Quantum Topos Theory

Toposes, Quantum Theory, & how they fit together

1. Topology via test functions: What is continuity?
2. Toposes
3. Quantum Theory
4. = 2 + 3

Steve Vickers

Topology via test functions

- Various test spaces
- Giving different notions of topology
- \(\mathbb{C} \) or \(\mathbb{R} \)
- Sierpinski \star
- Stone spaces
- Gelfand duality with C*-algebras
- \(\rightarrow \) Quantum
- Sets
- Toposes

What is continuity? - Informally

1. No jumps or tears => no discontinuities
 - e.g. discontinuous function
 - Discontinuous deformation of rubber sheet

What is continuity? - Informally

2. (Computational)
 - Finite piece of output requires only finite information from input
 - e.g. bitstream transformers
 - Continuous: \(n \) th bit of output = \(2^n \) th bit of input
 - Not continuous:
 \[n \text{ th bit of output} = \begin{cases} 1 & \text{if all of input is 1s} \\ 0 & \text{otherwise} \end{cases} \]
1 & 2 related

1. No jumps or tears (discontinuities)
2. (Computational)
 Finite piece of output requires only
 finite information from input.

If observing a
real number (e.g., physical measurements):
never know it exactly
only to some approximation

Finite information = approximation within some
for reals error bound

Approximate knowledge

If f continuous:
- don’t have to know x exactly
- there is some “neighbourhood” of
 approximations x’ to x with all f(x’)
 having that same “quality”

Knowing x ∈ that neighbourhood is “finite
information about input”

What is continuity? - Informally

3. Logic of finite observations

Logical negation problematic
e.g. “bit stream has a 0” - observable
negation “bit stream never has a 0” - infinite info.

Classical logic
 logic of truth
 true false

Geometric logic
 logic of finite observation
 ascertained => you know it's true
 not ascertained => you don't know

Continuity as logic

Continuous function:
finite amounts of input
→ finite amounts of output

Geometric logic respects notions of
“finite observation” - inherently continuous

Classical logic allows discontinuity

Slogan: Continuity is geometricity

We’ll see some of this with the toposes
What is continuity? - Formally

Use **Topological space**

Traditional definition

T. Haudsdorff → S. Kuratowski

1914, 1922

- set \(X \)
- set \(\mathcal{O}_X \) of subsets of \(X \)
 - \(\emptyset, X \) are open
 - \(U, V \) open \(\Rightarrow U \cap V \) open
 - \(U \) open \((x \in I) \Rightarrow U; x; \) open

Continuity \(f: X \to Y \) continuous

if \(\forall \varepsilon > 0 \Rightarrow f^{-1}(\varepsilon) \subseteq \mathcal{O}_X \)

e.g., real line \(\mathbb{R} \)

\[U \text{ open} \text{ if a union of open intervals} \]

\[(x_1, y) = \{ y \mid x_1 < y \leq y \} \]

Open intervals a base of opens

\[\forall x \in U \; \exists \varepsilon > 0 \; (x - \varepsilon, x + \varepsilon) \subseteq U \]

\[u \]

\[U \text{ doesn't contain its boundaries points} \]

\(f: X \to \mathbb{R} \) continuous?

- \(x \in \mathbb{R} \)

\[(f(x) - \varepsilon, f(x) + \varepsilon) \text{ open} \]

\[\Rightarrow f^{-1}(f(x) - \varepsilon, f(x) + \varepsilon) \text{ open, contains } x \]

\[x - \delta < x < x + \delta \Rightarrow f(x) - \varepsilon < f(x) < f(x) + \varepsilon \]

\[\text{Jump \Rightarrow not continuous} \]

Approximate knowledge

If \(f \) continuous:

- To know \(f(x) \) has "some quality"
- Don't have to know \(x \) exactly
- There's some neighbourhood of approximations \(x' \) to \(x \) with all \(f(x') \) having that same "quality"

Knowing \(x \in U \) that neighbourhood is "false information about input"
"Approximations" in program semantics

Opens ≈ finite amount of observable information

E.g., bit streams $2^\mathbb{N}$

Open property: ascertained by observing finite portion of stream

Computable \Rightarrow every action based on finite information

\Rightarrow continuous

Sierpinski as domain of truth values

Think: logic of observation

T - "ascertained" - now certain property holds

\bot - "not ascertained" - don't know

For classical truth values true/false use $2 = \{0, 1\}$, all subsets open

False \Rightarrow true

Sierpinski as test space

What are continuous maps $f: X \to \mathcal{P}$?

