RELAY COST BOUNDING FOR CONTACTLESS EMV PAYMENTS

Tom Chothia
Univ. of Birmingham
Introduction

• This talk is about relay attacks against EMV PayWave Cards.

• We build a relay that can be just as fast as real cards, using easily available hardware (phones).

• We show that time bounding of the current protocols is difficult/impossible.

• We propose a small change to the protocols that would allow time bounding that stops relay attacks using NFC phones.

• We propose a new method to formally verify the correctness of the protocol.
Co-authors

Nijmegen

Joeri de Ruiter

Jordi van den Breekel

Birmingham

Flavio D. Garcia

Matt Thompson
PayWave & PayPass
RFID card basics

- We have past work on e-passports and Mifare Classic.

- Low level is ISO 14443, protocol commands are based on ISO 7816.

- ISO 7816-like cards store data in records, with a few basic commands to authenticate and perform crypto.

- Exactly what crypto the cards do, varies between applications.
Let’s Build a Relay
Let’s Go Shopping (2010)

Relay 1 field tests
• EAT, Pret, Go Coffee
Let’s Go Shopping (2010)

Relay 1 field tests
• EAT, Pret, Go Coffee
Proxmark III
ISO 14443: What We Expect:

Reader: 52 WUPA (wake up)
Tag: 44 03 ATQA (Respond)
Reader 93 20 SELECT
Tag: 88 04 34 74 cc UID (tags unique ID)
Reader 93 70 88 04 34 74 cc SELECT card via UID

If there is more than one card present the reader picks a UID at random.

Messages include checksums (not shown). If messages from different cards collide, the reader sends SELECT again.
ISO 14443, What we actually saw:

Reader: 52 WUPA (wake up)
Reader: 52 WUPA (wake up)
Tag: 04 00 ATQA (Respond)
Reader: 52 WUPA (wake up)
Tag: 04 00 ATQA (Respond)
Reader: 93 20 SELECT
Tag: d4 fa 50 cb b5 UID Response
Reader: 52 WUPA (wake up)

The USB relay is too slow to get the ISO 14443 commands to the reader in time.
Relay With USBs

Shop | USB1 | USB2 | Card

ISO 14443

Payment Protocol
Relay With Phones

ISO 14443

Payment Protocol
Relay in Action
Others done relay.

- *Practical NFC peer-to-peer relay attack using mobile phones.*
 - Lishoy Francis, Gerhard Hancke, Keith Mayes, and Konstantinos Markantonakis.

- *The dangers of verify PIN on contactless cards.*
 - M. Emms, B. Arief, T. Defty, J. Hannon, F. Hao, and A. van Moorsel.

- Also use phones for the relay.
 - Run ISO 14443 themselves, don’t relay it.
 - Cheap, easily available, not suspicious.
Traffic:

Reader: 00A404000E325041592E5359532E444446303100

Tag: 6F378407A0000000031010A52C500A56495341204445
4249549F38189F66049F02069F03069F1A0295055F2A029A039C019F37045F2D026
56E9000

...

Reader80A80000238321322040000000000003000000000000826000000000000082
614091500338F

5078000Tag7781C29F4B81804D8EC3F85EB28D9C8828E2238BFE8F922F89D08DE
DA061DE7270CF6EB015109D58DC58B34706CED0BFA24A28ED3E6AE0B2908617
D34199B0A3BD298187376F639F65203C84EEE7BC60B4D14F649E67C62162CAF5
3045E8D5A2A99E39589483A28DF24941C6AF486FEEBA0A8C6DB33978309EFF87
FFF9984C9DECDFFDCE6728DB19404100203009F1007060A0A03900000571346356
58326570935D16042015140000001001F820220009F360200579F26083501E6BD09
8562889F6C0210009000
Traffic:

Reader: 00A404000E325041592E5359532E444446303100

Tag: 6F378407A0000000031010A52C500A56495341204445
4249549F38189F66049F02069F03069F1A0295055F2A029A039C019F37045F2D026
56E9000

...

Reader80A8000023832132204000000000000300000000000082600000000000082
614091500338F

5078000Tag7781C29F4B81804D8EC3F85EB28D9C8828E2238BFE8F922F89D08DE
DA061DE7270CF6EB015109D58DC58B34706CED0BFA24A28ED3E6AE0B2908617
D34199B0A3BD298187376F639F65203C84EEE7BC60B4D14F649E67C62162CAF5
3045E8D5A2A99E39589483A28DF24941C6AF486FEEBA0A8C6DB33978309EFF87
FFF9984C9DECD8F7CE6728DB19404100203009F1007060A0A03900000571346356
58326570935D16042015140000001001F820220009F360200579F26083501E6BD09
8562889F6C021009000
The Specification (over 1600 pages)

- Reader has a CAs public key.

- Card has:
 - Symmetric key shared with bank
 - Certificate for a signing key.

- Static data signed by bank
 - CC no (PAN), exp. date., etc.

- Card generates
 - A cryptogram (AC) to send to the bank as evidence of the transaction,
 - A signature (SDAD) that is checked by the bank.
Visa’s Protocols

Shop

SELECT 2PAY.SYS.DDF01

AIDs of all payment apps.

