Multi-population genetic programming with adaptively weighted building blocks for symbolic regression

Created by W.Langdon from gp-bibliography.bib Revision:1.4420

@InProceedings{Huang:2018:GECCOcomp,
  author =       "Zhixing Huang and Jinghui Zhong and Weili Liu and 
                 Zhou Wu",
  title =        "Multi-population genetic programming with adaptively
                 weighted building blocks for symbolic regression",
  booktitle =    "GECCO '18: Proceedings of the Genetic and Evolutionary
                 Computation Conference Companion",
  year =         "2018",
  editor =       "Carlos Cotta and Tapabrata Ray and Hisao Ishibuchi and 
                 Shigeru Obayashi and Bogdan Filipic and 
                 Thomas Bartz-Beielstein and Grant Dick and 
                 Masaharu Munetomo and Silvino {Fernandez Alzueta} and Thomas Stuetzle and 
                 Pablo Valledor Pellicer and Manuel Lopez-Ibanez and 
                 Daniel R. Tauritz and Pietro S. Oliveto and 
                 Thomas Weise and Borys Wrobel and Ales Zamuda and 
                 Anne Auger and Julien Bect and Dimo Brockhoff and 
                 Nikolaus Hansen and Rodolphe {Le Riche} and Victor Picheny and 
                 Bilel Derbel and Ke Li and Hui Li and Xiaodong Li and 
                 Saul Zapotecas and Qingfu Zhang and Stephane Doncieux and 
                 Richard Duro and Joshua Auerbach and 
                 Harold {de Vladar} and Antonio J. Fernandez-Leiva and JJ Merelo and 
                 Pedro A. Castillo-Valdivieso and David Camacho-Fernandez and 
                 Francisco {Chavez de la O} and Ozgur Akman and 
                 Khulood Alyahya and Juergen Branke and Kevin Doherty and 
                 Jonathan Fieldsend and Giuseppe Carlo Marano and 
                 Nikos D. Lagaros and Koichi Nakayama and Chika Oshima and 
                 Stefan Wagner and Michael Affenzeller and 
                 Boris Naujoks and Vanessa Volz and Tea Tusar and Pascal Kerschke and 
                 Riyad Alshammari and Tokunbo Makanju and 
                 Brad Alexander and Saemundur O. Haraldsson and Markus Wagner and 
                 John R. Woodward and Shin Yoo and John McCall and 
                 Nayat Sanchez-Pi and Luis Marti and Danilo Vasconcellos and 
                 Masaya Nakata and Anthony Stein and 
                 Nadarajen Veerapen and Arnaud Liefooghe and Sebastien Verel and 
                 Gabriela Ochoa and Stephen L. Smith and Stefano Cagnoni and 
                 Robert M. Patton and William {La Cava} and 
                 Randal Olson and Patryk Orzechowski and Ryan Urbanowicz and 
                 Ivanoe {De Falco} and Antonio {Della Cioppa} and 
                 Ernesto Tarantino and Umberto Scafuri and P. G. M. Baltus and 
                 Giovanni Iacca and Ahmed Hallawa and Anil Yaman and 
                 Alma Rahat and Handing Wang and Yaochu Jin and 
                 David Walker and Richard Everson and Akira Oyama and 
                 Koji Shimoyama and Hemant Kumar and Kazuhisa Chiba and 
                 Pramudita Satria Palar",
  isbn13 =       "978-1-4503-5764-7",
  pages =        "266--267",
  address =      "Kyoto, Japan",
  DOI =          "doi:10.1145/3205651.3205673",
  publisher =    "ACM",
  publisher_address = "New York, NY, USA",
  month =        "15-19 " # jul,
  organisation = "SIGEVO",
  keywords =     "genetic algorithms, genetic programming",
  abstract =     "Genetic programming(GP) is a powerful tool to solve
                 Symbolic Regression that requires finding mathematic
                 formula to fit the given observed data. However,
                 existing GPs construct solutions based on building
                 blocks (i.e., the terminal and function set) defined by
                 users in an ad-hoc manner. The search efficacy of GP
                 could be degraded significantly when the size of the
                 building blocks increases. To solve the above problem,
                 this paper proposes a multi-population GP framework
                 with adaptively weighted building blocks. The key idea
                 is to divide the whole population into multiple
                 sub-populations with building blocks with different
                 weights. During the evolution, the weights of building
                 blocks in the sub-populations are adaptively adjusted
                 so that important building blocks can have larger
                 weights and higher selection probabilities to construct
                 solutions. The proposed framework is tested on a set of
                 benchmark problems, and the experimental results have
                 demonstrated the efficacy of the proposed method.",
  notes =        "Also known as \cite{3205673} GECCO-2018 A
                 Recombination of the 27th International Conference on
                 Genetic Algorithms (ICGA-2018) and the 23rd Annual
                 Genetic Programming Conference (GP-2018)",
}

Genetic Programming entries for Zhixing Huang Jinghui Zhong Weili Liu Zhou Wu

Citations