\mathcal{P} open in \mathcal{P}

$\Rightarrow f^{-1}(\mathcal{P})$ open in X

But - if you know $f^{-1}(\mathcal{P})$

you know all of f

\Rightarrow bijection

Continuous maps \approx Opens in X

$X \to \mathcal{P}$

E.g., Sierpinski space \mathcal{P}

Two points $\bot \top$

Opens $\emptyset, \{\top\}, \mathcal{P}$

Specialization \Rightarrow specializes x

$\forall y \in \mathcal{P}$ if every open containing x also contains y more specific information for y

$\bot \in \mathcal{P}$ in \bot

in \mathbb{R}, $x \in \mathcal{P}$ only when $x = y$ \Rightarrow $x \in \mathbb{R}$
Continuity using \mathbb{R}

Topology is the same as saying which maps $X \to \mathbb{R}$ are continuous.

Continuity $f : X \to Y$

If $V \subseteq Y$ corresponds to $g : Y \to \mathbb{R}$

then $f^{-1}(V) \subseteq X$.

$\therefore f$ continuous if g continuous then so is $g \circ f$.

Continuous operations on \mathbb{R}

$\land : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

$\land (p,q) = \begin{cases} T & \text{if } p = q = T \\ \bot & \text{otherwise} \end{cases}$

$\land^{-1}(\{T\}) = \{T\} \times \{T\}$

Continuous? $\land^{-1}(\{T\}) = \{T\} \times \{T\}$

To topologize $X \times Y$:

- If $U \subseteq X$, $V \subseteq Y$ then $U \times V$ open in $X \times Y$.
- $U \cap V$ also open.

$\therefore \land$ is continuous.

Discontinuous operations on \mathbb{R}

$\lor : \mathbb{R} \to \mathbb{R}$

$\lor (\top, \bot) = \top$.

Continuous? $\lor^{-1}(\{T\}) = \{\top\} \times \{\top\}$

$\lor^{-1}(\{T\}) = \{\top\} \times \{\top\}$

Definition of opens for infinite products allows only finitely many of these to be different from \bot.

$\lor^{-1}(\{T\}) = \{\top\} \times \{\top\} \times \cdots \times \{\top\}$
Definition of topology matches continuous operations on \emptyset.

Opens \emptyset, Maps $X \rightarrow \emptyset$:

- $\forall u, v
\begin{align*}
\langle f_u, f_v \rangle : X &\rightarrow \emptyset \\
\langle f_u, f_v \rangle (x) &= (f_u(x), f_v(x)) \\
\cap \langle f_u, f_v \rangle (x) &\Rightarrow x \in U \text{ and } x \in V
\end{align*}$

Idea: topology follows algebra of test space

- Test space T has operations \cup, \cap.
- To topologize X, specify continuous test maps $X \rightarrow T$.
- These should form algebra with same operations as T (on maps: operate argument-wise).
- $f : X \rightarrow Y$ is continuous if $g : Y \rightarrow T$ continuous \Rightarrow so is $g \circ f$.

Definition of topology matches continuous operations on \emptyset.

Opens \emptyset, Maps $X \rightarrow \emptyset$:

- $\forall u, v
\begin{align*}
\langle f_u, f_v \rangle : X &\rightarrow \emptyset \\
\langle f_u, f_v \rangle (x) &= (f_u(x), f_v(x)) \\
\cap \langle f_u, f_v \rangle (x) &\Rightarrow x \in U \text{ and } x \in V
\end{align*}$

Other test spaces?

1. \mathbb{R}, discrete topology:
 - all subsets are open
 - Continuous map $X \rightarrow \mathbb{R}$ is open determined by $f'(\mathbb{R})$ - open
 - $f''(\mathbb{R})$ - also open
 - $f''(\mathbb{R})$ is closed
 - $f''(\mathbb{R})$ is clopen - open and closed
 - Continuous maps \sim clopens in X
Operations on 2

Constants 0, 1
1 \land 1 = 2
1 \lor 1 = 2

\lor, \land : 2 \times 2 \rightarrow 2

2 is a Boolean algebra

\Rightarrow so is set of clopens in X

Continuity using 2 ?

