Building boosted classification tree ensemble with genetic programming

Created by W.Langdon from gp-bibliography.bib Revision:1.4420

@InProceedings{Karakatic:2018:GECCOcomp,
  author =       "Saso Karakatic and Vili Podgorelec",
  title =        "Building boosted classification tree ensemble with
                 genetic programming",
  booktitle =    "GECCO '18: Proceedings of the Genetic and Evolutionary
                 Computation Conference Companion",
  year =         "2018",
  editor =       "Carlos Cotta and Tapabrata Ray and Hisao Ishibuchi and 
                 Shigeru Obayashi and Bogdan Filipic and 
                 Thomas Bartz-Beielstein and Grant Dick and 
                 Masaharu Munetomo and Silvino {Fernandez Alzueta} and Thomas Stuetzle and 
                 Pablo Valledor Pellicer and Manuel Lopez-Ibanez and 
                 Daniel R. Tauritz and Pietro S. Oliveto and 
                 Thomas Weise and Borys Wrobel and Ales Zamuda and 
                 Anne Auger and Julien Bect and Dimo Brockhoff and 
                 Nikolaus Hansen and Rodolphe {Le Riche} and Victor Picheny and 
                 Bilel Derbel and Ke Li and Hui Li and Xiaodong Li and 
                 Saul Zapotecas and Qingfu Zhang and Stephane Doncieux and 
                 Richard Duro and Joshua Auerbach and 
                 Harold {de Vladar} and Antonio J. Fernandez-Leiva and JJ Merelo and 
                 Pedro A. Castillo-Valdivieso and David Camacho-Fernandez and 
                 Francisco {Chavez de la O} and Ozgur Akman and 
                 Khulood Alyahya and Juergen Branke and Kevin Doherty and 
                 Jonathan Fieldsend and Giuseppe Carlo Marano and 
                 Nikos D. Lagaros and Koichi Nakayama and Chika Oshima and 
                 Stefan Wagner and Michael Affenzeller and 
                 Boris Naujoks and Vanessa Volz and Tea Tusar and Pascal Kerschke and 
                 Riyad Alshammari and Tokunbo Makanju and 
                 Brad Alexander and Saemundur O. Haraldsson and Markus Wagner and 
                 John R. Woodward and Shin Yoo and John McCall and 
                 Nayat Sanchez-Pi and Luis Marti and Danilo Vasconcellos and 
                 Masaya Nakata and Anthony Stein and 
                 Nadarajen Veerapen and Arnaud Liefooghe and Sebastien Verel and 
                 Gabriela Ochoa and Stephen L. Smith and Stefano Cagnoni and 
                 Robert M. Patton and William {La Cava} and 
                 Randal Olson and Patryk Orzechowski and Ryan Urbanowicz and 
                 Ivanoe {De Falco} and Antonio {Della Cioppa} and 
                 Ernesto Tarantino and Umberto Scafuri and P. G. M. Baltus and 
                 Giovanni Iacca and Ahmed Hallawa and Anil Yaman and 
                 Alma Rahat and Handing Wang and Yaochu Jin and 
                 David Walker and Richard Everson and Akira Oyama and 
                 Koji Shimoyama and Hemant Kumar and Kazuhisa Chiba and 
                 Pramudita Satria Palar",
  isbn13 =       "978-1-4503-5764-7",
  pages =        "165--166",
  address =      "Kyoto, Japan",
  DOI =          "doi:10.1145/3205651.3205774",
  publisher =    "ACM",
  publisher_address = "New York, NY, USA",
  month =        "15-19 " # jul,
  organisation = "SIGEVO",
  keywords =     "genetic algorithms, genetic programming",
  abstract =     "Adaptive boosting (AdaBoost) is a method for building
                 classification ensemble, which combines multiple
                 classifiers built in an iterative process of
                 reweighting instances. This method proves to be a very
                 effective classification method, therefore it was the
                 major part of our evolutionary inspired classification
                 algorithm.

                 In this paper, we introduce the Genetic Programming
                 with AdaBoost (GPAB) which combines the induction of
                 classification trees with genetic programming (GP) and
                 AdaBoost for multiple class problems. Our method GPAB
                 builds the ensemble of classification trees and uses
                 AdaBoost through the evolution to weight instances and
                 individual trees.

                 To evaluate the potential of the proposed evolutionary
                 method, we made an experiment where we compared the
                 GPAB with Random Forest and AdaBoost on several
                 standard UCI classification benchmarks. The results
                 show that GPAB improves classification accuracy in
                 comparison to other two classifiers.",
  notes =        "Also known as \cite{3205774} GECCO-2018 A
                 Recombination of the 27th International Conference on
                 Genetic Algorithms (ICGA-2018) and the 23rd Annual
                 Genetic Programming Conference (GP-2018)",
}

Genetic Programming entries for Saso Karakatic Vili Podgorelec

Citations