Typed Prolog: A Semantic Reconstruction of the Mycroft-O’Keefe Type System

T.K. Lakshman and Uday S. Reddy
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801, USA
internet: {lakshman,reddy}@cs.uiuc.edu

Abstract
Mycroft and O’Keefe [25] presented a declaration-based type system for Prolog. However, they did not clarify the semantics of the type system, leading to several criticisms being voiced against it. We propose that the language accepted by this type system be viewed as a typed variant of Prolog, called Typed Prolog. We define the formal semantics of Typed Prolog along the lines of many-sorted logic and polymorphic lambda calculus. Typed Prolog also supports a form of type inference called type reconstruction which takes a Typed Prolog program with missing type declarations, and reconstructs the most general type declarations satisfying the language definition. This approach contrasts with the inference based type systems which have been widely pursued heretofore.

1 Introduction

Static type checking in typed programming languages facilitates automatic error detection and debugging, code optimization and program analysis. However, logic programming languages such as Prolog do not possess a well-defined notion of types. This is evident from the fact that an n-ary function symbol can be uniformly applied to any n-tuple of terms. Consequently, researchers in logic programming have focused on incorporating type disciplines into the inherently untyped logic programming languages so as to exploit the benefits of types.

Most of the research in the area of type systems for logic programming has followed a descriptive approach where the untyped semantics of the language is first defined independent of types. Types are then used to describe semantic properties of programs. This approach assumes the existence of a Universe of all objects. Types are viewed as subsets of the Universe and are often described by regular tree sets [10, 18, 23, 26, 34, 36] and sometimes by other approaches [15, 33]. One of the advantages of the descriptive approach is that there need not be any type declarations, and indeed, types...
can be inferred from the program. However, the inferred types may not exactly specify the programmer’s intent. This approach has been followed in [23, 24, 26, 36].

An alternate prescriptive approach does not presuppose a Universe of all objects. Different domains are associated with distinct types. Type declarations form an integral part of programs and are used to determine the semantics of programs. An advantage of this approach is that type declarations can clearly specify the programmer’s intent. This approach has been described in [9, 12, 20, 21, 27, 28].

Mycroft and O’Keefe [25] define a type system for a large subset of Prolog. Type declarations for functions and predicates are specified and used to augment the program clauses. However, Mycroft and O’Keefe do not define a typed semantics for their language. Instead, they assume a standard untyped semantics for Prolog and show that the type checker guarantees a certain well-behavedness property for the operational behavior of programs. This property, called the “semantic soundness” is offered as the only justification for the formal definition of the type system. This has caused a number of objections to be voiced against the type system. For instance, the type information has been categorized as being “extra-logical” [33]. The role played by the type system for an implementation different from SLD-resolution is also not clear [17].

We believe that the Mycroft-O’Keefe type system should be viewed prescriptively, i.e., the type system should enhance the language to a typed language and determine a typed semantics. The “semantic soundness” property of [25] is thus viewed as a type consistency property of the execution mechanism. The notion of well-typed logic programs is defined independently of a specific execution mechanism. This view was originally expressed in [27] and was independently formulated by [9]. The proposal of [12] is also similar.

In this paper, we define Typed Prolog, a prescriptively typed logic programming language which is a rational reconstruction of the ideas in [25]. A type system that characterizes well-formed Typed Prolog programs is specified. The type systems of Lambda Prolog [21] and Gödel [3] are also similar to this type system. This is followed by the specification of a typed model-theoretic semantics for Typed Prolog, based on many-sorted logic [5, 20] and polymorphic lambda calculus [6, 29]. Next, a fixed point semantics is defined in terms of an immediate consequence operator T_P over typed Herbrand interpretations. The equivalence of the two semantics is also shown.

We describe a type reconstruction algorithm similar to the one used in ML [22]. Even though type declarations form an integral part of a Typed Prolog program, it is possible to omit the declarations and have them automatically reconstructed by an algorithm. Thus, type inference in the prescriptively typed framework takes the form of type reconstruction.

Typed Prolog programs can be executed using the conventional untyped SLD resolution mechanism [9, 12, 25]. This is because the conventional SLD resolution is type consistent for Typed Prolog programs. The evaluation of
a well-formed goal never leads to ill-formed subgoals. This implies that no run-time type checking is required.

We also show that the type system accommodates several non-logical features found in Prolog, such as cut, assert and retract.

Due to space limitations, we omit proofs of results. Detailed proofs can be found in the extended version of the paper [19].