\text{f continuous } \iff \text{g \gamma \rightarrow Y continuous, then so is g \rightarrow f}

\text{No good if too few clopens}

\text{e.g. R : only two clopens } \emptyset, R

\text{if } U \subset R \text{ is open & has a boundary point :}

\text{a \in U}

\text{a \in R-U}

\text{a on boundary of both } U \text{ and } R-U

\text{\Rightarrow R-U not open}

\text{\Rightarrow U not closed}

OK if every open in Y is union of clopens.

Continuity using 2 ?

\text{OK if every open in Y is union of clopens.}

\text{e.g. bitstreams } 2^\mathbb{N}

\text{U clopen if property of only finitely many bits in stream}

\text{e.g. } U = \{ s \in 2^\mathbb{N} \mid s_2 = 0 \text{ and either } s_3 \text{ or } s_4 \text{ is 1} \}

Stone spaces

\text{Special spaces : clopens are enough}

\text{Use 2 as test space to define topology}

Won't give def. here
Other test spaces: \mathbb{C}^* (complex numbers)

No good for \mathbb{R}

- $f: \mathbb{R} \to \mathbb{C}$ must preserve ℓ
 - $f(\ell) = f(\ell)$
- But ℓ in \mathbb{C} is =
 - $f(\ell) = f(\ell)$
- No map can distinguish 1 from i

Continuous operations on \mathbb{C}
- $\cdot, -, \times$
- Complex conjugation

\mathbb{C}^*-algebras have this structure
(+ a little more)

Spaces from algebras

From space to algebra
- Fix X
- Let $C^*_T(X)$ comprise the specified continuous test maps $X \to T$
- $C^*_T(X)$ has same algebraic structure (operations, laws) as T
- Also has "constant" map $X \to T$ for each $a \in T$
- Get homomorphism $T \to C^*_T(X)$ preserves operations
- Continuous map $f: X \to T$
 - Gives homomorphism $C^*_T(f): C^*_T(X) \to C^*_T(T)$
From algebra to space?

Each $x \in X$ gives homomorphism $e_x : T \to \mathbb{C}$, "evaluate at x".

Given algebra A, with homomorphism $T \to A$.

Think of homomorphisms $A \to T$ as abstract points $pt(A)$.

Topologize $pt(A)$? $pt(A) \times A \to T$.

Each a gives map $p(A) \to T$.
- These are to be the continuous ones.

Space to algebra & back again?

Concrete & abstract not quite the same.

$X \to pt(e_x : X)$
- Can have two concretes \to same abstract.
 e.g., $1, T \in \mathbb{S}$ when test space 2 or \mathbb{C}.
 $2, \mathbb{C}$ can’t distinguish 1 for T.
- Can have abstracts not induced by any concretes.

Idea

- Algebras are best uniform way to describe spaces.
- Concrete points are just labels for abstract point.
- Test space T as algebra = 1 point space.
- Continuous maps are algebra homomorphisms backwards.
 - Continuous map $f : X \to T$ gives homomorphism $f \circ e_x : C \to C$.

Examples 1: $T = \mathbb{S}$

Algebra = frame = $\land \lor$
- Complete lattice + a distributive law
- Get locale theory

Broadly in line with topology.
Think: locales are spaces where topology lives.
- Topological space = locale + labels for points.
Examples ②: \(T = 2 \)

Algebra = Boolean algebra \(\land, \lor, \neg \)

Cannot deal with
 - non-trivial specialization order \(\text{e.g.} \subset \)
 - connectedness \(\text{e.g.} \mathbb{R} \)

Exact match with some topological spaces:
 - Stone spaces
 - Stone's Representation Theorem

Examples ③: \(T = \mathbb{C} \)

Algebra = \(C^* \)-algebra

Cannot deal with
 - non-trivial specialization order \(\text{e.g.} \subset \)
 - connectedness

Exact match with some topological spaces:
 - compact Hausdorff spaces
 - Gelfand–Naimark duality

Examples ④: \(T = \text{Sets} \)

Algebra = Grothendieck topos

Next lecture:
 - for ordinary topology specify opens = continuous maps to \(\$ \)
 - for topos specify sheaves = continuous maps to \(\text{Sets} \)