Astro Teller

There is a fundamental problem with genetic programming as it is currently practiced, the genetic re-
combination operators that drive the learning process act at random, without regard to how the internal
components of the programs to be recombined behaved during training. This research introduces a
method of program transformations that is principled, based on the program’s internal behavior, and
significantly more likely than random local sampling to improve the transformed programs’ fitness
values. The contribution of our research is a detailed approach by which principled credit-blame
assignment can be brought to GP and that credit-blame assignment can be focused to improve that
same evolutionary process. This principled credit-blame assignment is done through a new program
representation called neural programming and applied through a set of principled processes called,
collectively, internal reinforcement in neural programming. This internal reinforcement of evolving
programs is presented here as a first step toward the desired gradient descent in program space.

14.1 Introduction

There is a fundamental problem with evolutionary computation, and particularly with
genetic programming, as it is currently practiced. The problem is that in the space of
programs, even if it has been carefully defined so that most or all examined programs
are legal, the density of functions that do something “interesting” is very low. This is
increasingly the case as the expressiveness of the language in which the programs are
written moves up the ladder from regular languages to Turing machines. For example, in
the space of Turing machines, the density of programs that act for multiple steps and then
halt is conjectured to be set of measure zero [Hopcroft and Ullman, 1979].

This low density of computationally non-trivial programs, combined with the random re-
combination that still characterizes genetic programming, has marginalized GP, an exciting
and valuable subfield of machine learning. GP needs search operators that tend to focus
on good solutions and GP search operators are currently not focused, but instead altered by
random transformations.

We develop a novel solution to this problem. As part of the evolutionary process, we
introduce a method of program transformations that is principled, based on the program’s
behavior, and significantly more likely to create new programs that are worth searching
than random local sampling. The contribution of our research is the identification of this
problem in genetic programming and a detailed approach, both comprehensive and analyt-
ical, on how to address it. The main algorithmic innovation of this research is the process
by which principled credit-blame assignment can be brought to evolution of algorithms and
that credit-blame assignment can be used to improve that same evolutionary process. This
principled credit-blame assignment is done through a new program representation called
neural programming (NP) and applied through a set of principled processes called, collec-
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tively, internal reinforcement in neural programming (IRNP). This internal reinforcement
of evolving programs is presented in this chapter as a first step toward the desired gradient
descent in program space.

Genetic programming is a successful representative of the machine learning practice
of empirical credit assignment [Angeline, 1993]. Empirical credit assignment allows the
dynamics of the system to implicitly determine credit and blame. Evolution does just
this [Altenberg, 1994]. Machine learning also has successful representatives (e.g., ANNSs)
of the practice of explicit credit assignment. In explicit credit assignment machine learning
techniques, the models to be learned are constructed so that why a particular model is
imperfect, what part of that model needs to be changed, and how to change the model can
all be described analytically with at least locally optimal (i.e., greedy) results. To be clear,
this work on internal reinforcement is not only an attempt to approach gradient descent
in program space. Internal Reinforcement is also designed to bridge this credit-blame
assignment gap by finding ways in which explicit and empirical credit assignment can find
mutual benefit in a single machine learning technique. In summary, the main question that
our research addresses is:

Can the evolution of algorithms be extended in a domain-independent way
to incorporate accurate credit-blame assignment of each program’s internal
structure and behavior in such a way that focused, principled reinforcement
information improves the evolutionary process?

14.2  Neural Programming

Genetic programming is a successful machine learning technique that provides powerful
parameterized primitive constructs and uses evolution as its search mechanism. However,
unlike some machine learning techniques, such as Artificial Neural Networks (ANNSs), GP
does not have a principled procedure for changing parts of a learned structure based on
that structure’s past performance. GP is missing a clear, locally optimal update procedure,
the equivalent of gradient-descent backpropagation for ANNs. Why adapt GP instead of
simply using a machine learning technique like ANNs? In general, it is not possible to give
an ANN an input for every possible parameterization of each user defined primitive function
that a GP program can be given. And it is far from obvious how to work complex functions
into the middle of an otherwise homogeneous network of simple non-linear functions. Yet
gradient-descent learning procedures, like backpropagation in ANNs, are an extremely
powerful idea. Backpropagation is not only a kind of local performance guarantee, it is a
kind of performance explanation. It is to achieve this kind of dual benefit that the research
this chapter reports on was undertaken.
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This chapter shows how to accumulate explicit credit-blame assignment information in
the Neural Programming representation. These values are collectively referred to as the
Credit-Blame map. By organizing the GP programs into a network of heterogeneous nodes
and replacing program flow of control with flow of data, we can use the Credit-Blame map
to propagate punishment and reward through each evolving program.

The goal of internal reinforcement is to provide a reasoned method to guide search in the
field of program induction. Hill-climbing in a space means sampling local points and then
choosing the best of those to continue from. When the gradient is available, however, it is
always better (locally at least) to move in the direction of the gradient. Program evolution
can work with random samplings of nearby point in program space, but can work much more
effectively with internal reinforcement. We introduce internal reinforcement as a program
evolution approximation to the gradient function in program fitness space. Said another
way, it would be desirable to be able, in GP, to have reinforcement of programs be more
specific (directed towards particular parts or aspects of a program) and more appropriate
(telling the system how to change those specific parts). As will become clear later in this
chapter, internal reinforcement is a partial, not complete solution to this problem.

In Section 14.3, we describe how this representation can be used to deliver explicit,
useful, internal reinforcement to the evolving programs to help guide the learning search
process. And in Section 14.4, we demonstrate the effectiveness of both the representation
and its associated internal reinforcement strategy through an experiment on an illustrative
signal classification problem.

14.2.1 The Neural Programming Representation

The essence of a programming language is a set of basic constructs and a set of legal ways
of combining those constructs. A measure of the extensibility of a language is the ease
with which new constructs or new construct combinations can be add to the language. It is
the high degree of extensibility in GP that we want to wed to the focused update policies
possible in other machine learning techniques.

The Neural Programming representation consists of a graph of nodes and arcs that support
a flow of data, rather than the flow of control typical in programming languages. The nodes
in a neural program compute arbitrary functions of the inputs. So a node can be the sum
of inputs to the node and a sigmoid threshold. But it can also use other functions such as
MULT, READ, WRITE, IF-THEN-ELSE, and, most importantly, potentially complex user
defined functions for examining the input data. Examples NP programs are given later in
this chapter. Figure 14.1 contains the important characteristics of the NP representation.

Throughout this chapter, the characteristics of NP will be used and discussed in greater
detail. Let us here highlight a few aspects of NP. A parameterized signal primitive (PSP)
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e An NP program is a general graph of nodes and arcs.

e Each NP node executes one of a set of functions (e.g., Read-Memory, Write-Memory, Multiply,
Parameterized-Signal-Primitive-3, etc.) or zero-arity functions (e.g., constants, Clock, etc.).

e Anarc from node z to node y (notated (z, y)) indicates that the output of z flows to y as an available
input.

e Oneachtimestep ¢t (0 < ¢t < T), every node takes some of its inputs, according to the arity of
its function, computes that function, and outputs that value on all of its output arcs. Data flow, not
control flow.

e One type of node function is “Output.” Output nodes collect their inputs and create the program
response through a function OUT of those values. In this chapter OUT is a simple weighted average.
Each value is weighted by the timestep it appears on.