2 Typed Prolog

2.1 Syntax

The expressions of Typed Prolog are constructed using three alphabets of symbols:

1. A ranked set T of type constructors. With every type constructor $\sigma \in T$ is associated a rank (or arity) denoting the number of type parameters it accepts. In particular, there is a type constructor $Unit$ of rank 0, a type constructor int of rank 0 and a type constructor $list$ of rank 1. We use the notation $type^{rank}$ (e.g., $list^1$) to denote type constructors, and omit the rank superscript when it is clear from the context.

2. A signed set F of function symbols. With every $f \in F$ is associated a type signature of the form $\tau_1 \times \cdots \times \tau_k \rightarrow \tau'$ (for $k \geq 0$) indicating the types of its arguments and result. Further, all the type variables appearing in τ_1, \ldots, τ_k must also appear in τ'. This condition on function symbols was left tacit in [25]. Function symbols that satisfy this condition are called “type preserving” in [9].

The type terms τ are described below. If $k = 0$, the domain type is formally taken to be $Unit$. However, for convenience, we write “$Unit \rightarrow \tau” as simply τ.

3. A signed set P of predicate symbols. With every $p \in P$ is associated a type signature of the form $Pred(\tau_1 \times \cdots \times \tau_k)$ (for $k \geq 0$) indicating the types of its arguments.

In addition, there is a countably infinite set V of variable symbols X, and a countably infinite set Λ of type variable symbols α. The expressions in the language belong to the following syntactic categories:

$$\tau \in Type, \ t \in Term, \ A \in Atom, \ \phi \in Formula, \ C \in Clause, \ P \in Program.$$

The unchecked “pre-expressions” belonging to these categories are given by the abstract syntax:

\[
\begin{align*}
\tau & ::= \alpha \mid \sigma(\tau_1, \ldots, \tau_k) \\
\textit{term} & ::= X \mid f(t_1, \ldots, t_k) \\
\textit{atom} & ::= p(t_1, \ldots, t_k) \\
\phi & ::= \epsilon \mid A \mid \phi_1, \phi_2 \mid t_1 = t_2 \\
\textit{clause} & ::= \forall X_1 : \tau_1, \ldots, X_n : \tau_n \ (A \leftarrow \phi) \\
\textit{program} & ::= C_1 \ldots C_l
\end{align*}
\]
Here, ϵ denotes the "empty" formula and "ϕ_1, ϕ_2" denotes the conjunction of ϕ_1 and ϕ_2. Clauses must include type declarations for all the variables used in them. This is in keeping with the principle of typed languages that all nonlogical symbols should be introduced with type declarations.

By "pre-expressions" we mean that not all expressions conforming to the above syntax are well-formed. To be well-formed, an expression must also satisfy the type rules given below.

2.2 Type Rules

To express the type rules, we use the following forms of assertions:

- $t : \tau$ (t is a well-formed term of type τ)
- A Atom (A is a well-formed Atom)
- ϕ Formula (ϕ is a well-formed Formula)
- C Clause (C is a well-formed Clause)
- P Program (P is a well-formed Program)

In addition, we use type contexts Γ which are finite sets of unique type assertions for variables, each of the form $X : \tau$. A type context may also be viewed as a partial mapping $V \rightarrow Type$.

The type rules are:

$\Gamma \vdash X : \tau$
if $(X : \tau) \in \Gamma$

$\frac{\Gamma \vdash t_1 : \theta(\tau_1) \quad \ldots \quad \Gamma \vdash t_k : \theta(\tau_k)}{\Gamma \vdash f(t_1, \ldots, t_k) : \theta(\tau')}$
if $f : \tau_1 \times \cdots \times \tau_k \rightarrow \tau'$

$\frac{\Gamma \vdash t_1 : \theta(\tau_1) \quad \ldots \quad \Gamma \vdash t_k : \theta(\tau_k)}{\Gamma \vdash p(t_1, \ldots, t_k) \text{ Atom}}$
if $p : \text{Pred}(\tau_1 \times \cdots \times \tau_k)$

$\Gamma \vdash \epsilon$ Formula

$\Gamma \vdash A$ Atom
$\Gamma \vdash A$ Formula

$\frac{\Gamma \vdash t_1 : \tau \quad \Gamma \vdash t_2 : \tau}{\Gamma \vdash (t_1 = t_2) \text{ Formula}}$

$\frac{\Gamma \vdash \phi_1 \text{ Formula} \quad \Gamma \vdash \phi_2 \text{ Formula}}{\Gamma \vdash (\phi_1, \phi_2) \text{ Formula}}$

$\frac{\Gamma \vdash t_1 : \theta(\tau_1) \quad \ldots \quad \Gamma \vdash t_k : \theta(\tau_k) \quad \Gamma \vdash \phi \text{ Formula}}{\vdash \forall X_1 : \tau_1, \ldots, X_n : \tau_n \left[(p(t_1, \ldots, t_k) \leftarrow \phi) \text{ Clause}\right] \quad \vdash C_1 \text{ Clause} \quad \ldots \quad \vdash C_i \text{ Clause}}$
if $\Gamma = \{X_1 : \tau_1, \ldots, X_n : \tau_n\}$, $p : \text{Pred}(\tau_1 \times \cdots \times \tau_k)$, and θ is a renaming substitution.

