Exercises 2

Toposes

These exercises needed more detail than I expected. The essential message is that a sheaf on $\text{Idl } P$, considered as a continuous map from $\text{Idl } P$ to Sets, has to take directed joins to directed colimits, and so is defined by a functor from P to Sets.

1. Let $p : Y \to X$ be a local homeomorphism, let $x \subseteq x'$ be points of X and let $y \in p^{-1}(\{x\})$. Show that there is a unique $y' \in p^{-1}(\{x\})$ such that $y \subseteq y'$. Deduce that $\text{Fib} : X \to \text{Sets}$, defined by $\text{Fib}(x) = p^{-1}(\{x\})$, is functorial with respect to the specialization order \subseteq.

2. Now suppose $X = \text{Idl } P$ with its Scott topology, where (P, \leq) is a poset. Again let $p : Y \to X$ be a local homeomorphism. Show the following.

(a) Suppose $a \in Y$ and V is an open neighbourhood of it. Show that there is some $y \subseteq a$ such that $y \in V$ and $p(y)$ is a principal ideal $\downarrow x$.

(b) If $y \in Y$, let us write $\sqsupseteq y = \{y' \mid y \subseteq y'\}$. Show that if $p(y)$ is principal then $\sqsupseteq y$ is open, and every open is a union of such opens $\sqsupseteq y$.

(c) If $I \in \text{Idl } P$ and $a \in \text{Fib}(I)$, show that there are some $x \in I$ and $y \in \text{Fib}(\downarrow x)$ such that $a = \text{Fib}(\downarrow x \subseteq I)(y)$.

(d) Suppose $I \in \text{Idl } P$, $x_i \in I$ and $y_i \in \text{Fib}(x_i)$ ($i = 1, 2$), and $\text{Fib}(\downarrow x_1 \subseteq I)(y_1) = \text{Fib}(\downarrow x_2 \subseteq I)(y_2) = a$ (say). Show that there is some $x \in I$ with $x_i \subseteq x$ and $\text{Fib}(\downarrow x_1 \subseteq \downarrow x)(y_1) = \text{Fib}(\downarrow x_2 \subseteq \downarrow x)(y_2)$.

It follows from (c) and (d) that $\text{Fib}(I) = \text{colim}_{x \in I} \text{Fib}(\downarrow x)$.

3. Let $F : P \to \text{Sets}$ be a (covariant) functor. Define a poset $Q = \{(x, y) \mid y \in F(x)\}$, with $(x, y) \leq (x', y')$ if $x \leq x'$ and $y' = F(x \leq x')(y)$. The monotone projection $(x, y) \mapsto x$ extends to a continuous map $p : \text{Idl } Q \to \text{Idl } P$, $p(J) = \downarrow \{x \mid (x, y) \in J\}$. Show that it is a local homeomorphism. Show that F is naturally isomorphic to $\text{Fib} \circ \downarrow$

4. Let $X = \text{Idl } P$ with its Scott topology, where (P, \leq) is a poset, $p : Y \to X$ be a local homeomorphism. Show that Y is homeomorphic (over X) to the local homeomorphism constructed in question (3) from F defined as $F(x) = \text{Fib}(\downarrow x)$.
1. By the local homeomorphism property we can find an open \(U \) for \(Y \) such that \(y \in U \) and \(p \) maps \(U \) homeomorphically to an open \(p(U) \). We find \(x' \in p(U) \) (using \(x \subseteq x' \)), and so there is a unique \(y'_0 \in U \) such that \(p(y'_0) = x' \). Suppose we can find some \(y' \in p^{-1}(\{x\}) \) such that \(y \subseteq y' \). Then it must be in \(U \) (because \(y \subseteq y'_0 \)) and so \(y' = y'_0 \) (regardless of \(U \)). This proves uniqueness of \(y' \). It therefore suffices just to show that \(y \subseteq y'_0 \). Suppose \(V \) is open for \(Y \) and \(y \in V \). Then \(U \cap V \) is open and contains \(y \). Its image \(p(U \cap V) \) must be open in \(X \), and contains \(x \) and hence \(x' \), and it follows that \(y'_0 \in U \cap V \). Functionality of \(\text{Fib} \) follows from the fact that \(\subseteq \) is a preorder.