Figure 14.1
The critical characteristics of the NP representation.

is a piece of code, written by a user that expresses a way of extracting information of
the input signal in a parameterized form. An example PSP might return the AVERAGE or
VARIANCE of values in a range of the input data as specified by the inputsto that node. This
kind of embedding of complex (often co-evolved) components as primitives in the evolving
GP system has repeatedly been shown to be effective (e.g., [Koza, 1994]). Furthermore,
these powerful parameterized-signal-primitives, as part of the learning process, can be used
in place of brittle (fixed/static) preprocessing. As has been discussed already, the salient
distinction here is the parameterization of input “features.”

Each NP node may have many output arcs. See Figure 14.3 for a simple example. The
multiple forked distribution of good values from any point in the program is a valuable
aspect of the NP representation. Seen from a GP vantage, this is similar to a kind of highly
flexible automatically defined functions (ADF)[Koza, 1994] mechanism. The idea is that
once a “valuable” piece of information has been created, it can be sent to different parts
of the NP program to be used further in a variety of different ways. This fan-out is an
advantage of connectionist representations from which GP program representations can
profit by incorporating (see[Nordin, 1997] for an alternate method).

Atimestep threshold 7" (see Figure 14.1) is imposed on the evolving programs (in order to
avoid having to solve the Halting problem). Given such a threshold, a reasonable question
to ask is, “How much of a burden is this threshold?” or alternately “Can the evolving
programs take advantage of additional time in which to examine an input signal?” The
answers is to these questions are provided in Section 14.4.4.

There are two dominant forms of change that evolving programs typically undergo:
crossover and mutation.
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Figure 14.2
A simple NP program that computes the successive elements of the Fibonacci series. All input/arc values are 1 on
the first time step. On the right, progression of arc values over time.

While NP programs look more like recurrent ANNSs than traditional tree-
structured GP programs, NP programs are changed, not by adjusting arc weights
(NP arcs have no weights), but by changing both what is inside each node as
well as the topology and size of the program.

14.2.2 lllustrative Examples

NP programs are evolved and explanations using evolved examples are not practical because
the evolved examples are not concise. Instead we illustrate the NP representation through
a set of constructed examples. Of course, any of the following example programs and
program fragments could have been the result of evolution.

14.2.2.1 Example 1: The Fibonacci Series

Figure 14.2 shows an extremely simple NP program. This program computes the Fibonacci
series, sending successive elements out on Arc4. The Fibonacci series is defined to be
Fib(n) = Fib(n — 1) + Fib(n — 2) with Fib(0)=Fib(1)=1.

There is only one initialization necessary for the correct operation of NP programs: “what
input values should all nodes use on their very first computation?” Since NP programs are
data flow machines, each arc is a potential input value and so there must be some initial
state to the program. For this example, let us initialize each program so that all arcs have
the value 1 when a program starts up. Figure 14.2 also shows how the values of the arcs
change over time.

14.2.2.2 Example 2: The Golden Mean

Let us now change slightly the computation of the simple NP program from example 1.
Instead of producing a list of exponentially increasing values (as in the program shown in
Figure 14.2) let us design an NP program that approximates the “Golden Mean” (ﬁf!?"bi%) =
1.618034) through its OUTPUT node. To do this, all we need to do is to add an extra node

that does Division (DIV) and pass it as its two parameters (i.e., its two input arcs) fib() and

329’ Advancesin Genetic Programming |11, Research and Educational use only’



t Al A2 A3 A4 A5 A6 A7 Output
0 1 1 1 1 1 1 1 NA

1 1 1 1 2 2 2 1 1

2 1 2 2 3 3 3 20 15

3 1 3 3 5 5 5 15 15

4 1 5 5 8 8 8 1.667 1.542
5 1 8 8 13 13 13 1600 1.553

‘ Arc6

Figure 14.3
A simple Neural Program that iteratively improves an approximation to the golden mean. This program assumes
that all input values are 1 on the first time step. On right, progression of arc values over time.

fib(i — 1) as they are computed (shown in Figure 14.3). Figure 14.3 also shows how this
computation plays out through the arcs as the timesteps pass.

14.2.2.3 Example 3: Foveation

Foveation is the process changing focus of attention in response to previous perceptions.
For example, this iterative process of foveation is what gives us the illusion of seeing with
high-resolution across our field of vision when, in fact, our fovea (the high resolution area
of the retina) fills less than 5% of our field of view.

The Fibonacci examples illustrate how the flow of data works and how the fan out
of values can significantly reduce the size of a solution expression. In this example we
illuminate another important feature of NP programs: the ability to foveate. NP programs
have the ability to use the results of an examination of the input signal to guide the next part
of that examination. NP programs view their inputs (called signals when appropriate to
avoid confusion with “inputs” to a node) through Parameterized Signal Primitives (PSP),
variable argument functions defined by the NP user.

Let us assume that this NP program is examining signals that are video images. PSP-
Variance is a function that takes four arguments, a through as, (interpreted as the rectangular
region with upper-left corner (ao, a1) and lower-right corner (a;, a3)) as input and returns
the variance of the pixel intensity in that region. Figure 14.4 shows what could be part
of a larger NP program. The node indicated with a double circle computes the function
PSP-Variance.

To simplify the explanation, this particular NP program fragment delivers static values
for three of those four inputs. The fourth input indicated by a dashed circle, changes as the
program proceeds. That means that PSP-Variance, at each time step, computes its function
over the region (50,17,104,a3). The simplest way to explain this mechanism is to give the
pseudo-code to which it is equivalent (see Figure 14.4). Assuming again that all arcs are
initialized to 1, this program finds a one-sided local minimum of PSP-Variance with respect
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VARy =1
VAR; = PSP-Variance(50,17,104,a3 +)
IF (VAR¢_1 < VARy)

THEN a3;t4+1 = a3t

ELSE azt+1 = a3t + 1

Figure 14.4

A simple NP program fragment. The output value from the dashed circle node is being iteratively refined to
minimize the value returned by the PSP-Variance node. On right, pseudo-code for the behavior of this NP program
fragment. VAR; denotes the value of VAR at time ¢ and a3 ; denotes the value of argument a3 at time ¢.

to its fourth parameter. In general, the program fragment increments the fourth parameter
only if (PSP-Variance(50,17,104,a3 ;) < PSP-Variance(50,17,104,a3 ¢+—1)) (Where az ¢ iS a3
on timestep ¢). This is a concise example of an NP program foveating: using the values the
program receives through it’s PSPs to focus further examination of the input signal.

14.3 Internal Reinforcement in NP

Evolutionis a learning process. In NP (or GP for that matter) programs are tested for fitness,
preferred according to those fitness tests, and then changed. These program transformations
have a specific goal, to produce programs that are better, which is to say score higher on
the fitness evaluations, than their ancestors. Much of the time this will not happen, but the
success of evolution as a learning process is directly linked to how often a novel program is
really more valuable than the parent it came from. Currently, program transformations are
usually random in GP. Even when they are not random, they do not transform the programs
based on how those programs have behaved in the past. If we could only look into a program
and see which parts of it are “good” and which parts “bad,” we could write transformation
rules that were much more effective, which is to say, we could dramatically improve the
action of evolution. That is the motivation for the principled update procedure at the heart
of this research: internal reinforcement.
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Create initial population of Neural Prograns
Compute Function Sensitivity Approximations

Determ ne each programis fitness over the training set -
Keep statistics on the outputs of each node of each program

Create a Credit-Blame map for each program
Accumulate explicit Credit-Blame values using collected statistics
Refine Credit-Blame map using bucket brigade procedure

Fitness Proportionate Sel ection —— Mati ng- Pool

new popul ation

Genetic Reconbination Operators act on Mating- Pool
Use Credit-Blame map for program p:
MUTATION(p, Credit-Blame map for p)
CROSSOVER(p, Credit-Blame map for p)

IRNP additions to EC

Figure 14.5
The high level flow of NP learning.