An expression is well-formed iff a corresponding judgement can be derived using the above inference rules. The well-formedness of terms and formulas is defined relative to a type context Γ, whereas clauses and programs are well-formed in the empty context. Since each expression form has
a unique inference rule, the type rules may also be viewed as an inductive
definition of the set of well-formed expressions where \(\theta \) is a substitution from
type variables to type terms. Note that the use of the substitution \(\theta \) in the
function and predicate application rules signifies that, if a functor or predicate
symbol has some type, then it also has every instance of that type. This
is how polymorphism is obtained.

The type rules can easily be transformed into a Prolog program whose
termination follows by structural induction on the expressions. Thus, checking
the well-formedness of a Typed Prolog program is decidable.

To illustrate the type rules, let us look at a few example programs in
Typed Prolog.

Example 1

Given the alphabets

\[
T = \{\text{man}^0, \text{woman}^0\}, \quad F = \{\text{john} : \text{man}, \text{mary} : \text{woman}\},
\]
\[
P = \{\text{married} : \text{Pred}(\text{man} \times \text{woman})\}
\]

The following is a well-formed program:

\[
\text{married}(\text{john}, \text{mary}) \leftarrow
\]

It is not possible to define a predicate \(\text{spouse} \) with the interpretation:

\[
\text{spouse}(X, Y) \leftarrow \text{married}(X, Y).
\]
\[
\text{spouse}(X, Y) \leftarrow \text{married}(Y, X).
\]

because in that case, \(\text{spouse} \) must have both the types \(\text{Pred}(\text{man} \times \text{woman}) \)
and \(\text{Pred}(\text{woman} \times \text{man}) \). The only way to include such a predicate would be to coalesce the types \text{man} and \text{woman} into a single type, say, \text{person}.

Then, the following signatures can be assigned:

\[
T = \{\text{person}^0\}, \quad F = \{\text{john} : \text{person}, \text{mary} : \text{person}\},
\]
\[
P = \{\text{married} : \text{Pred}(\text{person} \times \text{person}), \text{spouse} : \text{Pred}(\text{person} \times \text{person})\}
\]

Example 2

To see the use of polymorphism, consider the alphabets:

\[
T = \{\text{list}^1, \ldots\}, \quad F = \{\text{nil} : \text{list}(\alpha), \text{"."} : \alpha \times \text{list}(\alpha) \rightarrow \text{list}(\alpha)\},
\]
\[
P = \{\text{append} : \text{Pred}(\text{list}(\alpha) \times \text{list}(\alpha) \times \text{list}(\alpha))\}
\]

Then the following is a well-formed program:

\[
[\forall Y : \text{list}(\alpha)] \quad \text{append}(\text{nil}, Y, Y) \leftarrow
\]
\[
[\forall A : \alpha, X : \text{list}(\alpha), Y : \text{list}(\alpha), Z : \text{list}(\alpha)]
\]
\[
\text{append}(A, X, Y, A, Z) \leftarrow \text{append}(X, Y, Z).
\]

The predicate \(\text{append} \) is polymorphic in that it can be used to append lists
of any type. The use of type variables such as \(\alpha \) in the type signature of the
predicate demonstrates such polymorphism.
2.3 Definitional Genericity

The restrictions in the type rule for clauses must be carefully noted. These restrictions state that the type of a defining occurrence of a predicate (an occurrence to the left of "—") must be equivalent, up to renaming, to the assigned type signature of the predicate. We call this condition the principle of definitional genericity. For instance, it would be incorrect to restate the clauses of `append` with `α` replaced by a specific type such as `int`. The type of `append` in its defining occurrences would then be more specific than its assigned type signature. Such specificity is prohibited by the definitional genericity constraint imposed on the clauses.

The definitional genericity principle is consistent with the view of Prolog programs as “definitions” of predicates rather than as axioms. A formal expression of this view is Clark’s ill-completion semantics [4]. If programs are viewed as definitions, then the clauses for a predicate such as `append` above should define the polymorphic predicate `append`, rather than some particular monomorphic instance of it. This contrasts with the view of programs as “axioms” in [9].

