Interfacing to Computer Algebra via Term Indexing

Frank Theiß¹, Volker Sorge² and Martin Pollet¹

¹ Universität des Saarlandes, Germany
{lime,pollet}@ags.uni-sb.de
² School of Computer Science, University of Birmingham, UK
v.sorge@cs.bham.ac.uk

Abstract
Computer Algebra Systems provide large collections of algorithms, which can be exploited to perform simplifications in Automated Theorem Proving systems. However, determining applicable algorithms and suitable instantiations of arguments in a dynamically changing proof situation is a potentially costly operation in particular in large proofs, as it requires matching the abstract description of an algorithm against actual terms in the current proof. We describe a new indexing method to handle the computational complexity of this task. It is based on a variant of coordinate indexing with shared term representations and operates as an active term filter, where term matching is triggered by the insertion of new terms into the index. An interface to Computer Algebra Systems can be realised by compiling a set of abstract descriptions of an algorithm into a term index structure composed of a static set of query terms. This enables a reactive behaviour of the indexing by automatically determining what simplification algorithms can be applied to newly occurring terms in a proof once they are inserted into the index structure.

Key words: Term Indexing, CAS-ATP Interface

1 Introduction
Making the computational power of Computer Algebra Systems (CAS) available in deduction systems has been the basis for much research in the last decade. One of the problems of an integration of CAS into deduction systems is to identify applicable algorithms in a given proof situation and to provide suitable arguments to invoke them. Since most of the research so far was concerned with the correct integration of CAS into mainly interactive deduction systems [1,3,12,14], applicability conditions of CAS algorithms could be encoded into inference rules, along with the extraction of their parameters from actual formulae and the reintegration of their results into the
proof. Whether and where an algorithm is applicable is thus determined by matching the specification of an inference rule against terms in the current proof state. While this is still feasible in interactive theorem proving, when attempting to automate simplifications performed by CAS in the context of fully Automated Theorem Proving (ATP), an exhaustive search for applicable algorithms, by matching every proof node against the specifications of every algorithm, is computationally too expensive, in particular in large proofs with many possibly applicable algorithms.

In this paper we present a method to automate the detection of applicable CAS algorithms by using term indexing structures with a reactive behaviour. Technically the task of determining applicable algorithms in a given proof state, is to filter terms according to the applicability conditions of CAS algorithms. Given a set of query terms, which abstractly describe the input terms of an algorithm, we retrieve instances for these query terms from a set of terms representing the current proof state, thereby instantiating variables that occur in the query terms, appropriately. For example, we have an algorithm that solves quadratic equations, we can specify its input with the query term \(o x^2 + \beta x + \gamma\), where \(\alpha, \beta, \gamma, \chi\) are variables that can be matched. If now \((4x^2 + 4x + 4)\) is among the terms in our proof, it matches the query with variable instantiation \(\{4/\alpha, 4/\beta, 4/\gamma, x/\chi\}\).

We facilitate this process by constructing a term indexing graph that contains information on all occurring terms and subterms in the proof state (the data structure is presented in Section 2). We then enrich this structure with information on a set of abstract descriptions, or query terms, for CAS algorithms. This is achieved by compiling the set of query terms into a net of meta nodes and relate them to the term indexing structure. Thus once a new term is constructed during proof search, its insertion into the term indexing graph automatically yields a set of applicable CAS algorithms, which can be executed (we describe this procedure in Section 3). The actual integration of CAS computations into the deduction system, sketched in Section 4, is realised as rules, mapping term descriptions to applicable algorithms.

There exists a variety of indexing techniques in particular in the context of first-order ATP [6], and the application of indexing techniques has become standard in all major systems like SPASS [15], Vampire [9], or E-Prover [10]. In higher order systems, there are fewer examples, but indexing techniques are applied here, too. Isabelle provides discrimination nets as a filtering tool for fast selection of rules. Terms are classified by the symbol list obtained by flattening them in pre-order. Higher order aspects are simplified, e.g. \(\lambda\)-abstractions are regarded as unknowns [7]. In Twelf, higher order substitution tree indexing is used in higher order tabled logic programming and led in some examples to a speed up of over 800% [8]. All of these examples are based on substitution trees or discrimination trees and are, with the exception of Isabelle’s discrimination nets, implemented in the context of machine-oriented proof methods and therefore focus on fast unification.
Our indexing method, on the other hand, is based on a variant of coordinate indexing [13]. Redundancies are minimised by the use of a shared representation of terms, which allows us — in contrast to the techniques discussed above — to search the index inside-out, that is, terms are identified according to occurrences of subterms at arbitrary positions. This feature is particularly important in our context as CAS algorithms are often applied in rewrite rules in an ATP, e.g. to simplify subterms of a formula, by recursively simplifying a term starting with the innermost subterm. The novelty of our approach lies in its reactive behaviour for the retrieval of possible simplifications for newly constructed terms. Our mechanism has been developed for the ΩMEGA system [11], a proof environment for the development of higher order proofs and is intended to be used fully automatically in ΩMEGA’s proof planning facility. While we make use of ΩMEGA’s higher order syntax and can handle higher order terms including λ-abstraction, we do not exploit advanced features such as higher order unification or higher order matching.