Now that we have introduced the neural programming representation, we can describe
a mechanism to accomplish internal reinforcement. In Internal Reinforcement of Neural
Programs (IRNP), there are two main stages. The first stage is to classify each node and
arc of a program with its perceived contribution to the program’s output. This set of labels
is collectively referred to as the Credit-Blame map for that program. The second stage is
to use this Credit-Blame map to change that program in ways that are likely to improve its
performance.

Our ongoing research includes investigation into which methods to use to best accomplish
the goals of internal reinforcement. We have identified several methods for accomplishing
each of the two stages. This chapter focuses on one technique for each of the two stages.

Figure 14.5 shows the evolutionary learning process for NP and how IRNP fits into that
picture. One Credit-Blame map is created for each population program and when the time
comes to perform genetic recombination on a particular program, the Credit-Blame map
for that particular program is used.

14.3.1 Creating a Credit-Blame Map

Without loss of generality, we can assume that the evolving NP programs are trying to
solve a target value prediction problem. This is so because classification problems (a non-
ordered set of output symbols to be learned) can be decomposed into target value prediction
problems (an ordered set of output symbols to be learned). This decomposition takes the
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general form of mapping 1 C-way classification problem of the form “To which of C classes
does this input belong” into C' different binary classification problems of the form “Does
this input belong to class 4 (1 < ¢ < C) or not?” (see [Teller, 1998] for details). Therefore,
let us consider an abstract input to output mapping to be learned by the neural programs.

14.3.1.1 Accumulation of Explicit Credit Scores

For each program p, for each node z in p, over all time steps on a particular training
example S;, we compress (combine) all the values node 2 outputs into a single value H¢.
The compression function used in this chapter is the mean. Let the correct answer (the
correct target value) for training instance .S; be L;. In other words, L; is the desired output
for program p on training instance S;.

We now have two vectors for all |S| training instances: L = [Li..L;..Ljs] and H, =
[H;..H;'..Hisl]. We can compute the statistical correlation between them. We call the
absolute value of this correlation the explicitly computed Credit Score for node z, notated
as CS,. This computation is shown in Equation 14.1 (in which E is the expected value).

E(H, — pg) * B(L - pz)
CS, = Uffw —— L (14.1)
H, L

This credit score for each node is an indication of how valuable that node is to the
program. It is the case that nodes with low credit scores at this stage may still be critical to
the program in question, but it is also certainly the case that nodes with high credit scores
could be very valuable to the program, even if they are currently unutilized. Note that an
NP program is, by definition, 100% correct if it has a node with a credit score of 1 and
that node is the only node with an outgoing arc that terminates in an OUTPUT node. This
explicit credit score can also be thought of as the individual credit score for the node. That
is, the explicit credit score takes into account only how the node acts as an individual, not
how it acts as part of a group of tightly coupled nodes (i.e., the program it is a part of).

The set of explicit credit scores for all nodes provides a Credit-Blame map for the
program: a value associated with each node in the program that indicates its individual
contribution to the program. However, we want the Credit-Blame map to capture not only
a node’s immediate (individual) usefulness, but also it’s usefulness in the context of the
program topology. The following example highlights why the explicit credit scores do not,
by themselves, capture this information.

In this example, nodes = and y produce values and node z computes an XOR of these
two values. In this case, even if z has a high credit score, z and y may not (e.g. CS, =
0.97,CS, = 0.14,CS, = 0.07). There is nothing provably wrong with this situation but
clearly, the topological notion of usefulness has not been captured in these explicit credit
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scores. This can be seen because the nodes z and y in this example are partly responsible
for node z’s success (and are therefore useful) but still have low credit scores.

The Credit-Blame map can be refined to attend to this type of indebtedness relationships
by passing credit and blame back through the NP programs along the arcs. The statistical
correlation between L and H, constitutes a first approximation to the credit score for node
z. Because nodes are connected to each other and only a few are directly connected to
the OUTPUT node, and because each node performs a specific function, the Credit-Blame
map needs to be further refined. This process of refining the Credit-Blame map to take
advantage of the topology of the program is described in Section 14.3.1.3.

14.3.1.2 Function Sensitivity Approximation
To pass back credit and blame through the neural program topology, we must first answer an
important question: “How does each node act as a function of its inputs?” In other words,
“What is the responsibility of each input parameter for the output value produced by each
atomic function used in evolution?” This problem is very difficult for arbitrary functions,
which is one of the main reasons why ANN backpropagation requires differentiable func-
tions (e.g., the sigmoid or the Gaussian). Unfortunately, we can not always differentiate the
functions used in NP programs as they may not always be differentiable (e.g. If-Then-Else).
In our work, we introduce Function Sensitivity Approximation, a method for “differen-
tiating” an arbitrary function that can be treated as a black box. The main question that
function sensitivity approximation answers about a black box function’s relation to its inputs
is “For argument a; of function f, what is the likelihood that £°s output will change at all
when the value of a; is changed to a new random value selected uniformly from the legal
range of values?” This discovered sensitivity is a substitute to the function’s derivative.
This sensitivity is written as Sy 4,;, the sensitivity of a particular parameter a; for some
function f that is given a parameter vector with A elements. [Teller, 1998] contains details
on how such values are automatically calculated. It should also be noted that the Sy 4,
values are computed under the assumption that each node computes a function with no side
effects. [Teller, 1998] also describes NP’s robustness in spite of this simplification.

14.3.1.3 Refining the Credit-Blame Map

We can now combine the topology of the NP program, the explicit credit score for each
node, and the sensitivity values of each primitive function in a bucket-brigade style back-
ward propagation. This bucket-brigade refines the credit scores at each node following the
procedure presented in Figure 14.6. The credit scores are refined according to the network
topology and sensitivity of the node functions. To understand why a bucket-brigade back-
ward propagation of credit is critical, refer back to the XOR example in Section 14.3.1.1.

334’ Advances in Genetic Programming |11, Chapter 14’



Until no further changes
For each node x in the program
For each output arc (z, y) of that node
y is, by definition, the destination node of (z, y)
Let fy be y’s node function
Let A, be the number of inputs y has
Let 4 be such that (z, y) provides a; to y
Let Sy, ,4,,i = Sensitivity of fy (relative to A, and 4)
CSz = MAX(CS;, Sy, 4, i * CSy)

Figure 14.6
The bucket brigade refinement of Credit Scores (CS) throughout an NP program.

The high level structure of the procedure presented in Figure 14.6 is as follows. For each
node, for each output arc from that node, the node’s credit-score is updated to be the
maximum of the credit-score it already has and the credit-score of the node pointed to by
that output arc multiplied by the sensitivity of that destination node to that particular output
arc. We explain this process in detail through a series of questions and answers.