3 Semantics of Typed Prolog

We define a typed model-theoretic semantics for Typed Prolog based on that of many-sorted logic [5, 8, 20] and polymorphic lambda calculus [6, 29]. The semantics takes types into account in a fundamental way. Firstly, we require that every ground type term τ denote a distinct domain of values. Secondly, since the language consists of only well-formed terms and formulas, only such terms and formulas are assigned meaning. Further, the interpretation of a term `t` should denote a value in the domain denoted by “its type”. Since terms have types only with respect to particular type contexts, the type context as well as the type of a term play a role in its interpretation. Moreover, the definition of an interpretation needs information about a particular type derivation used to derive the type of the term.

3.1 Interpretations

An Interpretation `I` is a tuple `<D, T, F, P>` where `D` is a set of non-empty sets called “domains”, and `T`, `F` and `P`, are the interpretation functions for type constructors, function symbols and predicate symbols (respectively). Specifically:

- `T(σ) : D^n → D` assigns to every type constructor `σ` of arity `n`, a function in `D^n → D`. Thus, every ground type term `τ` can be interpreted as a domain `D_τ`. However, non-ground type terms like `list(α)` cannot directly be interpreted as domains. Consequently, a type evaluation `v : Λ → D` is defined to map type variables to domains. A
non-ground type term τ can now be interpreted as a domain $D_{\tau,v}$ via
the use of v to interpret the type variables in τ.

$$D_{\alpha,v} = v(\alpha),$$
$$D_{\sigma(\tau_1,\ldots,\tau_k),v} = \mathcal{I}(\sigma)(D_{\tau_1,v}, \ldots, D_{\tau_k,v}).$$

- $\mathcal{F}(f)$ assigns to every function symbol f of type $\tau_1 \times \ldots \times \tau_n \rightarrow \tau$, a
 family of functions f_v, indexed by type valuations v. For every type
 valuation v for the type variables in the type of f, there is a function
 f_v in the corresponding function space $D_{\tau_1,v} \times \ldots \times D_{\tau_n,v} \rightarrow D_{\tau,v}$ that
 interprets f.

- $\mathcal{P}(p)$ assigns to every predicate symbol p of type $\text{Pred}(\tau_1 \times \ldots \times \tau_n)$,
a family of relations p_v indexed by type valuations v. For every type
 valuation v for the type variables in the type of p, there is a relation
 p_v over $D_{\tau_1,v} \times \ldots \times D_{\tau_n,v}$ that interprets p.

This semantics of polymorphism via parameterization is motivated by
polymorphic lambda calculus [6, 29]. Hanus [9] and Yardeni et. al. [35] also
use a similar interpretation.

A valuation ζ is a mapping $\zeta: V \rightarrow \bigcup_{\tau} D_{\tau}$. A valuation ζ is said to respect
a type context Γ under a type valuation v if, for all $X \in V$, $\zeta(X) \in D_{\Gamma(X),v}$. If θ is a type substitution mapping type variables Λ to type terms over a set
of type variables Λ', and v is a type valuation for Λ', then we denote by $v \circ \theta$
the type valuation $v \circ \theta(\alpha) = D_{\theta(\alpha),v}$.

The extension of the interpretation \mathcal{F} to terms, denoted by $\mathcal{F}_{v,\zeta}$, is defined
with respect to a type valuation v and a valuation ζ. It applies to
well-formed terms $\Gamma \vdash t: \tau$ provided ζ respects Γ under v. Since we are only
interested in well-formed terms, we refer to sequents of the form $\Gamma \vdash t: \tau$ as
"terms".

$$\mathcal{F}_{v,\zeta}[\Gamma \vdash X : \tau] = \zeta(X) \text{ if } X : \tau \in \Gamma,$$
$$\mathcal{F}_{v,\zeta}[\Gamma \vdash f(t_1,\ldots,t_k) : \theta(\tau')] =$$
$$\mathcal{F}(f)_{v \circ \theta}([\mathcal{F}_{v,\zeta}[\Gamma \vdash t_1 : \theta(\tau_1)]],\ldots,[\mathcal{F}_{v,\zeta}[\Gamma \vdash t_k : \theta(\tau_k)]])$$
if $f: \tau_1 \times \ldots \times \tau_k \rightarrow \tau'$.

For example, given $\text{nil} : \text{list}(\alpha)$,

$$\mathcal{F}_{v,\zeta}[\Gamma \vdash \text{nil} : \text{list}(\alpha)] = \mathcal{F}(\text{nil})_{[\alpha \rightarrow v(\alpha)]} \text{ and}$$
$$\mathcal{F}_{v,\zeta}[\Gamma \vdash \text{nil} : \text{list}(\text{int})] = \mathcal{F}(\text{nil})_{[\alpha \rightarrow \text{int}]}.$$

In other words, $\Gamma \vdash \text{nil} : \text{list}(\alpha)$ denotes a polymorphic value, whereas
$\Gamma \vdash \text{nil} : \text{list}(\text{int})$ denotes a specific value in $D_{\text{list}(\text{int})}$.

