Quantum Computing & Cryptography
Week 11

Quantum error correction
(Introduction only)
- Important in quantum computers
 - quantum errors arise easily
- Non-trivial
 - must correct errors without measuring data

Steve Vickers

Classical error correction

In classical computers - not much need
- Stored bits: 0, 1 very different - unlikely to flip for extraneous reasons
- Internal transmission: voltages circuitry allows time for transitions to stabilize

Not much need for error correction inside the computer

Classical error correction - outside computer

Signal transmission - attenuates over distance

- Needs boosting, if need error correction
Use redundant information to detect & correct errors
Simplest scheme: send each bit 3 times
0 = 000 if one bit flips, other two "outvote" it - correct error
If two bits flip - get wrong answer

Practical schemes more sophisticated

Classical error correction - outside computer

RAID Redundant array of inexpensive discs

File data
If a disc fails: pull it out and replace it
File store keeps working
Error correction ⇒ can reconstruct data from working discs
Quantum error correction

1. Decoherence
 - Can't completely isolate qubit from environment
 - Qubit gets entangled with environment - disrupts computer state
 - A qubit that doesn't interact easily with environment - probably doesn't interact with rest of computer

2. Measurement
 - To detect an error, must measure
 - But that already disrupts state 😞
 - Strategy
 - Error has happened
 - How to correct it
 - It must not learn anything about correct state
 - Use ancillas, measure them.

3. Error types
 - For qubits: error = bit flip ⚠️
 - For qubits: more complicated...
 - E.g. phase errors such as $|0\rangle + |1\rangle \rightarrow |0\rangle - |1\rangle$ ⚡

4. Continuity
 - For qubits: discrete
 - Qubit either unchanged or flipped
 - No in-between
 - For qubits: errors can grow continuously
 - Quantum measurement turns small error into probability. Measurement probably restores correct state, sometimes gives definite correctable error state
Strategy
- Use several data qubits to store (redundantly) one bit.
- Use ancilla qubits to "measure involutions" on data qubits.
- Aim: choose involutions carefully so that measurement gives either the correct state or a known error state that can be corrected. Similar to what happens in teleportation.

Measuring an involution
\[H, A H, \psi, m \rightarrow \psi \leq H, c A \frac{1}{\sqrt{2}} (\psi + \psi) \]
\[= H, \frac{1}{\sqrt{2}} (\psi + \psi) \]
\[= \frac{1}{2} (\psi + \psi) + \psi + \psi = \psi - \psi \]
\[= \frac{1}{2} (\psi + \psi) + \frac{1}{2} (\psi - \psi) \]

Projectors

<table>
<thead>
<tr>
<th>State</th>
<th>Projectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1/2</td>
<td>\psi\rangle (</td>
</tr>
</tbody>
</table>

Where \(P_0 = \frac{1 + A}{2} \), \(P_1 = \frac{1 - A}{2} \) are projectors.
- Self-adjoint but not unitary.
- Idempotent: \(P_0^2 = P_0 \), \(P_1^2 = P_1 \), \(P_0 P_1 = 0 \), \(P_0 + P_1 = 1 \)

Eigenstates of A
\[A P_0^A = (-1)^x P_0^A \quad \Rightarrow \quad A P_1^A = (-1)^x P_1^A \]
By def., eigenstates have to be \(\geq 0 \).
If \(P_0^A |\psi\rangle \neq 0 \) then it is an eigenstate for A.
Eigenvalue = \((-1)^x \)

\[A |\psi\rangle = |\psi\rangle \iff P_0^A |\psi\rangle = |\psi\rangle \iff P_1^A |\psi\rangle = 0 \]
\[A |\psi\rangle = -|\psi\rangle \iff P_1^A |\psi\rangle = |\psi\rangle \iff P_0^A |\psi\rangle = 0 \]
General state \(|\psi\rangle = P_0^A |\psi\rangle + P_1^A |\psi\rangle \) is a superposition of eigenstates for eigenvalues +1, -1.
Measuring the control qubit

State before measurement is
\[|0⟩ P_0^A |ψ⟩ + |1⟩ P_1^A |ψ⟩ \]
Result is 0 or 1
State of other qubits reduces to normalized form \(|ψ_x⟩\) of \(P_x^A |ψ⟩\)

Note: \(A |ψ_x⟩ = |ψ_x⟩ \)

If \(|ψ⟩ = 0\) it's an eigenstate for \(A\)

Eigenvalue = \(-|x⟩\)

Diagnosing error states

Idea:

* \(|ψ⟩\) a superposition of correct state & error states

* Measuring \(A\)

1. Reduces to a single eigenstate
2. Tells you (result \(x\)) what happened
3. Helps you plan correction to \(|ψ_x⟩\)

Eigenstates for \(A\):

\(P^A_x\) is another projector

\[P^A_x P^A_y = \begin{cases} P^A_x & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases} \]

\[1 = \sum_{x=0}^{2^n-1} P^A_x \]

\(P^A_x |ψ⟩\) an eigenstate for all \(A\)'s with eigenvalues \((-|x⟩\)

If \(|ψ⟩\) already an eigenstate for \(A\)'s, eigenvalues \((-|x⟩\)

Then \(P^A_x |ψ⟩ = \begin{cases} |ψ⟩ & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases} \)
Where errors come from