A good first question for this particular method of spreading credit and blame out more
appropriately over each neural program is, “does this process always converge?” The
answer is that as long as the definition of “no further changes” is more specifically “no
node changed its CS value by more than €” (¢ > 0) then the process always halts® and
typically in only a few passes. Because of the way Sy, 4,; is defined and implemented it is,
in practice, always less than 1.0, contributing to the small number of passes required for the
Credit-Blame map to reach quiescence. This answer to the convergence question is also
the answer to the question, “why do not you use a discount factor (y)? Is not that usual
in various forms of bucket brigade?” Using a discount factor is a common way to insure
convergence, but as just noted, it is empirically unnecessary.

In this context, in which we make clear the use of a sensitivity value for each function,
we can now ask “why define sensitivity in that way?” Remember that we said that the
sensitivity of function f, with arity A to input a; is the likelihood that the output will
change at all when the value of a; is changed to a new random value selected uniformly
from the legal range of values. There is no reason to believe that, in a complex system such
as an evolving NP program, a node that outputs O, will always have a similar effect to a
node that outputs O, no matter how close O; and O, are on the number line. For example,

IpProof: If the halt criteria isn’t satisfied after a pass, then at least one node credit score has increased by at least
€ and no credit score has decreased in value (by construction, see Figure 14.6). The total value in the Credit-Blame
map for program p can be at most N, (the number of nodes in p), so the total number of loops can be no more

than e,
€
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consider the function READ-MEMORY (O,) that returns the value stored in the program’s
memory array index O;. Out of context of a particular program, READ-MEMORY (5)
and READ-MEMORY (6) have as much semantic similarity as READ-MEMORY (5) and
READ-MEMORY (77). For this reason, sensitivity in NP is a percentage of how often the
output value of a function is changed at all, not by how much that output changes.

There is also little reason to believe that in a complex system such as an evolving NP
program, any particular set of numbers is more or less likely than any other to occur as
inputs to a node. The sensitivity discovery process could, for example, change a; to (a; £ A).
Then S, 4,; would measure the likelihood that the output will change when small changes
are made to the input a;. But since, unlike explicit credit-blame assignment systems (e.g.,
ANNS), NP cannot enforce these small changes throughout the program, it is better to
have a measure of sensitivity that matches how the inputs are likely to change: to first
approximation, uniform randomness.

Finally, consider the equation for refining the credit scores: CS, = MAX(CS,,
Sf,.4,,i * CSy). “Why should CS, be set to the maximum of itself and Sy, 4,,; * CS,?”
We first address the function MAX as an appropriate operator and then examine the appro-
priateness of the second operand. Inan NP programiit is the norm for a single node’s output
to be used in a number of different contexts. We would not want to penalize a node for
creating an output that is very useful in one part of the program, but is not taken advantage
of in another part of the program. If even one of the outputs of a node is “taken advantage
of” (in the sense defined by the explicit credit score measure), then it is clear that the blame
for not taking advantage of that output elsewhere in the program is a problem with that
other part of the program, not the node in question. This means that a node’s credit score
should be a maximum of some function of the credit scores of the nodes to which it outputs.

Further, consider the case in which node z has an explicitly computed credit score of
C'S;. Even if none of z’s children (i.e., nodes that take z’s output as input) has a credit
score as high as C'S,, if we believe that the explicit credit score measure is a good first
approximation to the usefulness of a node in a program, then we should insure that C'S, is
never less than its original value. Thus, we introduce CS, = MAX(CS,, F;.(CS,)) where
F, is some function to be determined. Now we need to pick some reasonable function F.
to apply to the credit scores of the children of node z.

The introduced sensitivity analysis of Section 14.3.1.2. can now be used. We already
have a value that expresses the sensitivity of a node y to an input a; as a function of
how many inputs ¢ has and the particular function that y happens to compute. But that’s
exactly what we want! The amount of reward (think C'S,.) a node z that points to a node
y deserves for that “reference,” is exactly how good node y is, C'Sy, scaled by (i.e., times)
how responsive (i.e., sensitive) y is to changes in the values that z is passing it. So we have
our function F.(CS,); itis Sy, 4,.,i * CSy.
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This discussion highlighted the characteristics of our reinforcement procedure. So in
summary, the refinement of credit scores in the Credit-Blame map is derived from the initial
credit scores, the program’s topology, and the discovered sensitivity of each possible node
function.

14.3.1.4 Credit Scoring the NP arcs

NP program transformations operators (e.g., crossover and mutation) also affect NP program
arcs. So far, the discussion of the Credit-Blame map has entirely focused on assigning credit
and blame to the nodes. The topology of the NP programs, that is the program nodes and
arcs, is used heavily in making this map, but the resulting map assigns one floating point
number to each node and no number to the arcs.

The explanation for this discrepancy is that arcs are even more context dependent than
the nodes that define them. For example, when considering whether to delete a particular
arc (z,y), CS, is a relevant value, but the value of CS,, is much less so. This is so because
deleting one of node z’s output arcs doesn’t affect the other arcs from z, but deleting an input
arc potentially changes what node y outputs on all it’s output arcs. When, on the other hand,
considering whether to reroute arc (z, y) to some other node z (i.e., arc(z,y) — arc(z, z))
the current values CS,, CS,, and CS, are all relevant. As is detailed in the next section,
the Credit-Blame map has a great impact on the arcs during the IRNP process, but only
indirectly through the credit scores of the nodes in the program to be recombined.

14.3.2 Exploration vs. Exploitation Within a Program

A tension exists between exploration (try out something new) and exploitation (stick with
the best you’ve seen) within the recombination of a single program. IRNP could leave alone
the “best” parts of the program and focus its changes on the “worse” program aspects. There
are, however, two problems with this view. The first is that a “bad” part of the program
must be more carefully defined. There are program nodes that have very low scores in the
program’s Credit-Blame map and do affect the values flowing into the OUTPUT nodes and
there are low score nodes that do not affect the values flowing into the program OUTPUT
nodes. This is the node participation problem. To be most effective, IRNP should change
the first type of low score nodes, but not the second. This is so because, for example,
changing what function a particular node computes is a piece of wasted search if that node’s
old function had no effect on any of the program’s OUTPUT nodes (under the assumption
that none of the functions have side-effects).

There is a second problem with seeing IRNP’s job as simply focusing on the “bad” parts
of a program. Occasionally, the best way to improve a program is to make the right change
to an aspect of the program that is already working well. It is easy to imagine a programin
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For each node z in the program
Participation , < 0
For each node z in the program
if (node z is an OUTPUT node)
Participation, < 1
While (flags still changing)
For each node z in the program
if (arc (z,y) exists and creates a; for node y) and
(node y has Sty Ay,i > 0) and
(Participation,, = 1)
Participation,, < 1

Figure 14.7
The procedure for assigning the participation flags to nodes in each program’s Credit-Blame map.

which node y computes ap + a1 is almost right, but the program would work even better if
that node computed ag * a1 instead.

IRNP does address both of these issues. With regards to the second problem, IRNP does
occasionally change high credit-score aspects of a program. It is partly for this very reason
that the mutation operators only look at a fraction of the nodes in a program before picking
one to change. This means that with low probability, the “worst” program aspect seen
by a particular mutation operator, will still be one of the high credit-score nodes for that
program. An interesting piece of future work for IRNP is the following. Instead simply
restricting how often the recombination operators change high credit-score aspects of a
program, how these aspects are changed could be different. In other words, for example,
mutation could be further refined so that it did “less damaging” mutations when a high
credit-score node was chosen to be changed (e.g., ADD — MULT is “less damaging” than
ADD — If-Then-Else).