2 Indexing Structure

Indexing is a method for fast retrieval of terms from a set of indexed terms or, conversely, to detect quickly that no such term in the index exists. For this the index classifies the terms according to some discriminating property. In our approach, this discriminating property is the occurrence of specified subterms at specified positions. The main index structure we use is that of a positional tree from Stickel’s [13] approach of coordinate path indexing. In a positional tree nodes represent term positions and record both all terms in which the position occurs and the related subterm found at this position. Unlike the original approach of coordinate indexing we employ a further graph structure, the term graph, for a shared representation of indexed terms. Apart from reducing redundancies in the retrieval operation, the combination of positional tree and term graph allows us to access the index in two ways. On the one hand, all terms with an occurrence of a given sub term at a specified position can be looked up via the positional tree. On the other hand for a given subterm we can determine all terms containing that subterm at any position via the term graph. Since both structures are intertwined some parts of the exhibition of the term graph can only be fully appreciated after the description of the positional tree.

Before introducing the two concepts, we first introduce some basic notions necessary to describe our indexing mechanism. Given a set of constant symbols \(\mathcal{C} \) and a set of variable symbols \(\mathcal{V} \), we define the set \(\mathcal{L} \) of terms of our higher order language as

- every element in \(\mathcal{V} \) and \(\mathcal{C} \) is in \(\mathcal{L} \),
- if \(f \in \mathcal{L} \) is an \(n \)-ary function symbol and \(a_1, \ldots, a_n \in \mathcal{L} \) are terms then the application \(f(t_1, \ldots, t_n) \) is in \(\mathcal{L} \),
- if \(r \in \mathcal{L} \) then the abstraction \(\lambda r \) is in \(\mathcal{L} \).
We call constants and variables *primitive terms* to distinguish them from the *non-primitive terms* applications and λ-abstractions. Observe that \(\mathcal{L} \) is intrinsically a higher order language. Indeed the elements of both \(\mathcal{V} \) and \(\mathcal{C} \) can be \(n \)-ary function symbols and are generally typed. For simplicity we omit types for the exposition in this paper. However, the presented index structures extend to typed terms as well.

Observe also that in the definition of λ-abstraction we use deBruijn indices [2]; that is, bound variables are not explicitly represented in the binder but are expressed by measuring the distance from the scope to a bound variable. As an example the expression \((\lambda a.(\lambda b.f(a + b))a) \) is translated to \((\lambda.(\lambda.f(x_1 + x_0))x_0) \) in anonymous notation. Bound variables in the direct scope of their λ-binder are named \(x_0 \) (i.e. deBruijn index 0), inside the next λ-binder the index used in the scope of the λ-abstraction is incremented by one, therefore the first occurrence of \(a \) in the above example translates to \(x_1 \), the second to \(x_0 \). Elements of \(\mathcal{V} \) are restricted to variables of the form \(x_i, i = 0, 1, \ldots \).

We use *query terms* to retrieve sets of *indexed terms* from our index structure. Query terms are partially specified terms that contain *query variables*, which serve as placeholders in order to match them against terms in the term index. We therefore extend our language \(\mathcal{L} \) by a set \(\mathcal{Q} \) of query variables. Elements of \(\mathcal{Q} \) can be used similarly to constant elements in the construction of terms and we will denote them by small Greek letters. In addition we define a special type of query variable \(\Phi(t) \). It serves as a placeholder for a term that contains some term \(t \) as a subterm.\(^1\) We explain the role of both types of query variables more precisely in section 2.3.

2.1 Term Graph

We define the term graph \(\mathbf{ID}_g \) as a directed acyclic graph. Every node represents a term, where primitive terms are represented by leaf nodes and non-primitive terms by interior nodes of the graph. Each node is identified by a unique name that indicates the type of term it represents:

- A node representing a primitive term is named with \(s \in \mathcal{V} \cup \mathcal{C} \). A node of this type does not have any children.
- A node representing an application of the form \(f(a_1, \ldots, a_n) \) has a name of the form \(t: \text{app}_n \), where \(t \) is unique in \(\mathbf{ID}_g \) and \(\text{app}_n \) indicates that the term is an \(n \)-ary application. The node has \(n + 1 \) child nodes, one for the function and \(n \) for the argument terms.
- A node representing an abstraction is named \(t: \text{abstr} \), where \(t \) is unique in \(\mathbf{ID}_g \). This node has one child representing the term in the scope of the abstraction.

\(^1\) Note that \(\Phi \) is not a higher order function but serves only as notational convenience. Note also that \(\Phi \) can have more than one argument, but for the ease of explanation we omit this detail here.
Fig. 1. The term graph on the left represents the terms \(t_0 : \lambda x.f(x_0) \) (in standard notation: \(\lambda x.f(x) \)) and \(t_1 : f(a + b) \). The right side shows the graph after \(t_4 : f((a+b)+c) \) has been inserted, where the newly added edges are black. Note that the subterm \(t_3 : a + b \) is shared and thus not created when adding \(t_4 : f((a+b)+c) \).

Every symbol is represented by a single node.

We call the nodes of an index graph also the *indexed terms*. When the distinction is not crucial we use the same identifier for terms and nodes. Two examples of term graphs can be seen in Figure 1.

Each node in the term graph \(t \in ID_G \) has several attributes containing the necessary indexing information. Node attributes are denoted by the node name and the attribute name, separated by a dot. In general attributes named \(T \) indicate a link to the term graph, \(D \) point to the positional tree, and \(M \) is a link to meta nodes. The latter two will be explained in more detail in Sections 2.2 and 3, respectively. Concretely the attributes of a node \(t \in ID_G \) are:

- \(t.T_{\text{sub}} \) is the list of subterms of the term represented by \(t \) and contains all child nodes of \(t \). If \(t \) is an application, \(t.T_{\text{sub}} \) contains the terms representing the function and its argument. If \(t \) is of the form \(\lambda t' \) then \(t.T_{\text{sub}} = \{ t' \}\).
- \(t.T_{\text{super}} \) is empty if \(t \) is a primitive term.
- \(t.D_{\text{this}} \) is the list of direct super-terms, that is, it contains all parent nodes of \(t \).
- \(t.D_{\text{this}} \) records all positions \(t \) occurs in, in all other terms \(t' \) that are currently in the proof. See Section 2.2 for details.

