Exploring the application of GOMEA to bit-string GE

Created by W.Langdon from gp-bibliography.bib Revision:1.4420

@InProceedings{Medvet:2018:GECCOcomp,
  author =       "Eric Medvet and Alberto Bartoli and 
                 Andrea {De Lorenzo}",
  title =        "Exploring the application of {GOMEA} to bit-string
                 {GE}",
  booktitle =    "GECCO '18: Proceedings of the Genetic and Evolutionary
                 Computation Conference Companion",
  year =         "2018",
  editor =       "Carlos Cotta and Tapabrata Ray and Hisao Ishibuchi and 
                 Shigeru Obayashi and Bogdan Filipic and 
                 Thomas Bartz-Beielstein and Grant Dick and 
                 Masaharu Munetomo and Silvino {Fernandez Alzueta} and Thomas Stuetzle and 
                 Pablo Valledor Pellicer and Manuel Lopez-Ibanez and 
                 Daniel R. Tauritz and Pietro S. Oliveto and 
                 Thomas Weise and Borys Wrobel and Ales Zamuda and 
                 Anne Auger and Julien Bect and Dimo Brockhoff and 
                 Nikolaus Hansen and Rodolphe {Le Riche} and Victor Picheny and 
                 Bilel Derbel and Ke Li and Hui Li and Xiaodong Li and 
                 Saul Zapotecas and Qingfu Zhang and Stephane Doncieux and 
                 Richard Duro and Joshua Auerbach and 
                 Harold {de Vladar} and Antonio J. Fernandez-Leiva and JJ Merelo and 
                 Pedro A. Castillo-Valdivieso and David Camacho-Fernandez and 
                 Francisco {Chavez de la O} and Ozgur Akman and 
                 Khulood Alyahya and Juergen Branke and Kevin Doherty and 
                 Jonathan Fieldsend and Giuseppe Carlo Marano and 
                 Nikos D. Lagaros and Koichi Nakayama and Chika Oshima and 
                 Stefan Wagner and Michael Affenzeller and 
                 Boris Naujoks and Vanessa Volz and Tea Tusar and Pascal Kerschke and 
                 Riyad Alshammari and Tokunbo Makanju and 
                 Brad Alexander and Saemundur O. Haraldsson and Markus Wagner and 
                 John R. Woodward and Shin Yoo and John McCall and 
                 Nayat Sanchez-Pi and Luis Marti and Danilo Vasconcellos and 
                 Masaya Nakata and Anthony Stein and 
                 Nadarajen Veerapen and Arnaud Liefooghe and Sebastien Verel and 
                 Gabriela Ochoa and Stephen L. Smith and Stefano Cagnoni and 
                 Robert M. Patton and William {La Cava} and 
                 Randal Olson and Patryk Orzechowski and Ryan Urbanowicz and 
                 Ivanoe {De Falco} and Antonio {Della Cioppa} and 
                 Ernesto Tarantino and Umberto Scafuri and P. G. M. Baltus and 
                 Giovanni Iacca and Ahmed Hallawa and Anil Yaman and 
                 Alma Rahat and Handing Wang and Yaochu Jin and 
                 David Walker and Richard Everson and Akira Oyama and 
                 Koji Shimoyama and Hemant Kumar and Kazuhisa Chiba and 
                 Pramudita Satria Palar",
  isbn13 =       "978-1-4503-5764-7",
  pages =        "270--271",
  address =      "Kyoto, Japan",
  DOI =          "doi:10.1145/3205651.3205765",
  publisher =    "ACM",
  publisher_address = "New York, NY, USA",
  month =        "15-19 " # jul,
  organisation = "SIGEVO",
  keywords =     "genetic algorithms, genetic programming, grammatical
                 evolution",
  abstract =     "We explore the application of GOMEA, a recent method
                 for discovering and exploiting the model for a problem
                 in the form of linkage, to Grammatical Evolution (GE).
                 GE employs an indirect representation based on familiar
                 bit-string genotypes and is applicable to any problem
                 where the solutions may be described using a
                 context-free grammar, which hence greatly favours its
                 wide adoption. Being general purpose, the
                 representation of GE raises the opportunity for
                 benefiting from the potential of GOMEA to automatically
                 discover and exploit the linkage. We analyse
                 experimentally the application of GOMEA to two
                 bit-string-based variants of GE representation (the
                 original representation and the recent WHGE) and show
                 that GOMEA is clearly beneficial when coupled to WHGE,
                 whereas it delivers no significant advantages when
                 coupled with GE.",
  notes =        "Also known as \cite{3205765} GECCO-2018 A
                 Recombination of the 27th International Conference on
                 Genetic Algorithms (ICGA-2018) and the 23rd Annual
                 Genetic Programming Conference (GP-2018)",
}

Genetic Programming entries for Eric Medvet Alberto Bartoli Andrea De Lorenzo

Citations