Problem 1

Give a formal proof of the valid assertion

\[\left((x \mapsto y \ast x' \mapsto y') \ast \text{true} \right) \Rightarrow \]
\[\left((x \mapsto y \ast \text{true}) \land (x' \mapsto y' \ast \text{true}) \right) \wedge x \neq x' \]

from the rules on page 120 of Chapter 3 of the class notes, and (some of) the following inference rules for predicate calculus:

\[p \Rightarrow \text{true} \quad p \Rightarrow p \quad p \land \text{true} \Rightarrow p \]

\[p \Rightarrow q \quad q \Rightarrow r \quad (\text{trans impl}) \]

\[p \Rightarrow r \]

\[p \Rightarrow q \quad p \Rightarrow r \quad (\land\text{-introduction}) \]

\[p \Rightarrow q \land r \]

Your proof will be easier to read if you write it as a sequence of steps rather than a tree. In the inference rules, you should regard \(\ast \) as left associative, e.g.,

\[e_1 \mapsto e_1' \ast e_2 \mapsto e_2' \ast \text{true} \Rightarrow e_1 \neq e_2 \]

stands for

\[(e_1 \mapsto e_1' \ast e_2 \mapsto e_2') \ast \text{true} \Rightarrow e_1 \neq e_2. \]

For brevity, you may weaken \(\iff \) to \(\Rightarrow \) when it is the main operator of an axiom. You may also omit instances of the axiom schema \(p \Rightarrow p \) when it is used as a premiss of the monotonicity rule.
Problem 2

None of the following axiom schemata are sound. For each, given an instance which is not valid, along with a description of a state in which the instance is false.

\[p_1 \ast p_2 \neq p_1 \land p_2 \]
\[p_1 \land p_2 \neq p_1 \ast p_2 \]
\[(p_1 \ast p_2) \lor q \neq (p_1 \lor q) \ast (p_2 \lor q) \]
\[(p_1 \lor q) \ast (p_2 \lor q) \neq (p_1 \ast p_2) \lor q \]
\[(p_1 \ast q) \land (p_2 \ast q) \neq (p_1 \land p_2) \ast q \]
\[(p_1 \ast p_2) \land q \neq (p_1 \land q) \ast (p_2 \land q) \]
\[(p_1 \land q) \ast (p_2 \land q) \neq (p_1 \ast p_2) \land q \]

\[(\forall x. (p_1 \ast p_2)) \neq (\forall x. p_1) \ast p_2 \quad \text{when } x \text{ not free in } p_2 \]
\[(p_1 \Rightarrow p_2) \neq \left((p_1 \ast q) \Rightarrow (p_2 \ast q) \right) \]
\[(p_1 \Rightarrow p_2) \neq (p_1 \Rightarrow p_2) \]
\[(p_1 \Rightarrow p_2) \neq (p_1 \Rightarrow p_2) \]

Problem 3

Fill in the postconditions in

\[\{ (e_1 \Rightarrow -) \ast (e_2 \Rightarrow -) \} \mid [e_1] := e'_1 ; [e_2] := e'_2 \{ ? \} \]
\[\{ (e_1 \Rightarrow -) \land (e_2 \Rightarrow -) \} \mid [e_1] := e'_1 ; [e_2] := e'_2 \{ ? \}. \]

to give two sound inference rules describing a sequence of two mutations. Your postconditions should be as strong as possible.

Give a derivation of each of these inference rules, exhibited as an annotated specification.