Alice and Bob’s Revenge?
If there is a protocol

If there is a protocol then there must be a shortest protocol

1. Alice \rightarrow Bob : ???
2. Bob \rightarrow Alice: ???

....

n-1. ?? \rightarrow ?? : ??
n. ?? \rightarrow ?? : ??
If there is a protocol

If there is a protocol then there must be a shortest protocol

1. Alice \rightarrow Bob : ??
2. Bob \rightarrow Alice: ???

....

n-1. ?? \rightarrow ?? : ??
Modelling and Analysing of Security Protocol: Lecture 13

What you can’t do with protocols and how to do it anyway.

Tom Chothia
CWI
The Rest of the Course

• 2nd, 9th, 16th, 23rd and 30th Nov
 Student presentations.

• 2nd:
 – Antanas Kaziliunas
 – Liang Wang
 – Kristian Rietveld
 – Renuka Autar

Final deadline: e-mail about your presentation by Wednesday
Today

• What you can’t do with protocol: global consensus
• Activities that require global consensus
• Global consensus using probability or Trusted Third Party.

BREAK

• Some commonly used protocol
• Extracting a protocol from a RFC
What’s Going Wrong?

• Using BAN logic:

 \[A \equiv B \] will attack \[\Rightarrow \] A will attack

 But also:

 \[B \equiv A \] will attack \[\Rightarrow \] B will attack

 Therefore:

 \[A \equiv B \equiv A \] will attack \[\Rightarrow \] A \equiv B \equiv B \] will attack

 \[\Rightarrow \] A will attack
What’s Going Wrong?

Therefore:

\[A \equiv B \equiv A \equiv B \text{ will attack} \Rightarrow A \equiv B \equiv A \text{ will attack} \]
\[\Rightarrow A \equiv B \text{ will attack} \]
\[\Rightarrow A \text{ will attack} \]

and so on and so on
What’s Going Wrong?

Alice and Bob need global consensus, i.e., for every n:

• $A \equiv B \equiv \ldots n \ldots \equiv B \equiv X$

And

• $B \equiv A \equiv \ldots n \ldots \equiv A \equiv X$

Each message can only add a finite “amount of belief”

No true global consensus unless you can be 100% sure that your message will be delivered in a fix amount of time.
Problems that Require Global Consensus

- Atomic Commitment
- Leadership Election
- Fair Exchange
- Synchronous communication from asynchronous channels.
How To Do It Anyway

• We can approximate global consensus by:

 – Using probability
 – Using a Trusted Third Party
 – Using unique IDs for each process

Or we can just not use it.
Synchronous Channel from Asynchronous Channels

1. A \rightarrow B : Message
2. B \rightarrow A : ACK

Not global consensus:
- B can claim it did get the message when it did.
- A might not get the ACK message.

But still useful
Two Phase Commit

- There are many participants and one administrator:

 Participants → Admin : Prepared
 Admin → Participants : Commit
Two Phase Commit

- There are many participants and one administrator:

 Participants → Admin : Prepared
 Participant → Admin : Fail
 Admin → Participants : RollBack
Leadership Election

• What happens if the Admin fails?

• Easy if the nodes have unique IDs.

• Otherwise hard to break symmetry.

• Have to use probability.
Fair Exchange using a TTP

1. \(A \rightarrow S : \{B, M_1, \text{Sign}_A(M_2)\}_{K_{\text{as}}} \)

2. \(B \rightarrow S : \{A, M_2, \text{Sign}_B(M_1)\}_{K_{\text{bs}}} \)

3. \(S \rightarrow A/B : \text{Sign}_A(M_2), \text{Sign}_B(M_1) \)
Rabin’s F.E. Protocol

• A, B and S agree on “n” such that they want to succeed with prob. \((n-1) / n \)

\[
\begin{align*}
A & \rightarrow B : \text{Sign}_A(M_A \text{ if S says 1}) \\
B & \rightarrow A : \text{Sign}_B(M_B \text{ if S says } \leq 2) \\
A & \rightarrow B : \text{Sign}_A(M_B \text{ if S says } \leq 3) \\
\vdots \\
B & \rightarrow A : \text{Sign}_B(M_B \text{ if S says } \leq n-1) \\
A & \rightarrow B : \text{Sign}_B(M_B \text{ if S says } \leq n) \\
B & \rightarrow A : \text{Sign}_B(M_B \text{ if S says } \leq n) \\
S & \rightarrow A, B : \text{Sign}_S(\text{random number between 1 & n})
\end{align*}
\]
1 of 2 Oblivious Transfer

• Probabilistic Fair Exchange without a trusted third party often use Oblivious Transfer.

• 1 of 2 Oblivious Transfer lets Alice send one of two messages to Bob in such a way that Alice doesn’t know which message was sent!
1 of 2 Oblivious Transfer

- Alice wishes to send M1 or M2, she picks two numbers “n” and “m”:

1. A → B : n,m

2. B → A : $E_A(k) + ?$ \hspace{1cm} (k random, ? = n or m)

3. A → B : Dec($E_A(k) + ? - n$) + M1
 \hspace{1cm}, Dec($E_A(k) + ? - m$) + M2
Fair Exchange using Oblivious Transfer

• Fair Exchange assumes that
 – Alice and Bob can recognize the exchanged data
 – The data is uniformly reconstructable.

• Alice and Bob exchange half their data using OT then reveal all the data bit by bit.
Summary

• Global Consensus is not possible but can be approximated using
 – A trusted third party
 – Probability.
Today

• What you can’t do with protocol: global consensus
• Activities that require global consensus
• Global consensus using probability or Trusted Third Party.

BREAK

• Some commonly used protocol
• Extracting a protocol from a RFC