Changes to Genetic Programing Bibliography since 2017/07/07

New and modified entries

New

  1. Affenzeller:2017:GECCO Dynamic Observation of Genotypic and Phenotypic Diversity for Different Symbolic Regression GP Variants MichaelAffenzeller.html StephanMWinkler.html BogdanBurlacu.html GabrielKronberger.html MichaelKommenda.html StefanWagner.html
  2. ain:2017:CEC Genetic programming for skin cancer detection in dermoscopic images QurratUlAin.html BingXue.html HarithAl-Sahaf.html MengjieZhang.html
  3. Al-Sahaf:2017:GECCO Evolving Texture Image Descriptors Using a Multitree Genetic Programming Representation HarithAl-Sahaf.html BingXue.html MengjieZhang.html
  4. Assuncao:2017:GECCO Towards the Evolution of Multi-layered Neural Networks: A Dynamic Structured Grammatical Evolution Approach FilipeAssuncao.html NunoLourenco.html PenousalMachado.html BernardeteRibeiro.html
  5. burnett:2017:CEC Exploring the landscape of the space of heuristics for local search in SAT AndrewWBurnett.html AndrewJParkes.html
  6. Chen:2017:GECCOa New Geometric Semantic Operators in Genetic Programming: Perpendicular Crossover and Random Segment Mutation QiChen.html MengjieZhang.html BingXue.html
  7. Cody-Kenny:2017:GECCOa A Search for Improved Performance in Regular Expressions BrendanCody-Kenny.html MichaelFenton.html AdrianRonayne.html EoghanConsidine.html ThomasMcGuire.html MichaelO'Neill.html
  8. Cruz-Salinas:2017:GECCO Self-adaptation of Genetic Operators Through Genetic Programming Techniques AndresFelipeCruz-Salinas.html JonatanGomezPerdomo.html
  9. DanandehMehr:2017:EMS A Pareto-optimal moving average-multigene genetic programming model for rainfall-runoff modelling AliDanandehMehr.html VahidNourani.html
  10. daSilva:2017:GECCO Fragment-based Genetic Programming for Fully Automated Multi-objective Web Service Composition AlexandreSawczukdaSilva.html YiMei.html HuiMa.html MengjieZhang.html
  11. Dick:2017:GECCO Sensitivity-like Analysis for Feature Selection in Genetic Programming GrantDick.html
  12. Dick:2017:GECCOa Revisiting Interval Arithmetic for Regression Problems in Genetic Programming GrantDick.html
  13. Doerr:2017:GECCOc Bounding Bloat in Genetic Programming BenjaminDoerr.html TimoKoetzing.html JAGregorLagodzinski.html JohannesLengler.html
  14. Dou:2017:GECCO Semantic-based Local Search in Multiobjective Genetic Programming TiantianDou.html PeterIRockett.html
  15. Elnabarawy:2017:GECCO Evolutionary Computation for the Automated Design of Category Functions for Fuzzy ART: An Initial Exploration IslamElnabarawy.html DanielRTauritz.html DonaldCWunschII.html
  16. ElYafrani:GPEM:TTP A hyperheuristic approach based on low-level heuristics for the travelling thief problem MohamedElYafrani.html MarcellaScoczynskiRibeiroMartins.html MarkusWagner.html BelaidAhiod.html MyriamRegattieriDeBiasedaSilvaDelgado.html RicardoLuders.html
  17. Fagan:2017:IJCNN Deep learning through evolution: A hybrid approach to scheduling in a dynamic environment DavidFagan.html MichaelFenton.html DavidLynch.html StepanKucera.html HolgerClaussen.html MichaelO'Neill.html
  18. Fenton:2017:GECCO Multilayer Optimization of Heterogeneous Networks Using Grammatical Genetic Programming MichaelFenton.html DavidLynch.html StepanKucera.html HolgerClaussen.html MichaelO'Neill.html
  19. Fenton:2017:GECCOa PonyGE2: Grammatical Evolution in Python MichaelFenton.html JamesMcDermott.html DavidFagan.html StefanForstenlechner.html ErikHemberg.html MichaelO'Neill.html
  20. Fraser:2017:GECCO Return-oriented Programme Evolution with ROPER: A Proof of Concept OliviaLuccaFraser.html NurZincir-Heywood.html MalcolmHeywood.html JohnTJacobs.html
  21. garcia-martinez:2017:CEC Multi-view semi-supervised learning using genetic programming interpretable classification rules CarlosGarcia-Martinez.html SebastianVentura.html
  22. Goncalves:2017:GECCO Unsure when to Stop?: Ask Your Semantic Neighbors IvoGoncalves.html SaraSilva.html CarlosMFonseca.html MauroCastelli.html
  23. goribar-jimenez:2017:CEC Towards the development of a complete GP system on an FPGA using geometric semantic operators CarlosAntonioGoribarJimenez.html YazminMaldonadoRobles.html LeonardoTrujillo.html MauroCastelli.html IvoGoncalves.html LeonardoVanneschi.html
  24. grochol:2017:CEC Multi-objective evolution of hash functions for high speed networks DavidGrochol.html LukasSekanina.html