Examples of term graphs are shown in Figure 1. The term graph on the left is produced from the insertion of the two terms \(\lambda x.f(x_0) \) and \(f(a + b) \). The node \(t_2 \), for instance, represents a unary application and its list of subterms is \(t_2.T_{\text{sub}} = \{ f, t_3 \} \) while \(t_2.T_{\text{super}} \) is empty. The node \(f \), on the other hand, represents a primitive term and thus has an empty set of subterms but has two direct super-terms, namely \(t_1 \) and \(t_2 \). After inserting the term \(f((a + b) + c) \)
we obtain the term graph on the right and the set of parent nodes of \(f \) is now of the form \(f.\mathcal{T}_{\text{super}} = \{t_1, t_2, t_4\} \).

When a new term \(t \) is added to the term graph, the shared representation is preserved; that is, if \(t \) is already in the index, then the corresponding graph node is returned. If \(t \) is not yet in the index, then the graph is extended. For non-primitive terms the components are inserted recursively. In detail the algorithm inserts a term \(t \) as follows (observe that we use \(t \) both for the term and the node representing that term):

(i) If \(t \) is a primitive term then return the corresponding node. If such a node does not exist, a new node for \(t \) with \(t.\mathcal{T}_{\text{super}} = \emptyset \) is introduced.

(ii) If \(t \) is of the form \(\lambda . t' \), then insert \(t' \). If \(t : \text{abstr} \in t'.\mathcal{T}_{\text{super}} \) then return \(t : \text{abstr} \), otherwise create new node \(t : \text{abstr} \) with \(t.\mathcal{T}_{\text{sub}} = \{t'\} \) and insert \(t \) into \(t'.\mathcal{T}_{\text{super}} \).

(iii) If \(t \) is of the form \(t_0(t_1, \ldots, t_n) \), then insert \(t_i, i = 0, \ldots, n \). In case \(\{t : \text{app}_n\} = \bigcap_{i \in \{0, \ldots, n\}} t_i.\mathcal{T}_{\text{super}} \) then return \(t : \text{app}_n \). Otherwise create new node \(t : \text{app}_n \) with \(t.\mathcal{T}_{\text{sub}} = \{t_0, \ldots, t_n\} \) and insert \(t \) into all \(t_i.\mathcal{T}_{\text{super}} \).

Whenever a new node has been introduced, all of its subterms are recorded in the respective position in the positional tree. This is explained in detail in Section 2.2.

As an example consider the term graph containing already \(\lambda . f(x_0) \) and \(f(a + b) \) in Figure 1. When inserting the term \(f((a + b) + c) \) case iii of the insertion algorithm is executed and the subterms are recursively inserted. In order to insert the innermost non-primitive subterm \(a + b \), first the primitive nodes \(+, a \) and \(b \) have to be inserted. Since they are all already contained in the tree no new nodes have to be introduced and the existing nodes are returned. As \(t_3 : \text{app}_2 \) is a direct super-term of each of the subterms \(+, a \) and \(b \), it is identified as the representation for \((a + b) \) and returned. The next term to be inserted is \(c \), for which a new node has to be created. As there is no common super-term of \(+, t_3 \) and \(c \), a new node \(t_5 \) is introduced for \((a + b) + c \), and \(t_5 \) is added to the list of super-terms of \(t_3 \). Similarly a new node \(t_4 \) is introduced for the whole term \(f((a + b) + c) \). Observe that in Figure 1 the newly inserted edges are black.

Employing the shared term graph allows us to represent all occurrences of a term \(t \) represented by a single node in the graph. This allows terms to be enumerated and reduces equality checking of terms and operations on sets of terms to operations on natural numbers, which we use to label nodes in the practical implementation. While the term graph stores relations of subterms to each other, it does not yet contain information on the positions particular subterms can occur at in terms found in the proof state. This is done in the positional tree, which completes our indexing structure.
Fig. 2. Positional tree for the term graph of Figure 1.

2.2 Positional Tree

The positional tree ID_D is a labelled tree that represents all possible term positions that occur in a given proof state. The positions are stored as relative positions as edge labels. The nodes record all possible subterms that occur at the position given by the path from that node to the root in some existing term in the proof. An example of a positional tree is given in Figure 2, which is the corresponding tree for the term graph from Figure 1. Edge labels are depicted on top of the edges. In each node d of the tree all pairs (t, t') are recorded, where t' is the subterm of t at position d. While in Figure 2 the complete entries are omitted for clarity, positions with occurrences of the symbols $a, b, c, f, +$ and x_0 are marked (the full list of node entries is described below). If not explicitly distinguished we will use the same identifier for both the node and the position it represents.

More formally ID_D is defined as follows:

- root node d_0 represents the root position ϵ, the topmost position in a term.
- if a node d represents a position such that there is a term t in the index with a $t_0(t_1, \ldots, t_n)$ at position d, then d has $n + 1$ child nodes one for each t_i, $i = 0, \ldots, n$. The edges between d and its children are labelled by the relative positions $\text{app}_{i,j}$ for each t_j, $j \in \{0 \ldots n\}$. Here n represents the arity of the function.
- if d represents a position such that there is a term t in the index that contains a λ-abstraction $t' : \text{abstr}$ at position d, it has a child for the position of the abstracted term. The relative position (i.e. the edge label) is abstr.