IRNP also addresses the node participation problem. Credit-Blame map includes a par-
ticipation flag for each program node. IRNP takes advantage of these flags by augmenting
the mutation and crossover policies described in Sections 14.3.3.1 and 14.3.3.2. These
participation flags are set using the process shown in Figure 14.7.

14.3.3 Using a Credit-Blame Map

The second phase of the internal reinforcement is the use of the created Credit-Blame map
to increase the probability that the genetic operators lead either to a better solution or to
a similar solution in less time. There are two basic ways that the Credit-Blame map can
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be used to do this enhancement: through improvement of either the mutation or crossover
operators.

The possibility of using internal reinforcement (explicit credit-blame assignment) not
only for mutation (which has analogies to the world of ANNS) but for crossover as well is
important. Traditional GP uses random crossover and relies entirely on the mechanism of
empirical credit-blame assignment. Work has been done to boot-strap this mechanism by
using the evolutionary process itself to evolve improved crossover procedures (e.g. [An-
geline, 1996b; Teller, 1996]). This work has reaped some success, but because of the
co-evolutionary nature of the work, it has not yielded deep insights into the basic mecha-
nism of crossover. IRNP has the future potential not only to improve on the existing GP
mechanism, but also to help study the central mystery of GP, namely crossover.

14.3.3.1 Mutation: Applying a Credit-Blame Map

Mutation can take a variety of forms in NP. These various mutations are: add an arc,
delete an arc, swap two arcs, change a node function, add a node, delete a node. Notice
that change a node function and swap two arcs are not atomic, but have been included as
examples of non-atomic, but basic mutation types. In the experiments shown in the next
section, each of these mutations took place with equal likelihood in both the random and
internal reinforcement recombination cases. For example, to add an arc under random
mutation to an NP program, we simply pick a source and destination node at random from
the program to be mutated and add the arc between the nodes.

Internal reinforcement can have a positive effect on this recombination procedure. For
each recombination type, we pick a node or arc (depending on the mutation type) that has
maximal or minimal credit score as appropriate. For example, when deleting a program
node, we can delete the node with the lowest credit score instead of just deleting a randomly
selected node.

Below are the IRNP procedures for each of the six mutation types. Notice that when
the terms “large” and “low” are used (as opposed to the unambiguous terms “highest”
and “lowest”), this indicates that the largest or least credit score is selected from among a
sampled subset of nodes or arcs, depending on the context.

Add an Arc : First, pick a node z with a large credit score. Then pick a node y with a low
credit score and Participation, = 1 and A inputs such that y would still be sensitive
to input a4;. Finally, add an arc (z,y).

Delete an Arc : First, pick a node y with a low credit score such that y would still be
sensitive to its inputs if one were removed and Participation, = 1. Then pick a
node z with a low credit score such that there exists an arc (z, y). Finally, delete arc

(z,y).
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Swap Two Arcs : First, let z be the node with highest CS,. Then let (z,y) be the output
arc of z to a node y that minimizes CS,. Then, for all arcs (u,v) such that v is an
OUTPUT node, pick the arc (u,v) that minimizes CS,,. Finally, delete arcs (z,y)
and (u,v) and create arcs (z,v) and (u,y).

Change a Node Function : First, pick a node z that has a low credit score and such that
(=, y) exists and creates input a; for node yand Sy, 4,,« > Oand Participationy =1
Then change the function that = computes to another function of similar or lower
arity.

Add a Node : First, create a new node z with f,, a randomly selected function. Then let
A be the arity of f, and let O, be the number of output arcs from z. Then find high
credit score nodes z1, ...z 4 and create the arcs (z1,2) ... (xa,2). Then find low
credit score nodes y1, ... yo. such that Sy, 4,.+1,4,,+1 > 0and
Participation,, = 1 forall i in [1..0.]. Finally, create the arcs (2, 1) ... (2,90.)

Delete a Node : First, pick a low credit score node = with Participation, = 1. Then,
remove z and arcs (x,y) and (z, z) for all nodes y and all nodes = in the program.

For each of the procedures, the alternative to IRNP is the equivalent of the traditional
recombination strategy in GP. This less focused strategy in NP is simply to chose randomly
among all syntactically legal options (i.e., no program-behavior based bias in the recombi-
nation). Equivalently, this “vanilla” method for recombination can be thought of as IRNP
with random values in the Credit-Blame map.

14.3.3.2 Crossover: Applying a Credit-Blame Map
In the random version of crossover, one simply picks a “cut” from each graph (i.e., a subset
of the program nodes) at random and then exchanges and reconnects them. Figure 14.8
pictures this division of a program into two pieces. Details on how this fragment exchange
can be accomplished so as to minimize the disruption to the two programs can be seen
in [Teller, 1996]. In summary, sewing two fragments back together so as to minimize
disruption is largely a matter of satisfying as far as possible the criteria that each “dangling”
output arc is connected to an node that lost an input arc when its program was fragmented.
We keep this underlying mechanism and present an IRNP procedure that selects “good”
program fragments to exchange. This means that IRNP has, as its only job to choose the
fragments to be exchanged, but the way in which program fragments are exchanged and
reconnected is unaffected by IRNP. There is much to be gained by taking advantage of the
Credit-Blame map during this fragment exchange and reconstitution phase, but to focus the
research work and contributions, this aspect of the use of credit-blame assignment has been
left as future work.
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Internal Arcs

Figure 14.8

Crossover in NP: A single graph of nodes and arcs is fragmented with a cut into two fragments such that every
node in the original graph is now either in Fragment, or Fragment, and every arc is either an internal or external
arc.

Given that we separate a program into two fragments before crossover, let us define
CutCost to be the sum of all credit scores of inter-fragment arcs, and InternalCost to be the
sum of all credit scores of intra-fragment arcs in the program to be crossed-over.

NP program arcs have a shifting meaning and so their credit score must be interpreted
within the context of the search operator being used. For crossover we take the credit
score of an arc to be the credit score of its destination node. This is done because, as was
described in Section 14.3.1.4, the disruption of an arc affects the destination node more so
than the source node.

Now we say that the cost of a particular fragmentation of a program is equal to Cut-
Cost/InternalCost. If we try to minimize this value for both of the program fragments we
choose, we are much less likely to disrupt a crucial part of either program during crossover.
Figure 14.9 outlines this IRNP crossover procedure.

14.3.4 The Credit-Blame Map Before/After Refinement

This chapter has explained exactly how IRNP is carried out and the impact that it has on
the evolution of the programs involved. It was claimed that the bucket brigade algorithm
described in Section 14.3.1.3 actually does spread the credit score values out to aspects of
the program that previously were not rewarded. This section illustrates this value spreading
using a real snap-shot during the IRNP in a normal run. Table 14.1 shows a typical (though
small) NP program (without the arcs) from generation 8 of a run learning to classify signals
from a manufactured signal domain.