An interpretation \mathcal{I} applies to formulas "$\Gamma \vdash \phi$ Formula", provided ζ
respects Γ under v, and yields a truth value.
An interpretation \(I \) satisfies the clause \(\phi \) iff, for all type valuations \(v \) and all valuations \(\zeta \) that respect \(\Gamma \) under \(v \), one of the following holds:

- \(I \models_{v,\zeta} [\Gamma \vdash \phi \text{ Formula}] \) is false.
- \((F_{v,\zeta}[\Gamma \vdash t_1 : \theta(\tau_1)], \ldots, F_{v,\zeta}[\Gamma \vdash t_k : \theta(\tau_k)]) \in \mathcal{P}(p)_{v\circ\theta} \)

We denote this by \(I \models [\forall X_1: \tau_1, \ldots, X_n: \tau_n] (p(t_1, \ldots, t_k) \leftarrow \phi)\). Finally, \(I \) satisfies a program \(C_1, \ldots, C_l \) iff \(I \models C_i \) for each \(i = 1, \ldots, l \). We also say that \(I \) is a model of the program.

3.2 Model Intersection Property

Let \(\mathcal{M} \) be a (non empty) set of models of a Typed Prolog program which share the same \(\mathcal{D}, \mathcal{T} \) and \(\mathcal{F} \) components but differ in the predicate interpretations \(\mathcal{P} \). For \(M_1, M_2 \in \mathcal{M} \), we say that \(M_1 \subseteq M_2 \) if the \(\mathcal{P} \) component of \(M_1 \) is included in the \(\mathcal{P} \) component of \(M_2 \). Let \(M_\cap = \bigcap \mathcal{M} \) be the model with the same \(\mathcal{D}, \mathcal{T} \) and \(\mathcal{F} \) components but with the predicate interpretations obtained by intersecting the \(\mathcal{P} \) components of the models in \(\mathcal{M} \).

Lemma 3.1 If \(\Gamma \vdash \phi \text{ Formula} \) and, for some \(M \in \mathcal{M} \), \(M_{v,\zeta}[\Gamma \vdash \phi \text{ Formula}] \) is false then \((M_\cap)_{v,\zeta}[\Gamma \vdash \phi \text{ Formula}] \) is false.

Theorem 3.2 If \(\mathcal{M} \) is a set of models of a Typed Prolog program \(P \) with the same \(\mathcal{D}, \mathcal{T} \) and \(\mathcal{F} \) components, then \(M_\cap \) is a model of \(P \).

Corollary 3.3 For a given \(\mathcal{D}, \mathcal{T} \) and \(\mathcal{F} \), every Typed Prolog program \(P \) has a least model.
3.3 Typed Herbrand Interpretations

For each ground type term \(\tau \), define \(H_\tau \) to be the set of well-formed ground terms of type \(\tau \), i.e., terms \(t \) such that \(\vdash t : \tau \). A *Typed Herbrand Interpretation* \(I \) has the following \(\mathcal{D}, \mathcal{T} \), and \(\mathcal{F} \) components:

- \(\mathcal{D} \) is the set of \(H_\tau \)'s for all type terms \(\tau \).
- \(\mathcal{T}(\sigma^n) \) maps \(H_{\tau_1}, \ldots, H_{\tau_n} \) to \(H_{\sigma(\tau_1, \ldots, \tau_n)} \).
- \(\mathcal{F}(f) \) is the family of functions \(f_\nu : \mathcal{D}_{\tau_1, \nu} \times \cdots \times \mathcal{D}_{\tau_n, \nu} \to \mathcal{D}_{\tau, \nu} \) which maps tuples of terms \((t_1, \ldots, t_n) \) to the term \(f(t_1, \ldots, t_n) \).

A *Typed Herbrand Model* of a Typed Prolog program \(P \) is is a typed Herbrand interpretation which is a model of \(P \).

The *Typed Herbrand Base* \(B_P \) for a program \(P \) is the typed Herbrand interpretation \((\mathcal{D}, \mathcal{T}, \mathcal{F}, \mathcal{P}) \) such that for all predicates \(p : \text{Pred}(\tau_1 \times \cdots \times \tau_n) \), \(\mathcal{P}(p, \nu) \) is \(\mathcal{D}_{\tau_1, \nu} \times \cdots \times \mathcal{D}_{\tau_n, \nu} \). Thus, \(p(t_1, \ldots, t_n) \) is true for all tuples of well-formed ground terms of the appropriate types. Note that the typed Herbrand base is always a model of a well-formed Typed Prolog program.

