightarrow{y} \]
\[\forall y_0 \exists a! \text{rec}(y_0, a) \]
\[\text{write } g(a, a) = a \cdot y \]. Then rec(y_0, a) \(\langle a_1, a_n \rangle, b \) = a_1 \ldots a_n \cdot y_0(b)

Classifying AUs
Theory of AUs is cartesian
\[\Rightarrow \text{can present AUs by generators & relations} \]
Geometric theory
\[\downarrow \]
AU presentation
Internal types + \[\exists \text{V} \]
AU stands in for classifying topos
AUs support limited fragment of sheaf theory

Arithmetic spaces
Generalized space = Grothendieck topos
Continuous Map = functor (backwards)
\[\text{agometric} \]
\[\text{preserving all colimit} \Rightarrow \text{has right adjoint} \]
\[\text{also free algebras} \]
Idea: Arithmetic space \(X \) given by \(\text{AU} \times X \)
Map \(f : X \rightarrow Y \) is functor \(\text{AU} \times X \leftarrow \text{AU} \times Y \)
\[\text{preserving finite colimit} \]
\[\text{finite limit} \]
List

Part II
INDUCTION
Induction I

\[\phi \in \mathbb{N}, \text{ Suppose: } \phi(0) \text{ and } \forall n. (\phi(n) \rightarrow \phi(n+1)) \]

\[\Rightarrow \forall n. \phi(n) \]

Induction for \(\phi \rightarrow \psi \)

Two predicates \(\phi, \psi \) on \(\mathbb{N} \)

\[\phi, \psi \in \mathbb{N} \]

Want \(\forall n. \phi(n) \rightarrow \psi(n) \)

Function types give predicate \(\phi \rightarrow \psi \)

Use same induction.

Base case \(\phi(0) \rightarrow \psi(0) \)

Induction step \(\forall n. (\phi(n) \rightarrow \psi(n)) \Rightarrow (\phi(n+1) \rightarrow \psi(n+1)) \)

\[\Rightarrow \forall n. \phi(n) \rightarrow \psi(n) \]

Without function types?

\[\text{classical logic} \]

\[\phi(n) \rightarrow \psi(n) \equiv \neg \phi(n) \lor \psi(n) \]

\[(\phi(n) \rightarrow \psi(n)) \Rightarrow (\phi(n+1) \rightarrow \psi(n+1)) \]

\[\equiv \neg \phi(n) \lor \psi(n) \Rightarrow \neg \phi(n+1) \lor \psi(n+1) \]

\[\equiv \neg \phi(n) \Rightarrow (\neg \phi(n+1) \lor \psi(n+1)) \]

\[\neg \phi(n) \lor \psi(n) \Rightarrow (\neg \phi(n+1) \lor \psi(n+1)) \]

\[\equiv \phi(n+1) \rightarrow \phi(n) \lor \psi(n+1) \]

\[\land \phi(n+1) \land \psi(n) \rightarrow \psi(n+1) \]

Theorem (Maieth Nickels)

In any arithmetic universe: if have \(\phi, \psi \in \mathbb{N} \)

\[\phi(0) \rightarrow \psi(0) \]

\[\forall n. (\phi(n+1) \rightarrow \phi(n) \lor \psi(n+1)) \]

\[\forall n. (\phi(n+1) \lor \psi(n) \rightarrow \psi(n+1)) \]

Then \(\forall n. (\phi(n) \rightarrow \psi(n)) \)
Proof

Define \(A(k) \subset N \)
\[A(k) = \{ j \in N \mid j \leq k, \; \phi(j), ..., \phi(k) \} \]

Define \(f_k : A(k) \rightarrow \psi(k) \) recursively so \(f_k(j) = k \)
\[f_k(0) = \psi(0) \text{ base case} \]
\[f_k(j) = \begin{cases} f_k(j-1) & \text{ if } j > 0 \\ k \land \psi(j) & \text{ if } j = 0 \end{cases} \]

If \(\phi(k) \) then \(f_k(k) = k \) - use \(f_k(k) \)

Recursion variant = \(k \land \psi(k) \)

\(j < k \) : From \(f_{k-1}(j) \) get \(\psi(k-1) \)
\[\therefore \phi(k) \land \psi(k-1) \text{ so } \psi(k) \text{ by IS2} \]

Summary

If classical logic in \(A \) then induction proof for \(\phi(n) \rightarrow \psi(n) \)

Reduces to new induction principle

Part III

Classical logic of subspaces

- Replace subsets of \(N \) by subspaces
- Open subspaces \(\Rightarrow \) Boolean complement
- Boolean calculations on subspaces \(\Rightarrow \) valid properties of subsets