SELECT Visa app ID

Card

PDOL

PDOL = Processing Options Data Object List
• list of data the reader must provide to the card.
PDOL

9F38189F66049F02069F03069F1A0295055F2A029A039C019F37045F2D02656E9000

which parses as:
9F38 | len:18 Processing Options Data Object List (PDOL)
 9F66 len:04 Card Production Life Cycle
 9F02 len:06 Amount, Authorised (Numeric)
 9F03 len:06 Amount, Other (Numeric)
 9F1A len:02 Terminal Country Code
 95 len:05 Terminal Verification Results
 5F2A len:02 Transaction Currency Code
 9A len:03 Transaction Date
 9C len:01 Transaction Type
 9F37 len:04 Unpredictable Number
Visa’s Protocols

GPO (amount, currency, UN, ...)

Generate nonce: Nc
Session key based on ATC:
Ks = Enc_{K_{bank}}(ATC)
AC = MAC_{Ks}(amount, currency, UN, ...)
SDAD = Sign(amount, currency, UN, Nc, ...)

ATC, AC, SDAD, PAN
Visa’s Protocols

- Shop reader then checks the signature on the SDAD data.
- If this is correct it shop reader accepts the payment and sends the AC to the bank.
- The bank checks the AC and transfers the money.
Visa’s PayWave
Master-card’s PayPass

Reader

- PubCA

Card

- $K_M, PrivC$
- $Cert_{PrivCA}(PubB)$
- $Cert_{PrivB}(PubC, SSAD)$
- $SSAD = H(PAN, expDate, \ldots)$

- SELECT 2PAY.SYS.DDF01
- AID_1, AID_2, \ldots
- SELECT PAYPASS.AID
- SELECTED
- GPO
- AIP, AFL
- READ RECORD
- $Cert_{PrivCA}(PubB)$
- READ RECORD
- $Cert_{PrivB}(PubC, SSAD), PAN, CDOL1, \ldots$
- $UN \in \{0,1\}^{32}$
- GENERATE AC(UN, amount, currency, \ldots)

- $K_S = Enc_{KM}(ATC)$
- $AC = MAC_{K_S}(amount, ATC, UN, \ldots)$
- $SDAD = Sign_{PrivC}(AC, UN, amount, currency, ATC, \ldots)$

- AC, SDAD, ATC
Stopping Relays: Idea 1

• Relaying all messages takes over a second.

• The spec. says that the transaction *should* complete in under 500ms.

• Can we stop relay attacks by adding a time out to the reader?

• Related question: can we make the relay faster?
Only added time delay
Relay timing

- We measured the exact transaction times for a number of cards.
 - Fastest 330ms
 - Slowest 637ms

- Fastest relayed transaction: 485ms

- Placement of card can have an affect > 80ms for longest messages.

- ABN Amro (Dutch)
 - Time for card to complete a purchase: 637ms
 - Time for relay to complete a purchase: 627ms.
Stopping Relays: Idea 2

• Why not just time-bound the important crypto message?
 • GPO for Visa’s payWave
 • GENERATE AC for Mastercard’s PayPass

• **Problem**: these are the steps that require the cards to do crypto, which shows more variance than any other messages.
 • Fastest payWave GPO: 105ms
 • Slowest payWave GPO: 364ms

• We were able to relay the fastest response in 208ms.
“Keep Your Enemies Close: Distance Bounding Against Smartcard Relay Attacks ” Drimer and Murdoch

- Reader times to nano second level.

- Uniform card hardware, clock speed known.

- Attacker that can relay close to the speed of light.

- Bounds distance to 100s of meters.

- Major changes to protocol and hardware.

- Reader times to micro second level.

- Variable card hardware

- Attacker uses cheap, slow hardware. e.g. phones.

- Stops attack inside same shop.

- Only change the payloads of existing message.
• The non-crypto messages are predictable and therefore can be time bound.

• But in the current protocols all none crypto messages can be cached.

• We tweak the protocol, so there is a non-crypto message that can be time-bound.
PaySafe
PaySafe Timing

- Time for cards to respond to a message of this length = 28 to 36ms.

- Time to relay a message of this length: 100ms

- So the reader will time out after 80ms.

- No phone or USB reader will be able to relay this message.

- Faster purpose build hardware costs tens of thousands of pounds.
Formal verification

\[a, b, c, k, s \]
\[f(M_1, \ldots, M_n) \] names
constructor application

\[D ::= g(M_1, \ldots, M_n) \]
destructor application

\[P, Q ::= \]
\[0 \]
\[\overline{M} \langle N \rangle . P \]
\[M(x).P \]
\[P \mid Q \]
\[!P \]
\[\nu a . P \] processes
nil
output
input
parallel composition
replication
create new name
Protocol model