2. (a) Let \(U \) be an open neighbourhood of \(a \) such that \(p \) maps \(U \) homeomorphically to an open neighbourhood of \(p(a) \). By taking the intersection with \(V \), we can assume that \(U \subseteq V \). Since \(p(U) \) is Scott open, there is some \(x \in p(a) \) such that \(\downarrow x \subseteq U \). Let \(y \) be its preimage in \(U \). From the argument of question (1) we see that \(y \subseteq a \) (and so \(a = \text{Fib}(\downarrow x \subseteq I)(y) \)).

(b) Suppose \(p(y) = \downarrow x \) and note that \(U_y = \{ I \mid x \in I \} \) is open. Apply the proof of part (a) with \(V = p^{-1}(U_y) \). Then \(\sqsubseteq y = U \cap p^{-1}(U_y) \) is open. The rest now follows from part (a).

(c) This follows from part (a), taking \(V = Y \).

(d) Apply part (a) with \(V = (\sqsubseteq y_1) \cap (\sqsubseteq y_2) \).

3. Let \(J \) be an ideal of \(Q \), and choose \((x, y) \in J \). Then \(U_{xy} = \{ J' \mid (x, y) \in J' \} \) is an open neighbourhood of \(J \). But it is itself an ideal completion, of \(\uparrow (x, y) = \{(x', y') \in Q \mid (x, y) \leq (x', y')\} \). If \((x, y) \leq (x', y') \) then \(y' \) is uniquely determined by \(x' \), and it follows that the projection \((x', y') \mapsto x' \) is 1-1 and onto \(\uparrow x \). Hence \(p \) maps \(U_{xy} \cong \text{Idl}(\uparrow (x, y)) \) homeomorphically to \(\text{Idl}(\uparrow x) \).

Suppose \(y \in \text{Fib}(x) \). Then \(p(\uparrow (x, y)) = \downarrow x \), so we get a function \(f_x: \text{Fib}(x) \to \text{Fib}(\downarrow x) \), defined by \(f_x(y) = \downarrow (x, y) \). If \(x \leq x' \) then \((x, y) \leq (x', y') \) and \(\downarrow (x, y) \subseteq \downarrow (x', y')(y) \). It follows that \(\downarrow (x', y') = \text{Fib}(\downarrow x \subseteq \downarrow x')(y) \) and hence that \(f_x \) is natural in \(x \). We must also show that it is an isomorphism. Suppose \(J \in \text{Fib}(\downarrow x) \), i.e. \(p(J) = \downarrow x \). Note that for any \((x', y') \in J \) we have \(x' \leq x \). Since \(x \in p(J) \), we have some \((x', y) \in J \) with \(x \leq x' \), so \(x' = x \) and \((x, y) \in J \) and \(\downarrow (x, y) \subseteq J \). We show that \(J = \downarrow (x, y) \). If \((x'', y'') \in J \) then let \((x''', y''') \in J \) be an upper bound for \((x'', y'') \) and \((x, y) \). We must have \(x''' \leq x \) and so \(y''' = y \) and we deduce \((x'', y'') \leq (x, y) \). It follows that \(f_x \) is onto; clearly it is 1-1.

4. I write \(p' : \text{Idl} Q \to X \) for the second local homeomorphism (constructed from \(F \)). Define \(f : Y \to \text{Idl} Q \) by \(f(y) = \{(x', y') \mid x' \in p(y) \text{ and } y' \subseteq y\} \) and \(y = \text{Fib}(\downarrow x' \subseteq p(y))(y') \). From question (2) we know this is an ideal. Now define \(g : \text{Idl} Q \to Y \). Given \(J \), take any \((x, y) \in J \) (it doesn’t matter which) and define \(g(J) = \text{Fib}(\downarrow x \subseteq p'(J))(y) \). If and \(g \) are inverse. To show they are continuous, the inverse image \(f^{-1}(U_{xy}) \) is just \(\sqsubseteq y_o \) and hence is open by 2 (b), and conversely.