A typed Herbrand interpretation is identified with a subset of the \(\mathcal{P} \) component of the typed Herbrand base that consists of all well-formed ground atoms which are true with respect to the interpretation. \(2^{B_P} \) is the set of all typed Herbrand interpretations of \(P \). For \(I_1, I_2 \in 2^{B_P} \), we say that \(I_1 \subseteq I_2 \) if the \(\mathcal{P} \) component of \(I_1 \) is included in the \(\mathcal{P} \) component of \(I_2 \). Note that \(\langle 2^{B_P}, \subseteq \rangle \) is a complete lattice.

Theorem 3.4 A well-formed Typed Prolog program has a model iff it has a Typed Herbrand model.

As a notational convenience, we denote by \(I_P \), a typed Herbrand interpretation \(I \) whose predicate component is \(\mathcal{P} \).

Let \(M \) be a (non empty) set of typed Herbrand models of a Typed Prolog program \(P \). The *Least Typed Herbrand Model* of \(P \) is defined as \(M_P = \bigcap M \).

3.4 Fixed Point Characterizations

For a Typed Prolog program, let \(I_P \) be a typed Herbrand interpretation and let \(I_P \) be the extension of \(I_P \) (as defined earlier) to well-formed formulas. An *immediate consequence operator* \(T_P : 2^{B_P} \to 2^{B_P} \) is defined as follows: \(T_P(I_P) = I_P \), where \(I_P \) is such that for every clause \(\forall X_1 : \tau_1, \ldots, X_n : \tau_n \) \((p(t_1, \ldots, t_k) \vdash \phi) \) in the program with \(p : \text{Pred}(\tau_1 \times \cdots \times \tau_k) \) and \(\Gamma = \{ X_1 : \tau_1, \ldots, X_n : \tau_n \} \), and for all type valuations \(v \) and valuations \(\zeta \) that respect \(\Gamma \) under \(v \), \((\forall v, \zeta \mid \Gamma \vdash t_1 : \theta(\tau_1)], \ldots, \forall v, \zeta \mid \Gamma \vdash t_k : \theta(\tau_k)] \in \mathcal{P}(p) \circ \theta \) if \(\forall v, \zeta \mid \Gamma \vdash \phi : \text{Formula} \) is true.

A set \(S \subseteq 2^{B_P} \) is *directed* if every finite subset of \(S \) has an upper bound in \(S \).

Theorem 3.5 \(T_P \) is continuous, i.e., for each directed subset \(S \) of \(2^{B_P} \), \(T_P(\text{lub}(S)) = \text{lub}(T_P(S)) \).
Corollary 3.6 (Tarski) The least fixed point of T_P exists [31].

Theorem 3.7 Let I be a typed Herbrand interpretation of a Typed Prolog program P. Then, I is a typed Herbrand model of P iff $T_P(I) \subseteq I$.

Theorem 3.8 The least typed Herbrand model M_P of a Typed Prolog program P is the least fixed point of T_P.

4 Type Reconstruction

In the prescriptively typed framework, a “completely-typed” program in Typed Prolog must contain type declarations for function symbols in F and predicate symbols in P. In addition, each clause must contain type declarations for all the variables used in it. Since requiring type declarations for each of the above alphabets is too cumbersome, a “partially typed” program dispenses with as much of type declarations as possible. Instead, the “omitted” type declarations are inferred via a “type reconstruction” algorithm.

A completely typed program P^c in Typed Prolog is a tuple $\langle T, F, P, Prog \rangle$ where T is a set of type constructors, F is a set of type declarations for function symbols, P is a set of type declarations for predicate symbols, and $Prog$ is a set of program clauses. With every function (predicate) symbol appearing in the program is associated a unique type declaration in $F (P)$. Likewise, every variable appearing in a clause, has a type declaration for it in the clause.

The type erasure of a completely typed program P^c in Typed Prolog is a partially typed program P^p which is a tuple $\langle T, F, P^c, Prog^c \rangle$ defined as follows:

- P^c is obtained from P by erasing type declarations for predicate symbols,
- $Prog^c$ is obtained from $Prog$ by erasing from each clause, type declarations for the variables used in it.

We denote this by $erase(P^c) = P^p$.

A type reconstruction algorithm takes as input a partially typed program P^p and produces a completely typed program P^c that satisfies the well-formedness rules such that $erase(P^c) = P^p$.

4.1 Type Reconstruction for variables

Type reconstruction for variables is the process of computing the type context. Since each expression has a unique type rule, given the type declarations for functors and predicate symbols, we can uniquely compute the most general type context.