Reader = $\overline{c}(\text{SELECT, PAYSYSDDF}).$

$\overline{c}(=\text{AID}).$

$\overline{c}(\text{SELECT}, \text{aid}).$

$c(=\text{PDOL}).$

$\nu n_R. \overline{c}(\text{GPO}, \text{amt}, n_R).$

$c(n'_C, \text{atc}', \text{PAN}').$

$\overline{c}(\text{GENERATE AC}).$

$c(\text{sdad}', \text{ac}').$

$\overline{c}(\text{READ RECORD}), c(\text{ssad}').$

$\overline{c}(\text{READ RECORD}), c(\text{cert}').$

let cardPub'_K =

\[\text{check}(\text{cert}', pk(\text{bank}_K))\]

if $\text{check}(\text{sdad}', \text{cardPub}'_K) = (n_R, n'_C, \text{amt}, \text{atc}', \text{ac}')$

$\overline{c}(\text{readerAccepts})$

$\text{Card} = c(=\text{SELECT}, =\text{PAYSYSDDF}).$

$\overline{c}(\text{AID}).$

$c(=\text{SELECT}, =\text{AID}).$

$\nu n_C. \overline{c}(\text{PDOL}).$

$c(=\text{GPO}, \text{amt}', n'_R).$

$\overline{c}(n_C, \text{atc}, \text{PAN}).$

$c(=\text{GENERATE AC}).$

let mac_K = \text{genkey}(\text{atc}, \text{bank}_K) \text{ in}$

let ac = mac((\text{amt}', n'_R, \text{atc}), \text{mac}_K) \text{ in}$

let sdad =

\[\text{sign}((n_R, n'_C, \text{amt}, \text{atc}, \text{ac}), \text{card}_K) \text{ in}\]

$\overline{c}(\text{sdad}).$

$c(=\text{READ RECORD}).$

$\overline{c}(\text{sign}((\text{PAN}, \text{expDate}), \text{bank}_K)).$

$c(=\text{READ RECORD}, \overline{c}(\text{cert})).$

System = $\nu \text{bank}_K. (\overline{c}(pk(\text{bank}_K))) | !\nu \text{amount}. !\text{Reader}$

$| !\nu \text{PAN}. \nu \text{expDate}. \nu \text{card}_K. \text{let cert = sign}(pk(\text{card}_K), \text{bank}_K) \text{ in} !\nu \text{atc}. !\text{Card})$
Key Observation

• The attackers can do anything they want before or after the time-bound step.

• Attackers can reply to the time-bound step with their own message or a replayed message.

• The attacker does not have time to
 • look at the time-bound step,
 • and then send a message to the card
 • and then reply to the reader.

This is equivalent to saying that the attacker cannot talk to the card during the time-bound step.
Key Observation

• In our formal model, we lock the card during the time-bound step.
 • It cannot communicate with the attacker or the reader.

• If the attacker can find a sequence of actions that allow the reader to successfully terminate, then there is a relay attack.

• If the reader cannot terminate then the protocol is safe from relay attacks.
Locking the Card Process Using Phases

- Phases enforce order on processes:
 - e.g. 2:P | 2:a(x).3:Q | 3:R

- To model relays we use three phases: 0, 1 & 2.

- The reader, attacker and card can all act in phase 0 & 2

- The attacker can act in phase 0, 1 & 2

- The reader moves to phase 1 before sending its time action & moves to phase 2 when it gets the reply.
Locking the Card Process Using Phases

- Cards and readers must be able to jump from phase 1 to 3 at any point

\[
\text{phasesSet}(P) = \{C[2 : M(x).P'] : P = C[M(x).P']\}
\]
\[
\text{phases}(P) = \text{!}P_1 \mid \text{!}P_2 \mid \cdots \mid \text{!}P_n \quad \text{where} \{P_1, \ldots, P_n\} = \text{phasesSet}(P)
\]

\[
\begin{align*}
\text{TestReader} &= \ldots \\
c(=\text{PDOL}) \cdot \nu n_R. \\
1: \overline{c}(\text{GPO}, \text{amt}, n_R). \\
c(n'_C, \text{atc}', \text{ccNo'}). \\
2: \overline{c}(\text{GENERATE AC}). \\
c(\text{sdad}', \text{ac'}). \\
\ldots
\end{align*}
\]

\[
\begin{align*}
\text{SystemP} &= \nu \text{bank}_K.(\overline{c}(pk(\text{bank}_K)) \\
& \mid \nu \text{amount. TestReader} \\
& \mid \mid \nu \text{amount. Readers} \\
& \mid \!(\nu \text{ccNo. } \nu \text{expDate. } \nu \text{card}_K. \\
& \quad \text{let cert } = \text{sign}(pk(\text{card}_K), \text{bank}_K) \\
& \quad \text{in } \!\nu \text{atc.Cards})
\end{align*}
\]

where:

\[
\begin{align*}
\text{Cards} &= \text{phases(Card)} \\
\text{Readers} &= \text{phases(Reader)}
\end{align*}
\]
Conclusion

• We have shown that fast relay attacks are possible against PayWave and PayPass

• These attacks cannot be easily stopped by time-bounding the current protocols.

• We have proposed a very small change to the protocols that will make time-bounding an affective way to stop relays using phones and USB NFC.

• We have shown how these kinds of protocols can be formally verified.