Controle d'un bioreacteur a perfusion pour la regeneration du tissu vasculaire

Created by W.Langdon from gp-bibliography.bib Revision:1.3872

@PhdThesis{Couet:thesis,
  author =       "Frederic Couet",
  title_en =     "Control of a perfusion bioreactor for growth of
                 vascular tissue",
  title =        "Controle d'un bioreacteur a perfusion pour la
                 regeneration du tissu vasculaire",
  school =       "Mines et metallurgi, Laval University",
  year =         "2011",
  address =      "Quebec, Canada",
  month =        oct,
  keywords =     "genetic algorithms, genetic programming, biomechanics,
                 blood, vein",
  URL =          "http://www.theses.ulaval.ca/2011/28452/28452.pdf",
  size =         "187 pages",
  resume =       "La disponibilit{\'e} limit{\'e}e de vaisseaux sanguins
                 autologues pour les chirurgies vasculaires telles que
                 le pontage coronarien ou p{\'e}riph{\'e}rique et les
                 performances cliniques insuffisantes des proth{\`e}ses
                 vasculaires pour le remplacement de vaisseaux sanguins
                 de petit diam{\`e}tre ({\O} < 6 mm) justifie la
                 recherche dans le domaine du g{\'e}nie tissulaire
                 vasculaire. L{'}une des strat{\'e}gies explor{\'e}es --
                 le g{\'e}nie tissulaire fonctionnel -- vise {\`a}
                 r{\'e}g{\'e}n{\'e}rer un vaisseau sanguin in vitro dans
                 un environnement contr{\^o}l{\'e} appel{\'e}
                 bior{\'e}acteur. L{'}objectif de cette th{\`e}se est de
                 concevoir un bior{\'e}acteur {\`a} perfusion et de
                 d{\'e}velopper un syst{\`e}me de contr{\^o}le pour ce
                 bior{\'e}acteur afin d{'}interagir de mani{\`e}re
                 dynamique avec une construction art{\'e}rielle dans le
                 but de guider et de stimuler la maturation de
                 constructions art{\'e}rielles. La principale question
                 {\'e}tudi{\'e}e dans ce projet est de d{\'e}terminer
                 comment choisir les conditions de culture {\`a}
                 l{'}int{\'e}rieur d{'}un bior{\'e}acteur le plus
                 efficacement possible. Deux grands enjeux ont
                 {\'e}t{\'e} identifi{\'e}s : d{'}abord, le besoin de
                 comprendre les diff{\'e}rents ph{\'e}nom{\`e}nes
                 physiques et biologiques qui se d{\'e}roulent {\`a}
                 l{'}int{\'e}rieur du bior{\'e}acteur. Ensuite, la
                 n{\'e}cessit{\'e} de diriger la
                 r{\'e}g{\'e}n{\'e}ration du tissu vasculaire. Une
                 commande utilisant le concept de programmation
                 g{\'e}n{\'e}tique fut d{\'e}velopp{\'e} afin de
                 mod{\'e}liser en temps r{\'e}el la
                 r{\'e}g{\'e}n{\'e}ration du tissu vasculaire. En
                 utilisant les mod{\`e}les g{\'e}n{\'e}r{\'e}s, la
                 commande recherche une strat{\'e}gie optimale de
                 culture (d{\'e}formation circonf{\'e}rentielle,
                 cisaillement longitudinal et fr{\'e}quence du d{\'e}bit
                 puls{\'e}) en consid{\'e}rant un processus de
                 d{\'e}cision Markovien r{\'e}solu par programmation
                 dynamique. Par simulation num{\'e}rique, on montre que
                 cette m{\'e}thode a le potentiel de favoriser une
                 croissance plus rapide et plus s{\'e}curitaire des
                 tissus en culture et permet d{'}identifier plus
                 efficacement les param{\`e}tres importants pour la
                 croissance et le remodelage des constructions
                 art{\'e}rielles. La commande est capable de g{\'e}rer
                 des mod{\`e}les de croissance non lin{\'e}aires.
                 Exp{\'e}rimentalement, le syst{\`e}me d{\'e}velopp{\'e}
                 permet de mieux comprendre l{'}{\'e}volution des
                 propri{\'e}t{\'e}s m{\'e}caniques d{'}une construction
                 art{\'e}rielle dans un bior{\'e}acteur.;",
  abstract =     "The limited availability of autologous blood vessels
                 for bypass surgeries (coronary or peripheral) and the
                 poor patency rate of vascular prosthesis for the
                 replacement of small diameter vessels ({\O} < 6 mm)
                 motivate researches in the domain of vascular tissue
                 engineering. One of the possible strategies named
                 functional tissue engineering aims to regenerate a
                 blood vessel in vitro in a controlled environment. The
                 objective of this thesis is to design a perfusion
                 bioreactor and develop a control system able to
                 dynamically interact with a growing blood vessel in
                 order to guide and stimulate the maturation of the
                 vascular construct. The principal question addressed in
                 this work is: How to choose culture conditions in a
                 bioreactor in the most efficient way? Two main
                 challenges have been identified: first, the need to
                 develop a better comprehension of the physical and
                 biological phenomenon occurring in bioreactors; second,
                 the need to influence and optimise vascular tissue
                 maturation. A controller based on the concept of
                 genetic programming was developed for real-time
                 modelling of vascular tissue regeneration. Using the
                 produced models, the controller searches an optimal
                 culture strategy (circumferential strain, longitudinal
                 shear stress and frequency of the pulsed pressure
                 signal) by using a Markov decision process solved by
                 dynamic programming. Numerical simulations showed that
                 the method has the potential to improve growth, safety
                 of the process, and information gathering. The
                 controller is able to work with common nonlinearities
                 in tissue growth. Experimental results show that the
                 controller is able to identify important culture
                 parameters for the growth and remodelling of tissue
                 engineered blood vessels. Furthermore, this bioreactor
                 represents an interesting tool to study the evolution
                 of the mechanical properties of a vascular construct
                 during maturation.",
  bibsource =    "OAI-PMH server at amican.webapps1.lac-bac.gc.ca",
  contributor =  "Diego Mantovani",
  identifier =   "TC-QQLA-28452",
  language =     "EN",
  language =     "FR",
  oai =          "oai:collectionscanada.gc.ca:QQLA.2011/28452",
  rights =       "{\copyright} Fr{\'e}d{\'e}ric Couet, 2011",
}

Genetic Programming entries for Frederic Couet

Citations