Thus, the type reconstruction problem for variables in a Typed Prolog program is well defined. There exists a unique (upto renaming) most general
type of a variable. The implementation [19] does reconstruct most general types for variables. Type reconstruction for variables has also been implemented for the Mycroft-O’Keefe type system [25].

4.2 Type Reconstruction for predicates

A predicate symbol p is said to derive a predicate symbol q in a program P ($p \leadsto q$) if there is a clause in P in which p occurs in the head and q occurs in the body. We denote by \leadsto^+ the transitive closure of the derives relation \leadsto in P. A predicate symbol p is said to be self-recursive if $p \leadsto p$. Predicate symbols p and q are mutually recursive if $p \leadsto^+ q$ and $q \leadsto^+ p$. p is said to be recursive if $p \leadsto^+ p$ in P. Note that this definition includes self-recursion as well as mutual-recursion. A predicate symbol p is said to be recursively defined in a program P if $p \leadsto^+ q$ and q is “recursive” in P. Otherwise, p is said to be non-recursively defined in P.

The problem of reconstructing most general type signatures for recursive polymorphic predicates is closely related to the problem of semi-unification [11]. It has been shown in [11] that semi-unification characterizes (upto polynomial time equivalence) the problem of inferring the most general types for recursive polymorphic predicates in a calculus of type rules that can be used to model Typed Prolog. However, it has recently been shown [16] that semi-unification is in general undecidable. Hence, type reconstruction for recursive polymorphic predicates in Typed Prolog is also undecidable.

In view of the undecidability of the type reconstruction problem for predicates, the algorithm assumes that the type associated with a body occurrence of a recursive polymorphic predicate is identical to (rather than an instance of) its type signature. This assumption results in a loss of generality in the reconstructed type (see example 4). However, we believe that this loss of generality is not serious in practice. This is evidenced by the large number of functional programming languages which use this type reconstruction algorithm [2, 13, 32].

4.3 Type Reconstruction Algorithm

The type reconstruction algorithm is similar to the one used in ML [22] and has been implemented in Prolog [19].

Input A partially typed program P^p in Typed Prolog wherein type declarations are mandatory for all function symbols but may be omitted for predicate symbols. Type declarations for variables in clauses are omitted.

Algorithm The algorithm reconstructs omitted predicate types as follows:

1. Reorder the definitions in P^p so that the definition for a predicate symbol p appears before definitions for all r that “derive” p. Mutually recursive predicate definitions appear together (in any order).

2. For each clause in the reordered program that defines a predicate symbol p, use the type rules to check for well-formedness and reconstruct
the type of the defining occurrence of \(p \).

3. The reconstructed type signature for \(p \) is the most general unifier of the types reconstructed above.

Output A completely typed program \(P^c \) such that by erasing the reconstructed predicate types and the reconstructed types for variables in clauses in \(P^c \), we obtain the partially typed input program \(P^p \).

The above type reconstruction algorithm reconstructs the most general type signature for non-recursively defined predicates.

In order to obtain a characterization of the reconstructed types for recursively defined predicates, we define the type reconstruction problem for a single predicate \(p \), wherein, given the types of all \(q \) (distinct from \(p \)), such that \(p \sim q \), it is required to reconstruct the missing type for \(p \). The following characterization can be extended to type reconstruction for multiple (possibly mutually recursive) predicates [19].

Let \(TS \) be a new type system whose type rules are identical to the type rules for Typed Prolog with the exception that in the type rule for clause, the type variables appearing in the types for variables are replaced by “new” type constructors. \(TS \) permits only monomorphic recursion i.e., for a predicate \(p \) such that \(p \sim p \), the type of body occurrences of \(p \) in a clause defining \(p \) must be identical to (and not a polymorphic instances of) the type of the defining occurrence of \(p \).

Theorem 4.1 For the type reconstruction problem for a single predicate, the output \((P^c)\) of the type reconstruction algorithm is a well-formed program under \(TS \).

The following examples illustrate the type reconstruction algorithm:

Example 3

Consider as input, the program from example 2 with the type declaration for \(append \) being omitted. The reconstructed type from the first clause is \(\text{append} : Pred\{\text{list}(a) \times \beta \times \beta\} \) since \(\text{nil} : \text{list}(a) \) is in \(F \). Likewise, from the second clause, the reconstructed type is \(\text{append} : Pred\{\text{list}(\gamma) \times \delta \times \text{list}(\gamma)\} \) since \(\cdot : \text{list}(a) \rightarrow \text{list}(a) \) is in \(F \). By unifying the reconstructed types from the two clauses, we obtain the reconstructed type signature of \(\text{append} \) as \(\text{append} : Pred\{\text{list}(a) \times \text{list}(a) \times \text{list}(a)\} \) which is the most general type signature.

