Evolutionary Computation of Supersonic Wing Shape Optimization

Shigeru Obayashi Daisuke Sasaki Yukihiro Takeguchi
Department of Aeronautics and Space Engineering, Tohoku University
Aoba-yama 01, Sendai, Japan 980-8579

1 INTRODUCTION

To respond future increase of air traffic demand, development of next generation supersonic transport is considered worldwide. Aerodynamic design of such aircraft must account for drag reduction as well as sonic boom reduction. However, drag reduction is in conflict with sonic boom reduction. Since acceptability of supersonic transport is very sensitive to the sonic boom over populated areas, one of the design choices is to limit supersonic flight over sea and to enforce transonic flight over land. Although such decision excludes the sonic boom from the design consideration, the designer now has to face transonic performance of the supersonic aircraft. Therefore, this paper considers multipoint aerodynamic optimization of a wing shape for supersonic aircraft both at the supersonic cruise condition and at the transonic cruise condition. Aerodynamic drag will be minimized at both cruise conditions under lift constraints. Aerodynamic optimization of the wing planform, however, drives the wing to have an impractically large aspect ratio. Therefore, minimization of the wing root bending moment is also considered as a third design objective.

2 RESULTS

Flow conditions are $M_\infty = 2.0$ and $C_L = 0.1$ for supersonic cruise and $M_\infty = 0.9$ and $C_L = 0.15$ for transonic cruise. The supersonic inviscid drag is evaluated by using an Euler flow solver (Obayashi et al. 1998). The transonic inviscid drag is evaluated by using a full potential flow solver (Jameson and Caughey, 1977). The bending moment is evaluated by directly integrating the pressure load at the supersonic cruise condition. Wing shapes are represented by in total of 66 design variables.

Figure 1 presents a sample planform shape of the optimized wings that perform better in all three design objectives than the existing wing designed at National Aerospace Laboratory optimized only by using the linearized theory (Iwamiya, 1998).

Detailed tradeoff study using the present Pareto front revealed that the wing planform shape should be changed to the arrow shape instead of the delta shape to improve the aerodynamic performance of the NAL design.

References

