The Essence of Reynolds
3. State and Abstraction

Uday S. Reddy

University of Birmingham

POPL, 2014
John C. Reynolds, 1935-2013
According to Mac Lane, she “emphasized the importance of homomorphisms.”

Within 10 years of her passing, category theory was born, taking “homomorphisms” as the primary elements, and formulating naturality as the preservation of homomorphisms.
John Reynolds emphasized the importance of logical relations, formulating relational parametricity as the preservation of logical relations.

Can we hope for a new theory within 10 years of his passing?

Do “logical relations” pose a challenge to the supremacy of “homomorphisms”?

Do they give us a better handle on the “mathematical reality?” At least as seen from the Computer Science point of view?

Or, perhaps more generally, are there aspects of mathematical phenomena hidden from our view which might be unveiled by understanding “logical relations”?
Logical relations

- **Logical relations** are relations compatible with structure, just like **homomorphisms** are functions preserving structure. See Hermida, Reddy and Robinson [2014].
- Other names for logical relations in the literature:
 - Regular relation, Homogeneous relation, Compatible relation (algebra)
 - Congruence relation (algebra - for *equivalence* relations)
 - Covering relation (automata theory)
 - Simulation relation, Bisimulation relation (Milner, CCS & pi-calculus)
 - Refinement mapping (Abadi & Lamport, Dist. systems)
- **Relational parametricity** asks for “parametrically polymorphic” functions to preserve all logical relations.

```
A  F(A)  t_A  G(A)
  ↓     ↓     ↓
R  F(R)  G(R)
  ↓     ↓     ↓
A' F(A') t_{A'} G(A')
```
I took this affront to category theory as a challenge. There were several years that I often found myself thinking — and then saying out loud when lecturing — that if we were to work very, very hard, we might catch up to where John Reynolds was years ago.²

— Core algebra revisited, 2007

² I must record John’s words when he attended one such lecture:

“You too? I’ve long been trying to catch up to where I used to be”.
Relational parametricity

- 1974: *Towards a theory of type structure*
 - Polymorphic lambda calculus
 - Representation independence theorem (using Galois connections for complete lattices).

- 1983: *Types, abstraction and parametric polymorphism*
 - Relational parametricity
 - Abstraction theorem (generalizing “representation theorem”)
 - Uses relations instead of Galois connections
Why relations?

- Reynolds was a co-inventor of “logical relations” (1974), along with Plotkin (1973), Milne (1974).
- The crux of logical relations is this formula for properties of functions $f : A \rightarrow B$:

 $$(P \rightarrow Q)(f) \iff (\forall x. P(x) \implies Q(f(x)))$$

- Or, for binary relations:

 $$(R \rightarrow S)(f, f') \iff (\forall x, x'. R(x, x') \implies S(f(x), f'(x')))$$

- Most people think of this as a proof technique to get induction to work.
Plotkin’s [1980] use of logical relations was much deeper.

“Because of the “logical” nature of λ-definable elements, they should be invariant under the permutations of D.”

— Lambda definability in the full type hierarchy

Elaborating:

<table>
<thead>
<tr>
<th>Other types</th>
<th>network connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Mathematics”</td>
<td>integer, real</td>
</tr>
<tr>
<td>“Logic”</td>
<td>×, →</td>
</tr>
</tbody>
</table>

The logical constructions of λ-calculus can’t “see” the mathematical types that lie above.

Plotkin’s “logical” = Reynolds’s “parametric” ?
Abstraction

- Logical relations were also invented in automata theory [Ginzburg and Yoeli, 1965, Eilenberg, 1976].
- Milner [1969] rechristened them “simulation relations” and applied them to programming theory. Later bisimulations.
- Hoare [1972] applied the idea to data representations (abstract data types).
- Reynolds [1972-1981] used all these ideas in Data representation structuring (Ch. 5 of *Craft of Programming*).
- Mitchell and Plotkin [1982] made the connection between abstract types and existential types.
Reynolds’s idea

- In putting all these ideas together, Reynolds made his characteristic giant leap:

 “The way of out of this impasse is to generalize homomorphisms from functions to relations.”

 — Types, Abstraction and Parametric Polymorphism, 1983.

- **Homomorphisms** represent the very foundation of the 20’th century mathematics!

- But Reynolds says, they only work for first-order types.

- We must generalize homomorphisms to **logical relations** to handle higher-order types.
In automata, process calculi and abstract types, computations are black boxes with hidden state:

\[M : \exists Q. F(Q) \]

This is “global” information hiding.