The first set of numbers in Table 14.1 shows the Credit Scores for each node at an inter-
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Pick & random cuts of prog p (Fragment,, Fragment,)
For candidate cut ¢
For each arc(z,y) inp
Let CSMC(m,y) = CSy
if (z and y are in the same Fragment;) (je{1,2})
InternalCost = InternalCost + C'Syrc(z,y)
else
CutCost = CutCost + C'Sy
CutRanking, = CutCost / InternalCost
Choose the cut that produced the LOWEST CutRanking with
at least one participating node on each side of the cut

Figure 14.9
The IRNP process for choosing a “good” fragment of a program to exchange through crossover.

mediate stage in the credit-blame assignment process as described in this chapter. Namely,
the credit scores shown in Table 14.1 have undergone the process of Section 14.3.1.1, but
not the process of detailed in Section 14.3.1.3. The second set of numbers in Table 14.1
shows this same NP program after the bucket brigade refinement process has taken place.

The bold faced credit scores in Table 14.1 are those values that changed during the
bucket brigade credit score refinement process. Notice that more than half of the credit
scores changed values during this process, many of them dramatically. The number of
credit scores at 0.0 dropped from 52.17% to 17.39% due to the refinement process. Notice
also that even the OUTPUT nodes have their credit scores changed during this process since
the output from an OUTPUT node may be very useful, even if it is not, itself, the highest
correlation node in the program.

14.3.5 |IRNP Discussion

It should have been made clear by this point in this chapter that NP programs are “nearly”
Turing complete in that they have a sufficiently complex function set, memory, and iteration.
The topology and execution of NP programs provides iteration. Technically, a Turing
complete program must have access to arbitrarily extendible memory, though in practice
this is never actually provided. In NP, the form of memory that has been described, and
that will be used throughout the rest of this chapter, is the data-flow memory of a program.
A program with, for example, 312 arcs has a memory capacity of 312 distinct values and
many billions of states even for a restricted value range. This is implicit memory use (i.e.,
memory use through the representation itself) rather than explicit memory use.
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Table 14.1

A sample NP program (without the arcs) at the end of generation 8 after the Credit Scores have been assigned,
shown both before and after the bucket brigade refinement of this Credit-Blame map has taken place. # indicates
the node number. The bold values highlight Credit Score values that changed during the refinement process.

Credit-Blame map before Refinement. (Explicit Credit Scores)

# CSy Function # CSy Function # CSy Function # CSy Function

0 0.0000 060 1 0.0000 Clock 2 0.0000 144 3 0.0000 Clock

4 00000 211 5 0.0000 Clock 6 0.0000 094 7 0.0000 182

8 0.0000 145 9 0.0000 165 10 0.0000 182 11 0.0000 045
12 0.0000 036 13 02069  Output 14 02562  PSP-Pnt 15 0.0000  Divide
16 0.6973  Output 17 01301 Add 18  0.1963 PSP-Max | 19 03576  Add
20 0.0000  Multiply 21 0.3315  Output 22 0.2254  PSP-Pnt 23 0.0391  Multiply
24 03143  Subtract 25 0.0000 If-T-E 26 0.2254  Multiply 27 02380 If-T-E
28  0.0000  Split 29 0.0915 PSP-Max | 30 07351  Split 31 04334  Subtract
32 01208 Add 33  0.0000  Subtract 34 04335  PSP-Pnt 35 0.0046  Add
36 0.0000  Multiply 37 0.0000 Add 38 0.2822 PSP-Max | 39  0.2254  Multiply
40  0.0000 If-T-E 41  0.0162 Add 42 0.6992  Output 43 03315  Subtract
44 0.0000 Add 45  0.0000 Add 46 0.0000 Add

Credit-Blame map after Refinement.

# CSy Function # CSy Function # CSy Function # CSy Function

0 0.0000 060 1 0.0000 Clock 2 0.0000 144 3 06681 Clock

4 0.0000 211 5 01185  Clock 6 04326 094 7 00854 182

8 00011 145 9 0088 165 10 01665 182 11 06942 045
12 01629 036 13 0.2538  Output 14 02562  PSP-Pnt 15 0.0398 Divide
16 0.6973  Output 17 06406 Add 18 06857 PSP-Max | 19 03576 Add
20 0.0000  Multiply 21 06811 Output 22 06675  PSP-Pnt 23 0.0391  Multiply
24 0.6858  Subtract 25 0.0000 If-T-E 26 02502  Multiply 27 02380 If-T-E
28 04254  Split 29 0.0915 PSP-Max | 30 07351  Split 31 04334  Subtract
32 01208 Add 33 0.0000  Subtract 34 04335  PSP-Pnt 35 0.0046 Add
36 02637  Multiply 37 06854 Add 38 02822 PSP-Max | 39 0.6697  Multiply
40 0.0000 If-T-E 41 06550 Add 42 0.6992  Output 43 06834  Subtract
44 06437 Add 45 06714 Add 46 00001 Add

Indexed Memory [Teller, 1994] is an example of explicit memory use in GP. In Indexed
Memory, the evolving program is given access to an array of memory cells through the
two functions READ(Oy), and WRITE(Oq,01). READ(Oy) returns the value stored in
MEMORY[Oo]. WRITE(Oo,01) returns the value stored in MEMORY[Oo] and has the
side-effect of updating MEMORY[Oq] to it’s new value: O;. Indexed Memory has been
extensively studied in GP (e.g., [Teller, 1994; Andre, 1995; Langdon, 1995; Langdon, 1996;
Spector and Luke, 1996]) and has demonstrated itself to be a valuable form of memory
use for evolving programs. [Teller, 1998] reports on positive results on the use of indexed
memory in NP learning.
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NP and IRNP were designed simultaneously to add computational expressiveness to algo-
rithm evolution (NP vs. traditional tree-GP) and to solve some of the learning difficulties
this new level of computational expressiveness introduced (IRNP vs. unguided genetic
operators). This does not mean, however, that IRNP only applies to NP. The concept
of internal reinforcement is very general and can be illustrated in other representations.
The single most popular representation for algorithm evolution is the tree representation
(S-expression) of traditional GP. [Teller, 1998] describes in detail how to implement IRNP
in tree-based GP.

14.4 Experimental Results

Because the following experiments were run in the context of the PADO learning sys-
tem, a few words must be given as explanation. PADO is a learning environment that
decomposes classification problems into discrimination problems, evolves sub-solutions
to these discrimination problems, and then orchestrates these sub-solutions into an over-
all solution to the original classification problem. The evolution that takes place inside
PADO can be of any type and in the context of this chapter that evolution is the evolu-
tion of NP programs with and without IRNP for the purposes of comparison. Significant
detail about PADO can be found in [Teller and Veloso, 1995; Teller and Veloso, 1997;
Teller, 1998].

14.4.1 Experimental Overview

The purpose of any set of experiments is to test a set of hypotheses. The goal of the
experiments shown in this chapter are to demonstrate two general attributes of the NP
and IRNP approaches. The first is that the NP representation successfully applies to a
wide variety of signal domains. The second is that the IRNP procedure does substantially
improve learning across a variety of signal domains.

Table 14.2 gives the values for the most important parameters and Table 14.3 gives
the fixed set of program primitives used in all the experiments. [Teller, 1998] addresses
the issue of IRNP’s sensitivity to the parameters shown in Table 14.2, and shows in an
experiment that IRNP works at least as well when crossover is the dominant recombination
strategy (instead of mutation as shown in Table 14.2).

Experiments are run on two dissimilar domains and in both, the PADO approach does
quite well. The experiments show both that NP programs can be usefully evolved and
that in all those cases PADO does noticeably better when IRNP is active as part of the
learning process. Notice in particular that, empirically, the harder the problem, the greater
the efficiency gain provided by IRNP.