The node attributes are used to store information on the tree structure and recorded subterm occurrences. Again attributes named \(T \) indicate a link to the term graph, and \(D \) points to the positional tree.

- \(d.D_{\text{super}} \) is the parent node of \(d \).
- \(d.D_{\text{sub}} \) is a list of pairs \((pos,d')\), one for each child node \(d' \) and its relative position \(pos \) (i.e., \textit{abstr} or \textit{appl}_{i,j} \).
- \(d.T_{\text{this}} \) is a list of all pairs \((t,t_{\text{sub}})\) such that there is some indexed term \(t \) with \(t_{\text{sub}} \) as subterm at position \(d \).

Whenever a new term node in the term graph is created for a term \(t \), the positional tree is updated (note that nodes are also created for subterms; e.g., during the insertion of \(f((a+b)+c) \), both \(t_4 \) and \(t_5 \) are created and the positional tree is updated for both). This update records a pair \((t,t_{\text{sub}})\) in each position node \(d \), where \(t_{\text{sub}} \) occurs at position \(d \) in \(t \). The update algorithm starts by recording \((t,t)\) in root position \(d_0 \) (as \(t \) is the subterm of itself in the topmost position), and proceeds by recursively recording pairs \((t,t_{\text{sub}})\) in the appropriate position nodes \(d \):

(i) Insert \((t,t_{\text{sub}})\) in \(d.T_{\text{this}} \). Update term node \(t \) by inserting \(d \) in \(t.D_{\text{this}} \).
(ii) If \(t_{\text{sub}} \) is of the form \(\lambda t' \), then check if \((\textit{abstr},d')\) \(\in \) \(d.D_{\text{sub}} \) for some child node \(d' \). If it is not, create child node \(d' \); insert \((\textit{abstr},d')\) in \(d.D_{\text{sub}} \), and set \(d'.D_{\text{super}} = d \). Proceed by recording \((t,t')\) in \(d' \).
(iii) If \(t_{\text{sub}} \) is of the form \(t_0(t_1,\ldots,t_n) \), then check if \((\textit{appl}_{i,i},d_i)\) \(\in \) \(d.D_{\text{sub}} \) for some child node \(d_i \) for each \(i = 0,\ldots,n \). If it is not, create the child node \(d_i \), insert \((\textit{appl}_{i,i},d_i)\) in \(d.D_{\text{sub}} \), and set \(d_i.D_{\text{super}} = d \). Proceed by recording \((t,t_i)\) in \(d_i \).

The positional tree shown in Figure 2 is the result of the insertion of the terms \(\lambda f(x_0) \), \(f(a+b) \), and \(f((a+b)+c) \) into an empty index. The content of the position node records \(d.T_{\text{this}} \) is then:

\[
\begin{align*}
d_{0}.T_{\text{this}} & = \{(t_0,t_0),(t_1,t_1),(t_2,t_2),(t_3,t_3),(t_4,t_4),(t_5,t_5)\} \\
d_{1}.T_{\text{this}} & = \{(t_0,t_1)\} \\
d_{2}.T_{\text{this}} & = \{(t_1,f),(t_2,f),(t_4,f)\} \\
d_{3}.T_{\text{this}} & = \{(t_1,x_0),(t_2,t_3),(t_4,t_5)\} \\
d_{4}.T_{\text{this}} & = \{(t_5,+),(t_5,+)+\} \\
d_{5}.T_{\text{this}} & = \{(t_5,a),(t_5,t_3)\} \\
d_{6}.T_{\text{this}} & = \{(t_3,b),(t_5,c)\} \\
d_{7}.T_{\text{this}} & = \{(t_0,f)\} \\
d_{8}.T_{\text{this}} & = \{(t_0,x_0)\} \\
d_{9}.T_{\text{this}} & = \{(t_2,+),(t_4,+),(t_5,b)\} \\
d_{10}.T_{\text{this}} & = \{(t_2,a),(t_4,t_3)\} \\
d_{11}.T_{\text{this}} & = \{(t_2,b),(t_4,c)\} \\
d_{12}.T_{\text{this}} & = \{(t_5,+),(t_5,+)+(t_5+b)\} \\
d_{13}.T_{\text{this}} & = \{(t_5,a)\} \\
d_{14}.T_{\text{this}} & = \{(t_5,b)\} \\
d_{15}.T_{\text{this}} & = \{(t_4,+),(t_4,a),(t_4,b)\} \\
d_{16}.T_{\text{this}} & = \{(t_4,a)\} \\
d_{17}.T_{\text{this}} & = \{(t_4,b)\} \\
\end{align*}
\]

The position of occurrences are furthermore recorded in the nodes of the term graph:

\[
\begin{align*}
t_0.D_{\text{this}} & = \{d_0\} \\
t_1.D_{\text{this}} & = \{d_0,d_1\} \\
t_2.D_{\text{this}} & = \{d_0\} \\
t_3.D_{\text{this}} & = \{d_0,d_3,d_5,d_{10}\} \\
t_4.D_{\text{this}} & = \{d_0\} \\
t_5.D_{\text{this}} & = \{d_0,d_3\} \\
t_6.D_{\text{this}} & = \{d_3,d_8\} \\
f.D_{\text{this}} & = \{d_2,d_7\} \\
.\ D_{\text{this}} & = \{d_4,d_9,d_{12},d_{15}\} \\
a.D_{\text{this}} & = \{d_5,d_{10},d_{13},d_{16}\} \\
b.D_{\text{this}} & = \{d_6,d_{11},d_{14},d_{17}\} \\
c.D_{\text{this}} & = \{d_6,d_{11}\} \\
\end{align*}
\]
As an example how to interpret the above data consider the occurrence of term \(c \). It appears in two positions \(d_6 \) and \(d_{11} \) given in \(c.D_{this} \). In the former it is the second argument of a binary application, which comes from the insertion of the node \(t_5 = ((a + b) + c) \) into the term graph. In the latter position where it is nested one positional level deeper, namely as subterm of \(t_4 = f((a + b) + c) \). Both \(t_4 \) and \(t_5 \) can be found in the \(T_{this} \) attribute of the respective position. In the following section we describe how these records are used for fast retrieval of terms from the index.