The following example illustrates the problem with reconstructing types for recursively defined polymorphic predicates.

Example 4

Given the alphabets

\[T = \{\text{int}^0\}, \quad F = \{0 : \text{int}\}, \quad P = \{\} \]
Consider the trivial predicate \(p \) defined by
\[
\begin{align*}
p(X, 0) & \leftarrow \cr p(X, Y) & \leftarrow p(0, 0).
\end{align*}
\]
From the first clause, assuming that the type of the variable \(X \) is \(\alpha \), the reconstructed type is \(p : \text{Pred}(\alpha \times \text{int}) \).

The second clause has a recursive call to \(p \). If we assume that the types of occurrence of \(p \) in the head and the body are polymorphic instances of the type of \(p \), then from the second clause, the reconstructed type would be \(p : \text{Pred}(\gamma \times \beta) \). By unifying the types reconstructed from the two clauses of \(p \), we would get the most general type signature \(p : \text{Pred}(\alpha \times \text{int}) \).

However, this means that \(p \) would be used polymorphically within its own definition. As mentioned before, the type reconstruction problem becomes undecidable [16]. Consequently, the reconstruction algorithm assumes that the type of the recursive occurrence of \(p \) is identical to its type signature. Thus, from the second clause, the algorithm reconstructs the type \(p : \text{Pred}(\text{int} \times \text{int}) \). By unifying the types reconstructed from the two clauses, the reconstructed type signature of \(p \) is \(p : \text{Pred}(\text{int} \times \text{int}) \) which is not the most general type.

5 Type Consistency

Type consistency is the property that evaluation rules transform a well-formed expression into another well-formed expression. This property is also referred to as the "subject reduction" property in [1]. For Typed Prolog, since SLD-resolution is the evaluation rule we show that one step of SLD-resolution transforms a well-formed goal expression into another well-formed goal expression.

More precisely, let \(\Gamma \) be a type environment such that \(\Gamma \vdash \phi \) Formula. If \(\phi' \) is obtained by one step of SLD-resolution, then there is some extension \(\Gamma' \) of \(\Gamma \) such that \(\Gamma' \vdash \phi' \) Formula. This follows from the fact that the types of predicate occurrences to the left of \(\leftarrow \) are equivalent to the assigned type signatures (definitional genericity) while the types of the predicate occurrences in the goal formula are instances of the assigned type signatures.

The type system for Typed Prolog satisfies the definitional genericity condition and function symbols are type preserving. It has been shown in [9] that the above conditions imply that untyped SLD-resolution is type-consistent. Consequently, type checking at run-time is obviated. Type-consistency has been shown for the Mycroft-O'Keefe type system in [9].

6 Extensions

The type system for Typed Prolog permits the incorporation of many logical as well as nonlogical constructs in a straightforward manner. For instance,
negation, disjunction, cuts, asserts and retracts can all be incorporated into the type system. The syntax of formulas changes to

$$\phi ::= \epsilon \mid \phi_1 \mid A \mid not(A) \mid assert(A) \mid retract(A) \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2$$

The type rules for formulas are simple restatements of the modified syntax; e.g., the type rule for $not(A)$ is

$$\Gamma \vdash A \text{ Atom} \quad \Rightarrow \quad \Gamma \vdash not(A) \text{ Formula}$$

It must be noted that certain other constructs such as the predicate $\text{functor}(T, F, N)$ cannot be incorporated within the present framework for Typed Prolog. For example the clause $A \leftarrow \text{functor}(f(a, X), f, 2)$ requires function types for the term f. The type system needs to be enriched with higher order types in order to facilitate the above extension.

7 Conclusions

This paper presents Typed Prolog, a Prolog-like polymorphic logic programming language. A prescriptive type system for Typed Prolog is presented as a semantic reconstruction of the Mycroft-O'Keefe type system [25]. Type declarations are an integral part of the language and are used to determine the semantics of programs. Typed Prolog follows a conventional notion of types that is commonly found in programming languages and logic. A typed semantics is defined for Typed Prolog.

Type inference is made feasible by a type reconstruction algorithm that reconstructs types of predicates given the types of functions. The type system is quite robust in allowing the addition of a variety of extra-logical features to Typed Prolog. We view this prescriptive method as the most pragmatic approach for incorporating types into logic programs.

There are several directions for further research in this area. We hope to investigate issues like the usefulness of “regular trees” [10, 23, 24, 26, 28] in expressing function types within this prescriptively typed framework. We would also like to consider the notion of types within the constraint logic programming framework [14]. Another area of interest is the utilization of order-sorted types [7, 8, 30] to achieve subtyping.

References