344’ Advances in Genetic Programming |11, Chapter 14’



Table 14.2
Fixed experimental values for the most important PADO parameters.

Crossover Percent Chance 36
Mutation Percent Chance 60
Population Size (250 x Number of Classes)
Maximum Number Nodes 80
Minimum Number Nodes 10
Number In Tournament 5
Number Time Steps To Run 10
Maximum Generations 80
Maximum Number Outputs 5
Maximum Number Inputs 4
Table 14.3

PADO program primitives used

Manipulation type

Continuous Add Sub  Mult Div OUTPUT
Choice If-Then-Else Split
Signal SignalPrimitive, SignalPrimitive,

Zero-Arity 0..MaxValue Clock

A word of description about the method of presentation before we launch into the
experiments. Each point on each graph is the mean performance level achieved on over
many independent runs, meaning that the results presented are not the best NP has ever
done on a particular domain, but a report of the kind of performance you can expect from
during an average run.

14.4.2 Natural Images

There are seven classes in the domain used in the following experiments. Figure 14.10
shows one randomly selected video image from each of the seven classes in both the
training and testing sets. This particular domain was created as a domain for machine
learning and computer vision [Thrun and Mitchell, 1994]. Each element is a 150x124
video image with 256 level of grey. Originally, these images were color images, but the
color was later removed from the images to make the problem sufficiently difficult to be
interesting [Teller and Veloso, 1997].

The seven classes in this domain are: Book, Bottle, Cap, Coke Can, Glasses, Hammer,
and Shoe. The lighting, position and rotation of the objects varies widely. The floor and
the wall behind and underneath the objects are constant. Nothing else except the object is
in the image. However, the distance from the object to the camera ranges from 1.5 to 4 feet
and there is often severe foreshortening and even deformation of the objects in the image.
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Figure 14.10
A random training and testing signal from each of the 7 classes in this classification problem.
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14.4.2.1 Setting PADO up to Solve the Problem

In the experiment in this section, the total population size was 1750 (i.e., 250 = 7). Each
point on each graph is an average of at least 60 independent runs. A total of 350 (50 from
each of 7 classes) images were used for training and a separate set of 350 (50 from each of
7 classes) images were withheld for testing afterwards.

The Parameterized Signal Primitives (PSPs) used in this experiment were as follows:
PSP-Point(ao, a;) returns the pixel intensity at the pixel/point (ao,a;). PSP-Average
(a0, a1, az,a3) returns the average pixel intensity in the image region specified by the
rectangle with upper left corner (ag,a1) and lower right corner (a;,as). PSP-Variance
(a0, a1, az, a3) returns the variance of the of the pixel intensities in image region specified
by the rectangle with upper left corner (ag,a1) and lower right corner (az,a3). PSP-
Min(ao, a1, az, a3) returns the lowest pixel intensity value in the image region specified
by the rectangle with upper left corner (ao,a1) and lower right corner (ay,as). PSP-
Max(ao, a1, az, az) returns the largest pixel intensity value in the image region specified
by the rectangle with upper left corner (ao,a1) and lower right corner (ay,as). PSP-
Diff(ao, a1, az, a3) returns the absolute different between the average pixel intensity above
and below the diagonal line (ao, a1) to (a2, as3) inside the bounding rectangle with oppo-
site corners (ag, a1) and (az, as). In all of these cases, if the dimension is negative (e.g.,
ay < ap) the two values are interchanged.

14.4.2.2 The Results

During each run, the generalization performance on a separate set of testing images was
recorded and Figure 14.11 plots the mean of each of these values. Figure 14.11 shows the
computational effort in generations required to reach a particular level of test-set general-
ization performance for NP learning with and without IRNP.
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NP evolution in PADO in the Natural Image classification domain
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Figure 14.11
NP learning with and without IRNP (Natural Images Domain).

The most important feature of Figure 14.11 is that NP learns more than twice as fast when
IRNP is applied to the recombination during evolution. That is, NP arrives at the same
level of generalization performance in less than half as many generations when learning
with IRNP as compared to learning without it. Also notice that NP learns quite well on
this difficult image classification problem. Random guessing in this domain would achieve
only about 14.28% correct generalization performance.

It is worth noting that the performance that achieved on any domain is related to the
particular orchestration strategy chosen. NP has, on this particular domain, achieved
generalization performance rates as high as 86%.

14.4.3 Acoustic Signals

The database used in this experiment contains 525 three second sound samples. These are
the raw wave forms at 20K Hertz with 8 bits per sample (about 500,000 bits per sample).
These sounds were taken from the SPIB ftp site at Rice University (anonymous ftp to
spib.rice.edu). This database has an appealing seven way clustering (70 from each class):
the sound of a Buccanneer jet engine, the sound of a firing machine gun, the sound of an
M109 tank engine, the sound on the floor of a car factory, the sound in a car production
hall, the sound of a Volvo engine, and the sound of babble in an army mess hall. There
are many possible ways of subdividing this sound database; the classes chosen for these
experiments are typical of the sort of distinctions that might be of use in real applications.
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14.4.3.1 Setting PADO up to Solve the Problem

In the experiment in this section, the total population size was 1750 (i.e., 250 = 7). Each
point on each graph is an average of at least 55 independent runs. A total of 245 (35 from
each of 7 classes) images were used for training and a separate set of 245 (35 from each of
7 classes) images were withheld for testing afterwards.

The PSPs used in this experiment were as follows: PSP-Point(ao, a;) returns the wave
height at the moment in time specified by (a+256+a;). PSP-Average(ao, a1, a2, as) returns
the average wave height in the sound starting at time (ao * 256 + a1) and ending at time
(az * 256 4 a3). This PSP is useless for long time intervals. PSP-Variance(ao, a1, az, as)
returns the variance of the wave height in the sound starting at time (a¢*256+a;) and ending
at time (ay * 256 + a3). PSP-Min(ay, a1, a2, a3) returns the lowest wave height in the sound
starting at time (ao * 256 + a1) and ending at time (a; * 256 + a3). PSP-Max(ao, a1, az, a3)
returns the largest wave height in the sound starting at time (ag * 256 + a1) and ending at
time (a *x 256 + a3). PSP-Diff(ao, a1, az, a3) is equivalent to ABS(PSP-Average(ag, ai,
agy, ay) — PSP-Average( ag, a1, ay, az)) where (ag,a1/) is the time midpoint between
(a0, a1) and (az, a3).

Notice that, other than minor adjustments necessary to reflect the change in signal type,
these parameterized signal primitives are exactly the same as the PSPs used in the visual
classification experiment discussed in Section 14.4.2. This was not done to demonstrate the
generality of these PSPs. Quite the contrary, this similarity in the experimental procedure
was done to highlight how little was done to tune NP in order to achieve the reported results.
NP, using IRNP, is able to make good use of these very simple PSPs that are not well focused
to solving either of the domains in which they were applied.

The fitness used for evolutionary learning (training of the NP programs) was based upon
distance from returned confidence to the correct confidence for each training example.
Given this model of one class chosen per sound, if the NP program just guessed randomly,
it could achieve an generalization performance of 1/7 (14%) correct.

14.43.2 The Results
Figure 14.12 shows the generalization percent correct NP reaches on average on each
generation, with and without IRNP.

Notice that in these experiments, for both orchestration strategies, IRNP learning is
almost three times as efficient as learning without it. That is, NP arrives at the same level of
test set generalization performance in about one third as many generations when learning
with IRNP as compared to learning without it.
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NP learning in PADO in an acoustic classification domain
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Figure 14.12
NP learning with and without IRNP (Acoustic Signals Domain).