2.3 Term Retrieval

To retrieve terms from the index, the information given both in the term graph and the positional tree is exploited in a three step algorithm. Given a query term \(t_q \) that possibly contains query variables, we

(i) retrieve an initial set of candidate terms,
(ii) remove all terms from the set for which no consistent query variable instantiation exists,
(iii) resolve all occurrences of the special variable \(\Phi \) in \(t_q \), that is, if \(\Phi(t_q') \) occurs at a position \(d \) in \(t_q \), then check for each candidate term that they have a subterm at \(d \) that contains an occurrence of \(t_q' \).

Observe that in step iii the term \(t_q' \) can again be a query term containing query variable and instances of \(\Phi \), thus its retrieval spawns are recursive calls to the retrieval algorithm.

Step i

We identify subterms of \(t_q \) that contain no query variables and their position in \(t_q \). For each subterm \(t' \) occurring at position \(d \), indexed terms with corresponding subterms can be looked up in \(d.T_{this} \). For each entry \((t_c, t') \) in \(d.T_{this} \), \(t_c \) is a candidate term for the query. The initial set of candidates is obtained by intersecting the sets of candidate terms retrieved for each of the subterms \(t' \).

Consider the example \(t_q = f(\alpha + \beta) \), where \(\alpha, \beta \in \mathcal{Q} \) are query variables. The only subterms not containing any query variables are \(f \) and \(+ \) at position \(d_2 \) and \(d_9 \), respectively (cf. Figure 1). For \(f \), the terms \(\{t_1, t_2, t_4\} \) are retrieved from \(d_2.T_{this} \), and for \(+ \) the terms \(\{t_2, t_4\} \) are retrieved from \(d_9.T_{this} \). The intersection of both sets \(\{t_1, t_2, t_4\} \cap \{t_2, t_4\} = \{t_2, t_4\} \) yields the initial set of candidate terms for the query, whose members are \(t_2 = f(a + b) \) and \(t_4 = f((a + b) + c) \).

Step ii

We then compute the query variable instantiations and check their consistency for each term \(t_c \) in the candidate set. An instantiation for a query variable is given by the subterm in the corresponding position in \(t_c \). If a query variable has multiple occurrences in \(t_q \), it must have the same instantiation for all its instantiations in \(t_c \). If not \(t_c \) is removed from the candidate set.
For the candidates from the previous step, the variable instantiations are \(\{a/\alpha, b/\beta\} \) for \(t_2 = f(a + b) \) and \(\{(a + b)/\alpha, c/\beta\} \) for \(t_4 = f((a + b) + c) \). Both \(\alpha \) and \(\beta \) occur only once, so there is no conflict to resolve. However, if we have \(f(\alpha + \alpha) \) as query term, Step i would still compute the same candidate set, but no consistent variable instantiation could be derived from the candidates and the query would fail.

Step iii

For each occurrence of the special query variable \(\Phi(t'_q) \) in \(t_q \) and each candidate term \(t_c \) we have obtained a valid instantiation \(t'_c/\Phi(t'_q) \) in step ii. Let \(t'_1, \ldots, t'_n \) be the terms retrieved from the index on the query \(t'_q \). Then some \(t'_i \in \{t'_1, \ldots, t'_n\} \) must be a subterm of \(t'_q \), if \(t_c \) matches the query. In this case there is a \(d \in t'_i.D_{this} \) where \((t'_c, t'_i) \in d.T_{this} \). Otherwise \(t_c \) does not match the query.

Take \(t_q = f(\Phi(b)) \) as an example query. In this case, the candidate set after executing Step i and Step ii is \(\{t_1, t_2, t_4\} \) and the instantiations for \(\Phi(b) \) are \(\{x_0, t_3, t_5\} \). The query \(t'_q = b \) retrieves \(b \). Next the set of terms with occurrences of \(b \) are looked up in \(d_i.T_{this} \) for \(d_i \in b.D_{this} = \{d_0, d_11, d_14, d_17\} \), the result is \(\{t_3, t_2, t_5, t_4\} \). The condition described above is thus fulfilled for \(t'_c \in \{x_0, t_3, t_5\} \cap \{t_3, t_2, t_5, t_4\} = \{t_3, t_5\} \), so the terms retrieved for query \(f(\Phi(b)) \) are the super-terms of \(t_3 \) and \(t_5 \) which are \(t_2 = f(a + b) \) and \(t_4 = f((a + b) + c) \), respectively.

All terms \(t_c \) remaining in the candidate set after Step iii has been executed match the query \(t_q \) and are returned. The algorithm implements *forward matching*, i.e. the retrieval of all indexed terms matching a query \(t_q \). In the next section we describe a mechanism for *backward matching*, where queries are stored in the index and matching queries are identified at the insertion of new terms.

3 Meta Nodes and Reactive Behaviour

Generally, in a single proof attempt, a fixed number of CAS algorithms is employed. Thus we have a static set of query terms that form the abstract description of these algorithms. On the other hand, the set of terms in the proof changes during proof development. This suggests to store queries permanently and to find matching queries at the time a new indexed term is added. The index operates now as a term filter, and matching queries are returned, indicating that the algorithm related to a query may be applicable.