Subspace triple

X an AS: Subspace triple = \(u_i \uparrow \) two subsheaves

Sheaf = \(\phi(x) \) object of AX

Corresponding subspace is \(X[u_i \leq V] \)

Preorder \(u_i \leq V \iff AX[u_i \leq V] \text{ also has } u_i \leq V' \)

Meets \(u_i \land u_j \leq 0 \)

Special cases for \(\phi, \psi \rightarrow 1 \)

Open \(\psi = \frac{1}{u_i} \phi \leq \psi \)
Closed \(X - \phi = \phi \leq (X-\phi) \land \psi \)

Crescent \((X-\phi) \land \psi \)

Cod crescent \((X-\phi) \lor \psi \)
Representation theorems

1. Local homeomorphisms
 \[AX[a:1 \to A] \simeq AX/A \]
 Adjoin generic element of A
 \[A \Delta AX \]

Special case: opens
 \[A \phi \iff 1 \]
 \[A \phi = AX/\phi \]

Corollary
 \[\psi \leq u \leq V \]
 \[\psi \leq u \leq V \iff u \leq V \phi I \phi \]

Coresent
 \[(X-\phi) \wedge \psi \leq u \leq V \]
 \[(X-\phi) \wedge \psi \leq u \leq V \]

Coresent
 \[\phi \leq u \leq V \]
 \[\phi \leq u \leq V \]

Corollaries
 \[(X-\phi) \wedge (X-\phi) = X- \phi \]

Subspace for subobject join \(\psi \vee \phi \)

\[\psi \vee \phi \]

\[\psi \leq (X-\phi) \vee \phi \]

\[\phi \leq (X-\phi) \wedge \phi \]

\[(X-\phi) \wedge \phi = 0 \]

Closed subspace of 1 is Stone

X-\phi \quad BA of clopns

\[\phi \leq 2/(0=1 \text{ if } \phi) \]

Sheaves F over \(B\phi \)

\[F(0) = 1 \]

\[T \phi \rightarrow T (\phi) \quad \text{coequalizer} \]

Thm: \(sh(B\phi) \simeq Alg(T \phi) \simeq A(X-\phi) \)

Reflective subset of \(AX \)
Lattice structure

Lemma

1. \(\bigvee \{ Y \cap (X_{i} \cup \phi_{i}) \mid i \in I \} \) exists and equals
2. \(\bigwedge \{ X \cap \bigvee_{i \in I} \phi_{i} \mid \{ i, ..., n \} = \emptyset \} \)

Proof

1. Conjunctions in (1) are upper bounds for disjunctions in (2).
2. Over (1), suppose \(\phi_{i} : Y \cup (X_{i} \cup \phi_{i}) \cup \psi_{i} \leq \psi_{j} \)
 adjoin all \(\phi_{i} = \psi_{k} \). Prove by induction \(n = 1 \)
 \(u \cup \bigwedge_{i \in I} \phi_{i} = \bigvee \)

Corollary

1. Finite joins of crescents exist and are meets of cocrescents.
2. Any \(Y \) distributes over those joins.

Induction

\[\phi, \psi \rightarrow N \text{ in } \mathbb{A}^X \]
\[\phi(n), \psi(n) \rightarrow 1 \text{ in } \mathbb{A}^X[n : 1 \rightarrow N] \]
\[\phi(n+1), \psi(n+1) \]

Theorem

Suppose \(\phi(0) \leq \psi(0) \) in \(\mathbb{A}^X \)
\[\phi(n), \psi(n) \leq \phi(n+1), \psi(n+1) \] over \[\mathbb{A}^X[n] \]

Then \(\phi = \psi \) in \(\mathbb{A}^X \)

Proof

\[(X[n] - \phi(n)) \cup \psi(n) \leq (X[n] - \phi(n)) \cup \psi(n+1) \]
\[i.e., \phi(n+1) \leq \phi(n) \cup \psi(n+1) \]
\[\phi(n+1) \cap \psi(n) \leq \psi(n+1) \]

From \(\mathbb{A}^X[n] \approx \mathbb{A}^X/N \) deduce corresponding relations in \(\mathbb{A}^X \).

Conclusions

Classical logic of (some) subspaces
even when logic of subobject not classical
\(\Rightarrow \) can work with implications
even when no internal exponentials

General moral: Good properties of spaces spoiled
when you discretize (take set of points)
eg. Closed complement properly a Stone space
- don’t expect a subobject of 1