Parametric polymorphism gives you “local” information hiding.

\[t : \forall Q. F(Q) \to G(Q) \]
What next?

- **Information hiding**, a Computer Science idea, is also at the heart of mathematics.
- Reynolds parametricity gives us a mathematical theory of information hiding, which should have a wide range of applications.
- Computer Science has an opportunity to cause a “disruptive change” to 21st century Mathematics and, through it, perhaps all of science.
- Some beginnings:
 - Hermida, Reddy, Robinson [2014].
 - Atkey [2014] — in this POPL.
Section 2

State
The Craft of Programming

- Reynolds was a superior imperative programmer (Algol 60, Algol W, Algol 68, assembly).
- Between 1972-1981, he taught a graduate course on programming at Syracuse, developing the work published as The Craft of Programming.
The Craft of Programming (contd)

- Contains a wealth of information about:
 - what imperative programming means,
 - how to develop imperative programs rigorously,
 - the type structure of imperative programs,
 - reasoning principles (both practical, e.g., arrays, and abstract, e.g., Specification Logic),
 - how to reason about data abstraction (or information hiding).

- Separation Logic, 2000, may be seen as a continuation of this body of work.
The Craft of Programming (contd)

- The Craft of Programming apparently gave rise to a series of landmark papers.
 - 1978: Syntactic Control of Interference.
 - 1979: Reasoning about arrays.
 - 1984: Polymorphism is not set-theoretic.

- What do we see here?
 - The ideas of state, types, data abstraction, polymorphism are all interconnected in Reynolds’s mind.
 - State is the key.
State and abstraction

Two major insights:

- Procedures of Algol 60 = typed lambda calculus. Recall: Call-by-name!
- A Polymorphic Model of Algol [Notes dated 1975]: Algol types are “type constructors,” parameterized by state types.

\[
\text{com}[S] = S \to S \\
(\theta_1 \to \theta_2)[S] = \forall S'. \theta_1[S \times S'] \to \theta_2[S \times S']
\]

- Whereas pure functional programming lives in classical set theory, imperative programmign works in intuitionistic set theory (Kripke-style, presheaf model).
- Contrast with Strachey’s denotational semantics, which essentially tries to reduce imperative programming to functional programming, i.e., classical set theory.
The correspondence between Algol and functional programs:

<table>
<thead>
<tr>
<th>Algol (intuitionistic)</th>
<th>classical functional</th>
</tr>
</thead>
<tbody>
<tr>
<td>types</td>
<td>type constructors</td>
</tr>
<tr>
<td></td>
<td>(functors/relators)</td>
</tr>
<tr>
<td>terms</td>
<td>polymorphic functions</td>
</tr>
<tr>
<td></td>
<td>(natural/parametric</td>
</tr>
<tr>
<td></td>
<td>transformations)</td>
</tr>
</tbody>
</table>

So, first-order Algol programs become polymorphic higher-order functional programs.

Parametricity implies: \([\text{com} \to \text{com}] \cong \mathbb{N}\). (a form of Church numerals).

Hoare’s proof rule for while loops is a free theorem.
An “intuitionistic” set (in the sense of Kripke and Lawvere) is a set parameterized by some context, which we call a “world.”

\[A(X) = \ldots \]

Lawvere (Sets for Mathematics, 2003) also calls them “variable sets.” Normal sets are called “constant sets.”

In the Algol case, “worlds” are store shapes.

Functions: \((A \Rightarrow B)(X) = \forall_{Y \geq X} A(Y) \to B(Y)\)

Intuitively: a “function” of type \(A \Rightarrow B\) at world \(X\) can work at every future world \(Y\), accepting arguments of type \(A\) at world \(Y\) and giving results of type \(B\) at world \(Y\).
Modularity in State

Since state is an implicit type parameter, Reynolds thought about further information hiding aspects to capture modularity in state.

Syntactic Control of Interference [1978]:

\[(θ_1 \rightarrow θ_2)[S] = ∀S' \ θ_1[S'] \rightarrow θ_2[S \times S']\]

Procedure and its argument should not “interfere” (depend on separate portions of storage).

Corresponding non-interfering product [O’Hearn et al.]:

\[(θ_1 \ast θ_2)[S] = ∃S_1, S_2 | S_1 \times S_2 \leq S \ θ_1[S_1] \times θ_2[S_2]\]

Separation logic [2000-2013] reinterprets these ideas for predicates instead of types.

A fitting culmination of a lifelong quest for understanding the deepest underpinnings of programming languages!