The mechanism we describe is a 'lazy' version of the retrieval algorithm in section 2.3. Query terms are stored in an additional graph structure \(\text{ID}_M \) of reactive meta nodes. Their task is to monitor updates on the positional tree and wait for the insertion of specified term fragments in some monitored positions. Once a suitable term has been inserted the meta node initiates an action on that term such as a call to a simplification algorithm. This scenario
is achieved by adapting in particular Steps i and iii of our retrieval algorithm from Section 2.3.

Every meta node \(m \in \mathbf{ID}_M \) encodes a query term \(t_q \). Analogously to Section 2.3, all subterms \(t'_q \) that contain no query variables are determined. For each of these subterms \(t'_q \), a connection between \(m \) and the positional node \(d \) corresponding to the term position of \(t'_q \) in \(t_q \) is established with the following node attributes:

- \(m.D \) contains all positions \(m \) is associated to, for each subterm \(t'_q \).
- \(d.M \) is an additional attribute for nodes in the positional tree, containing a list of pairs \((t'_q, m)\) indicating that meta node \(m \) waits for the insertion of term \(t'_q \).
- \(m.V \) contains all query variables in \(t_q \) and the positions at which they occur. Thus entries are pairs \((\chi, \{d_1, \ldots, d_n\})\) for every query variable \(\chi \) that occurs in positions \(d_1 \ldots d_n \).
- \(m.A \) is an action that is carried out once a suitable term matching \(t_q \) has been entered.

The procedure to update the positional tree sends a notification of the form \(\text{notify}(d, t'_q) \) to a meta node \(m \) whenever a term \(t'_q \) is recorded in position \(d \) and \((t'_q, m)\) \(\in d.M \). We say \(m \) waits for \(t'_q \) at position \(d \). If some meta node \(m \) has received notifications from all position nodes \(d \in m.D \) after a new term \(t \) has been added to the index — this is equivalent to \(t \) being identified as a candidate term in Step i of the retrieval algorithm — we say meta node \(m \) has been triggered. Note that only notifications caused by the same term \(t \) are relevant, thus the record of sent notifications is cleared after each update of the positional tree. Once \(m \) is triggered, the instantiations for the query variables in \(m.V \) are computed and their consistency is checked, analogously to Step ii of the retrieval algorithm.

Consider again our example query \(f(\alpha + \beta) \). Its associated meta node \(m \) has the attributes \(m.D = \{d_2, d_0\} \) and \(m.V = \{(\alpha, \{d_{10}\}), (\beta, \{d_{11}\})\} \). Furthermore, the pair \((f, m)\) is inserted in \(d_2.M \), and \((+, m)\) in \(d_0.M \). If now the term \(f(\alpha + \beta) \) is inserted into the index, \(f \) is recorded in \(d_2 \), and \(+\) in \(d_0 \). Both nodes send a notification to \(m \), as no further positions are recorded in \(m.D \), \(m \) is triggered and the consistency of the variable instantiations is successfully checked.

To resolve occurrences of the special query variable \(\Phi \), if there are any, Step iii of the retrieval algorithm in Section 2.3 has to be modified. For each \(\Phi(t'_q) \) in \(t_q \) we can predetermine terms \(t' \) matching \(t'_q \) and store them in an additional meta node \(m' \). Once the meta node \(m \) is triggered by a newly inserted term \(t \) matching \(t_q \) except for the resolution of occurrences of \(\Phi \), we check whether \(t' \) occurs at a suitable position in \(t \). To describe dependencies between these meta nodes and to collect predetermined instantiations we define three further node attributes:

- \(m.I \) collects terms matching the query term. The entries are of the form
$(t, \{(\chi_1, t_1) \ldots (\chi_i, t_i)\})$ for every term t matching t'_{q}. When new terms are entered into the index, m can find new suitable terms and enter them into $m.I$.

- $m.M_{super}$ is the list of meta nodes m_{super} that are notified whenever a new term is found by m and inserted in $m.I$.
- $m.M_{sub}$ is the list of all meta nodes m depends on. Entries are (m_{sub}, d) for every meta node m_{sub} modelling a query for subterms that occur at an arbitrary position below d.

The attributes $m.M_{sub}$ and $m.M_{super}$ form a trigger mechanism similar to that formed by $m.D$ and $d.M$, the notion of a meta node m being triggered is extended to m having received a notification from all position nodes $d \in m.D$ and from all meta nodes $m' \in m.M_{sub}$ it depends on. A meta node m sends a notification to all meta nodes in $m.M_{super}$, whenever it has found a new instantiation $(t, \{(\chi_1, t_1) \ldots (\chi_i, t_i)\})$ which is recorded in $m.I$.

At the time m is triggered by a term t, some of the $m' \in m.M_{sub}$ may have found several instantiations $(t', \{(\chi_1, t_1), \ldots, (\chi_n, t_n)\}) \in m'.I$. Suitable instantiations among these are determined by:

(i) Checking that the query variable instantiations are consistent. That is, for each instantiated variable χ_i that is also instantiated by m both instantiations are consistent. Otherwise the instantiation is dropped.

(ii) For each of the remaining instantiations $(t', \{(\chi_1, t_1), \ldots, (\chi_n, t_n)\})$, it is evaluated if there is a term t_0 such that $(t_0, t') \in d.T_{this}$ for some $d \in t.D_{this}$, where $(t, t_0) \in t.d. D_{this}$, i.e. if t' is a subterm of t below the specified position d. This is done by two intersections of term sets analogous to the one presented in Section 2.3, respectively one intersection and one membership test, as one of the sets is the singleton $\{t_d\}$.