14.4.4 Acoustic Signals Revisited

One of the most important implied aspects of this chapter is that, given more time to examine
each signal the NP programs will be able to improve their evolved performance. If NP
programsare really looping and foveating on the input signals, increasing the amount of time
(i.e., maximum timestep threshold, 7") should increase the evolved program performance.
Therefore, let us revisit the acoustic signal classification problem described in the previous
section. As in the rest of this chapter, the experimental results in the previous section were
achieved with an NP timestep threshold of 10 timesteps. In this section, we will double this
value to a timestep threshold of 7" = 20 timesteps to see how that change affects both the
efficiency and, more importantly, the effectiveness of NP learning within PADO.

Since this chapter has claimed that there is an advantage to be gained from the addition
of iteration and/or recursion, a demonstration that increasing the time available to each
program (without increasing the number of degrees of freedom in the model being learned)
will strengthen this argument. The NP programs evolving in this section have the exact
same number of degrees of freedom (independently adjustable learning “parameters™) as
in the previous section. Programs in all ways similar to those in the previous section are
simply allowed to “think longer” about the input signal. Therefore, improved performance
in this experiment demonstrates that NP programs are making use of the looping/foveating
aspects of the NP representation.

The domain and problem for this set of experiments is in every detail identical to the
domain and problem described in the previous section.
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NP learning in PADO in an acoustic classification domain

T T T T T T
B 0.8 0™
2 6000 WM
O
8 0.75 OQOO N e Saasnnl -
e o et
S 07 o° ot |
2 & 4
c +
N 065 Féf E
g £ IRNP Nearest-Neighbor Timestep Threshold = 20 ¢
S 0.6 ¢ IRNP Nearest-Neighbor Timestep Threshold = 10 -+ q
ES

) | 7999 —
(;CIJ 0.55 | B
3 05 | g
2

045 Il Il Il Il Il Il Il

0 10 20 30 40 50 60 70 80

Generations

Figure 14.13
NP learning with IRNP and Timestep Threshold = 10 and 20 (Acoustic Signals Domain).

14.4.4.1 Setting PADO up to Solve the Problem

In setting up PADO to solve this acoustic signal classification problem, every aspects was
left exactly as in the previous section with a single exception. This exception was that the
timestep threshold (that maximum number of timesteps after which the response is extracted
from each NP program) was increased from 10 to 20.

14.4.4.2 The Results

Each point in Figure 14.13 is an average over at least 60 independent trials. Notice that

it takes more time to compute the fitness of each particular program on each particular
signal, the same amount of learning is done with two different timestep thresholds. Said

in another way, the additional computation time is spent because the fitness takes twice as
long to measure, not because twice as many decisions are made with the same information.

This is significant by itself, but more significant still when we remember that learning to
take advantage of this additional time available to each NP program must be done using the

same amount of learning (i.e., the same number of search steps). This means, that in some

sense, this test would have been more fair if more learning (and therefore more computation

time) had been given for the experiments in this section, not less computation time as the

computation time note in the previous paragraph seems to suggest.

Figure 14.13 shows the generalization percent correct PADO reaches on average on each
generation with IRNP using this enlarged timestep threshold. The results of this experiment
are quite exciting. IRNP learning with a timestep threshold of T = 20 is three times as
efficient as learning under the same conditions with 7" = 10. Notice that this means that
IRNP learning with T' = 20 actually accomplished the same amount of learning as do NP
learning without IRNP using 7" = 10 using only about 13% of the effort.
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145 Related Work

The main areas of work related to the topic of this chapter are: algorithm evolution applied
to signal understanding, the learning of recurrent networks, and particularly, other attempts
to improve the effectiveness of the search operators in GP.

In the area of evolution applied to signal understanding past work has included bitmap un-
derstanding (e.g., [Andre, 1994; Koza, 1994]), signal understanding aids (e.g., [Nguyen and
Huang, 1994; Tackett, 1993; Daida, 1996; Poli, 1996b]), time series prediction (e.g, [Ange-
line, 1996a]), and speech discrimination (e.g., [Conrads et al., 1998; Nordin and Banzhaf,
1996].

In an important related area, considerable work has been done on the complex memory
structure and use (e.g., [Langdon, 1995; Andre, 1995; Andre and Teller, 1996; Brave, 1996a;
Langdon, 1996; Spector and Luke, 1996]). Some research has been done on recursion and
looping in GP (e.g., [Kinnear, Jr., 1993; Brave, 1996b; Langdon, 1995]), but how to tractably
evolve complex programs with these elements is still an open question.

Both because of its representational similarities and because of its computational class
equivalence (i.e., both are Turing complete representations), recurrent ANNSs (e.g., [Rumel-
hart et al., 1986]) are also of relevance to the NP and IRNP research. In ANNs, the
focus on improving the power of the technique has not been on changing what is inside
an “artificial neuron.” Works like [Dellaert and Beer., 1994; Sharman et al., 1995] have,
however, investigated the possible additional benefit of complicating and un-homogenizing
artificial neurons. Though its similarity to NP is in representation, not in use or objectives
(i.e., IRNP), [Poli, 19964a] is an interesting example of the evolution of graph structured
programs as is [Angeline, 1997]. For a survey on data flow machine, see [Treleaven et al.,
1982].

One of the best descriptions of and attacks on the lack of a clear, locally optimal update
procedure is [O’Reilly, 1995]. In her thesis, O’Reilly gives good evidence for this as an
important flaw in the GP paradigm and introduces a locally optimal hill-climbing variantas a
recombination element within GP. [Olsson, 1995] uses a form of iterative deepening done on
minimum description length codes with ML-specific program transformations. [Angeline,
1996b] and [Fogel et al., 1995] describe possible approaches for allowing the mechanism
of evolution to provide self-adaptation all the way down to the single node level. Another
take on guided crossover can be seen in [Langdon, 1996].

The bucket-brigade algorithm is one of the oldest versions of credit assignment discussed
as an explicit mechanism by Holland [Holland, 1975] or as an implicit mechanism in works
such as [Wilson, 1987]. The variant of a profit-sharing plan was introduced in [Holland and
Reitman, 1978]. The bucket-brigade algorithm is just a special case of the general temporal
difference methods (TDM) [Sutton, 1988] like Q-learning [Watkins, 1989].
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14.6 Conclusions

This research has contributed a new representation for learning complex programs. This new
connectionist program language, Neural Programming, has been developed with the goal of
enabling a principled update policy for algorithm evolution called Internal Reinforcement.
This is the first such principled update policy created for the field of genetic programming.
Neural Programming enables the construction of a Credit-Blame map for each evolving
program. Sensitivity-based bucket-brigade for refining each program’s Credit-Blame map
leads to a credit assignment of sufficient detail to allow internal reinforcement to perform
focused, beneficial search operations during the algorithm evolution. We illustrated these
techniques with experiments that showed that internal reinforcement improves the speed
and accuracy of Neural Programming learning. These same experiments also demonstrated
that Neural Programming can successfully learn to correctly classify large signals from
many classes in real world domains.

The goal of this chapter has been to communicate the exciting result that, through
the exploration of new program representations, we have captured the explanation and
principled update power of explicit credit-assignment with the flexibility and generality of
genetic programming.
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