Environment also a quantum system
Overall state with one data qubit
\[|e\rangle \otimes |x\rangle \rightarrow |e\rangle |x\rangle |0\rangle + |e\rangle |x\rangle |1\rangle \]

Environment data corruption can be rewritten in form
\[|e\rangle |\psi\rangle \rightarrow (|d\rangle |1\rangle + |k\rangle |x\rangle + |b\rangle |y\rangle + |c\rangle |z\rangle) |\psi\rangle \]

Normally: environment becomes entangled with data
- decoherence
- bad news, but error correction can fix it

5 qubit error correcting code

Code 1 bit using 5 qubits
Assume errors rare enough not to hit 2 qubits together
For each qubit: 3 dimensions of error
\[|1\rangle \rightarrow x|1\rangle \text{ bit flip} \]
\[|1\rangle \rightarrow z|1\rangle \text{ phase error} \]
\[|1\rangle \rightarrow y|1\rangle \text{ combination} \]
\[1 + 5 \times 3=16=2^4 \] need 4 ancillas

Some commuting involutions on 5 qubits

\[
\begin{array}{c|c|c|c|c}
Z & X & X & X & Z \\
X & X & Z & Z & Z \\
X & Z & X & Z & Z \\
Z & Z & Z & Z & Z \\
\end{array}
\]

\[
\begin{array}{c}
M_0 \\
M_1 \\
M_2 \\
M_3 \\
M_4 \\
\end{array}
\]

\[
\begin{array}{c}
2, x_2 x_3 \\
\end{array}
\]

Properties of \(M_i\):

- Each \(M_i\) is an involution \(M_i^2 = 1\)
- The \(M_i\)s commute
 - for each pair, have two qubits with anticommuting \(X\) and \(Z\)
 - \(XZ = -ZX\)
- The two phase factors -1 cancel
- \(M_0 M_1 M_2 M_3 M_4 = 1\)

Because of this, we only use first 4 in error correction
Code states Coding a single bit
\[|0\rangle = \frac{1}{\sqrt{2}} (|1\rangle + |M_2\rangle) (|1\rangle + |M_3\rangle) \]
\[|1\rangle = \frac{1}{\sqrt{2}} (|1\rangle - |M_2\rangle) (|1\rangle - |M_3\rangle) \]

Since \(M_i (1+M_i) = 1+M_i \), the states \(|0\rangle \) and \(|1\rangle \) are fixed by every \(M_i \). Their superpositions \(\alpha |0\rangle + \beta |1\rangle \) have eigenstates with eigenvalue 1.

Inner products
\[(1+M_2)^2 = 2 (1+M_2), \quad \text{so} \]
\[\langle 0 | 0 \rangle = \langle 0 | M_2 (1+M_2) (1+M_2) (1+M_3) | 0 \rangle \]
\[= 1 \]

Can use \((1+M_0) (1+M_2) (1+M_3) \)
\[= 1 + M_0 M_2 + M_2 + M_0 + M_4 \]
\[+ M_0 M_1 + M_0 M_3 + M_0 M_4 + M_1 M_3 + M_1 M_4 + M_3 M_4 \]

Similarly
\[\langle 1 | 1 \rangle = 1 \quad \langle 0 | 1 \rangle = 0 \]

Error states - introduced by \(X_i \), \(Y_i \) or \(Z \):
Each of those either commutes or anticommutes with each \(M_i \).
\[|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \]
when \(|X_i \psi\rangle \), \(|Y_i \psi\rangle \), \(|Z_i \psi\rangle \) all eigenstates of every \(M_j \), eigenvalues ±1.

E.g. \(Y_4 \) anticommutes with \(M_0 \).
\[|Y_4 \psi\rangle \) eigenstate for \(M_0 \), eigenvalue -1.

Different errors
\[
\begin{array}{cccc}
M_0 & M_1 & M_2 & M_3 \\
2x2 & 2x2 & 2x2 & 2x2 \\
2x2 & 2x2 & 2x2 & 2x2 \\
2x2 & 2x2 & 2x2 & 2x2 \\
\end{array}
\]

\[X_0, Y_0, Z_0, X_1, Y_1, Z_1, X_2, Y_2, Z_2, X_3, Y_3, Z_3, X_4, Y_4, Z_4 \]

Every column is different.
Read columns as binary numbers:

0 + + + +
1 = = = =

Summation of Ms, then apply correction A_{x} based on result x.

Error states: Correct state $|\psi_{0}\rangle = a_{0}|0\rangle + a_{1}|1\rangle$

Corrected state $|\psi\rangle = \sum_{y=0}^{1} a_{y} A_{y} |\psi_{0}\rangle$

$A_{y} |\psi\rangle$ an eigenstate for all Ms; eigenvalues $(-1)^{y}$

$P_{x}^{M} A_{y} |\psi\rangle = \begin{cases} A_{x} |\psi\rangle & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$

Error correction: $p_{x}^{M} |\psi\rangle = A_{x} |\psi\rangle$

How correction works:

Corrupt state $|\psi\rangle = \sum_{y=0}^{1} a_{y} A_{y} |\psi_{0}\rangle$

Measured result x depends probabilistically on amplitudes a_{y}

Measurement also reduces state, to $A_{x} |\psi_{0}\rangle$

If $x = 0$, measurement has already corrected state

If $x \neq 0$, measurement reduces to a definite error state $A_{x} |\psi_{0}\rangle$, which can be corrected by applying A_{x}