Once a term has been inserted and a meta node was triggered successfully, the action of that meta node is carried out on the term.

As an example, we will describe a set of two meta nodes encoding the query $f(\varphi(\Phi(\varphi(a, \beta)), \gamma))$, i.e. a term $f(\varphi(\Phi, \gamma))$ where somewhere in Φ there is an occurrence of the subterm $\varphi(a, \beta)$, and the function symbol φ is the same in both occurrences. The query is encoded as follows:

A first meta node m_1 is employed to wait for the whole term. Since f is the only symbol that is not a query variable and it is found in position d_2 we get $m_1.D = \{d_2\}, d_2.M = \{f, m_1\}$. The query variables φ, denoting a binary function, and γ can be instantiated by the subterms in positions d_9 and d_{11}, which is stored as $m_1.V = \{((\varphi, \{d_9\}), (\gamma, \{d_{11}\}))\}$. Finally the special query variable Φ indicates a subterm that has to occur below position d_{10} which has to match $\varphi(\alpha, \beta)$. This is captured in a second meta node m_2 which is connected to m_1 via $m_1.M_{sub} = \{(m_2, d_{10})\}$ and $m_2.M_{super} = \{m_1\}$. Symbols and variables are defined analogously to m_1, here a has to occur in position d_5, φ in d_4 and β in d_6, thus we get $m_2.D = \{d_5\}, d_5.M = \{(a, m_2)\}, m_2.V = \{((\varphi, \{d_4\}), (\beta, \{d_6\}))\}$.

12
Suppose now the term \(t_4 = f((a+b)+c) \) is inserted into the indexing structure. Then first node \(m_2 \) will be be triggered by \(t_3 \), as \(a \) is inserted at position \(d_5 \) with root term \(t_3 \). Therefore \(d_5 \) sends a notification \(\text{notify}(d_5, t_3) \) to \(m_2 \). As this is the only position \(m_2 \) is waiting for, the variables are instantiated according to \(m_2 \). We get \(m_2 \cdot I = \{ (t_3, \{ (\varphi, +), (\beta, b) \}) \} \). Furthermore, \(m_1 \) is notified that \(m_2 \) has found a matching term. Next \(m_1 \) will be triggered when the new node \(t_4 \) is created. Here \(d_2 \) will send the notification \(\text{notify}(d_2, t_5) \). As \(d_2 \) is the only position \(m_1 \) is waiting for variables are instantiated here, too: \(m_1 \cdot I = \{ (t_4, \{ (\varphi, +), (\gamma, c) \}) \} \). Since the only sub-node \(m_2 \) has already sent a notification, we check that the variable instantiation of \(m_2 \) is suitable.

First the query variable instantiations are checked, \(\varphi \) is the only variable that is instantiated in both nodes, and it is in both cases bound to \(+ \). Thus it is evaluated whether \(t_3 \) is at a suitable term position in \(t_5 \). The term \(t_3 \) occurs in positions \(d_0, d_3, d_5 \) and \(d_{10} \), the root terms which are recorded with subterm \(t_3 \) in these positions are \(t_3, t_2, t_5 \) and \(t_4 \), respectively. As \(m_2 \) is associated with \(d_{10} \) in \(m_1 \), the subterm of \(t_4 \) in \(d_{10} \) has to be looked up. It is \(t_3 \), and as \(t_3 \in \{ t_3, t_2, t_5, t_4 \} \), the term identified by \(m_2 \) is a suitable subterm in a suitable position. Thus \(m_1 \) has identified a term matching pattern \(f(\varphi(\Phi(\varphi(a, \beta)), c)) \) along with the suitable query variable instantiations: \((t_4, \{ (\varphi, +), (\beta, b), (\gamma, c) \}) \)

In case a term does not match, as for example with \(t_2 = f(a + b) \) in Figure 1, the matching will fail at some point. For \(t_2 \), both nodes \(m_1 \) and \(m_2 \) will be triggered: \(m_1 \) by \(t_2 \) and \(m_2 \) by \(t_3 = (a+b) \). The variable instantiations are consistent, as again \(\varphi \) will be bound to symbol \(+ \). The last step, however, to determine if \(t_3 \) is at a suitable term position, will fail, because there is no entry \((a, t_3) \) at any position \(d \in t_3 \cdot D_{\text{This}} \) with root term \(a \) and subterm \(t_3 \). This is the worst case of a failing matching, in general the unsuccessful branches of the algorithm should be cut at earlier stages.

4 Application

The presented mechanism is designed as an effective interface for the correct integration of CAS computations. While the integration of results by external an CAS’s treated as blackboxes have been explored in several experiments [1,3], the verification of CAS results within the deduction system’s formalism is still difficult. We have successfully experimented with a two-tier integration of CAS computations into a deduction system, by first performing an efficient blackbox computation and in a second step checking its correctness using a small, specialised CAS that provides a computational trace for its computations that is verifiable within the logic of the deduction system [4,12,14]. The main difficulty of achieving a reliably correct integration is that CAS often treat operations implicitly in efficient data structures taking term semantics into account, while in deduction systems these operations have to be performed explicitly by syntax transformations. For example associativ-
ity and commutativity (AC) is generally treated implicitly in optimised data structures of a CAS, which makes syntactical transformation of terms hard to track. As suggested by Stickel and McCune [13,5], path indexing, which is closely related to our method, is suitable to be adapted to deal with AC, assuming that an effect of AC is the permutation of the order of subterms. This idea has been developed in our indexing mechanism, using the special query variable \(\Phi \) to search for terms according to occurrences of subterms at unspecified positions. This allows for query terms to describe the applicability of algorithms explicitly dealing with AC.

In the concrete implementation we employ a blackboard mechanism to interface between the prover and the actual CAS algorithms. The applicability of CAS algorithms is encoded in trigger rules on the blackboard. Trigger rules are defined by pairs \(\text{query} \rightarrow \text{action} \), where \(\text{query} \) is the list of query terms that have to be matched to make an algorithm applicable, and \(\text{action} \) describes the invocation of the algorithm. The query terms of all the rules are compiled into a net of reactive meta nodes, which allows to evaluate exhaustively a number of trigger rules with reasonable computational overhead. When new open goals are generated by the prover, rules with matching query terms are triggered, by the mechanism described in section 3, and CAS algorithms are employed for algebraic processing of these goals.

As an example, we will describe two trigger rules used to verify the equality of two terms modulo AC via syntactic rewriting. The two rules model the recursive reordering of two sums and their stepwise comparison by summands:

\[
\begin{align*}
(\text{i}) & \quad \text{pop}: \alpha + \beta = \Phi(\alpha) \rightarrow \alpha + \beta = \text{pop}(\Phi, \alpha) \\
(\text{ii}) & \quad \text{elim}: \alpha + \beta = \alpha + \gamma \rightarrow \beta = \gamma
\end{align*}
\]

When the query on the left hand side of a rule matches a term, the right hand side of the rule is executed. The rule \(\text{pop} \) is triggered when an equation is detected such that the summand \(\alpha \) of the left term is contained somewhere in the term on the right hand side of the equation. The algorithm \(\text{pop} \) is then executed on the right term, which performs the AC-reordering to move a subterm \(\alpha \) to the position of the first summand. The resulting term is subsequently inserted into the proof. The second rule, \(\text{elim} \), simply strips the first summand \(\alpha \) on both sides of the equation.

For example, the equation \(2x^2 + 4xy + 8y^2 = 8y^2 + 2x^2 + 4xy \) will be successively rewritten with a sequence of alternate applications of \(\text{pop} \) and \(\text{elim} \). This results in the following inference steps in the proof:

\[
\begin{align*}
(\text{i}) & \quad 2x^2 + 4xy + 8y^2 = 8y^2 + 2x^2 + 4xy \\
(\text{ii}) & \quad 2x^2 + 4xy + 8y^2 = 2x^2 + 8y^2 + 4xy \quad (\text{pop } 2x^2) \\
(\text{iii}) & \quad 4xy + 8y^2 = 8y^2 + 4xy \quad (\text{elim}) \\
(\text{iv}) & \quad 4xy + 8y^2 = 4xy + 8y^2 \quad (\text{pop } 8y^2) \\
(\text{v}) & \quad 8y^2 = 8y^2 \quad (\text{elim})
\end{align*}
\]
5 Conclusion

We have presented an indexing method which is an extension of coordinate indexing as described by Stickel [13]. We have added a graph for shared representation of terms, which allowed us to implement operations on sets of terms as operations on integer sets and reduces redundancies in term retrieval. As a further improvement we have added a reactive term filtering mechanism that enables for every new term that is added to a proof state to immediately detect if particular algorithms, such as simplifications, are applicable. This functionality is especially useful when interfacing to CAS algorithms. A set of application criteria for the integrated algorithms can be specified as query terms and pre-compiled in a net of reactive meta nodes, guaranteeing their automatic application whenever possible. Moreover, as opposed to other indexing techniques in the literature, our approach allows for inside out search to retrieve terms that have occurrences of instances of query terms in arbitrary positions, which is useful when a CAS is applied inside a rewrite step to simplify or normalise subterms in a formula.

While we have demonstrated the indexing technique only with a small abstract example in this paper, the employed higher order language including λ-abstraction provides a versatile means to express the input syntax of a diverse range of algorithms. The indexing technique was developed for the reimplementation of ΩMEGA’s whitebox integration of a CAS that provides a collection of arithmetic simplification algorithms [14]. However, an integration of the technique into a more advanced ATP system such as ΩMEGA’s proof planner is intended.

In the current state of implementation a proper evaluation of the method’s efficiency cannot be undertaken yet. However, experiments in related work indicate a reasonable performance. The indexing method presented here is a variant of coordinate indexing and its refinement path indexing. The performance of these methods has been evaluated by McCune [5] and compared to discrimination tree indexing. While discrimination tree indexing outperformed path indexing in his experiments, it is nevertheless a reasonable choice for our purposes. Path indexing can be expected to perform well for instance retrieval, which is the main operation here. The retrieval of generalisations, where discrimination tree indexing was significantly faster in McCune’s experiments, is tackled in a different way in our approach (see section 3): Query terms are stored in a separate graph structure and matching is evaluated in a lazy fashion. The intersection of term sets is replaced by the collection of notifications, which can be efficiently implemented by bit vectors. A triggered meta node can thus be detected with minimal computational overhead. Furthermore, path indexing can be expected to perform well, if there are many variables in the query term, respectively if there are few constant symbols. The query terms of trigger rules have usually a small number of constant symbol occurrences here.
In future work we intend a detailed theoretical analysis of the indexing mechanism. Determining the computational complexity of an indexing technique is in general difficult, already for first order proving systems [6]. For the higher order case there are few comparable approaches, which furthermore differ strongly in the conditions for term retrieval, e.g. perfect versus imperfect filtering or simplification of higher order aspects. Unlike in the approach by Pientka [8] we neglect aspects of higher order unification and instead employ a first order style matching. But nevertheless we can treat higher order terms containing \(\lambda\)-abstractions in our indexing mechanism.

References

URL citeseer.ist.psu.edu/paulson95isabelle.html