  25. Gunaratne:2017:GECCO Alternate Social Theory Discovery Using Genetic Programming: Towards Better Understanding the Artificial Anasazi ChathikaGunaratne.html IvanGaribay.html
  26. hansen:2016:bams Is depth information and optical flow helpful for visual control? JohannesHansen.html MarcEbner.html
  27. Harter:2017:GECCO Asynchronous Parallel Cartesian Genetic Programming AdamHarter.html DanielRTauritz.html WilliamMSiever.html
  28. Hasegawa:2017:GECCO Genetic Programming with Multi-layered Population Structure TakuHasegawa.html NaokiMori.html KeinosukeMatsumoto.html
  29. Helmuth:2017:GECCO Improving Generalization of Evolved Programs Through Automatic Simplification ThomasHelmuth.html NicholasFreitagMcPhee.html EdwardRPantridge.html LeeSpector.html
  30. Husa:2017:GECCO Designing Bent Boolean Functions with Parallelized Linear Genetic Programming JakubHusa.html RolandDobai.html
  31. jacobsen-grocott:2017:CEC Evolving heuristics for Dynamic Vehicle Routing with Time Windows using genetic programming JosiahJacobsen-Grocott.html YiMei.html GangChen.html MengjieZhang.html
  32. jaiswal:2017:CEC Coevolution of mapping functions for linear SVM SatishKumarJaiswal.html HitoshiIba.html
  33. Kang:2017:GECCO Empirical Evaluation of Conditional Operators in GP Based Fault Localization DahyunKang.html JeongjuSohn.html ShinYoo.html
  34. karunakaran:2017:CEC Evolving dispatching rules for dynamic Job shop scheduling with uncertain processing times DeepaKarunakaran.html YiMei.html GangChen.html MengjieZhang.html
  35. Karunakaran:2017:GECCO Toward Evolving Dispatching Rules for Dynamic Job Shop Scheduling Under Uncertainty DeepakKarunakaran.html YiMei.html GangChen.html MengjieZhang.html
  36. Kaufmann:2017:GECCO An Empirical Study on the Parametrization of Cartesian Genetic Programming PaulKaufmann.html RomanKalkreuth.html
  37. Kelly:2017:GECCO Multi-task Learning in Atari Video Games with Emergent Tangled Program Graphs StephenKelly.html MalcolmHeywood.html
  38. kidon:2017:CEC Evolutionary design of hash functions for IP address hashing using genetic programming MarekKidon.html RolandDobai.html
  39. Korns:2017:GECCO Evolutionary Linear Discriminant Analysis for Multiclass Classification Problems MichaelKorns.html
  40. Krawiec:2017:GECCOa Counterexample-driven Genetic Programming KrzysztofKrawiec.html IwoBladek.html JerrySwan.html
  41. LaCava:2017:GECCO Ensemble Representation Learning: An Analysis of Fitness and Survival for Wrapper-based Genetic Programming Methods WilliamLaCava.html JasonHMoore.html
  42. Langdon:2017:BDM Genetically Improved BarraCUDA WilliamBLangdon.html BrianYeeHongLam.html
  43. Lensen:2017:GECCO GPGC: Genetic Programming for Automatic Clustering Using a Flexible Non-hyper-spherical Graph-based Approach AndrewLensen.html BingXue.html MengjieZhang.html
  44. Lensen:2017:GECCOa Improving K-means Clustering with Genetic Programming for Feature Construction AndrewLensen.html BingXue.html MengjieZhang.html
  45. Liang:2017:GECCO Learning Figure-ground Image Segmentors by Genetic Programming YuyuLiang.html MengjieZhang.html WillNBrowne.html
  46. Liskowski:2017:GECCO Discovery of Search Objectives in Continuous Domains PawelLiskowski.html KrzysztofKrawiec.html
  47. Liu:2017:GECCOb Automated Heuristic Design Using Genetic Programming Hyper-heuristic for Uncertain Capacitated Arc Routing Problem YuxinLiu.html YiMei.html MengjieZhang.html ZiliZhang.html
  48. Lones:2017:GECCO Going Through Directional Changes: Evolving Human Movement Classifiers Using an Event Based Encoding MichaelALones.html JaneEAlty.html JeremyCosgrove.html DRStuartJamieson.html StephenLSmith.html
  49. Mahmoodabadi:2017:GECCO Genetic Programming Meets Linear Algebra: How Genetic Programming Can Be Used to Find Improved Iterative Numerical Methods RezaGholamiMahmoodabadi.html HaraldKoestler.html
  50. Mansoor:2017:SQJ Multi-objective code-smells detection using good and bad design examples UsmanMansoor.html MarouaneKessentini.html BruceRMaxim.html KalyanmoyDeb.html
  51. Mariot:2017:GECCO Evolutionary Algorithms for the Design of Orthogonal Latin Squares Based on Cellular Automata LucaMariot.html StjepanPicek.html DomagojJakobovic.html AlbertoLeporati.html
  52. McDermott:2017:GECCO Late-acceptance Hill-climbing with a Grammatical Program Representation JamesMcDermott.html MiguelNicolau.html
  53. McPhee:2017:GECCO Visualizing Genetic Programming Ancestries Using Graph Databases NicholasFreitagMcPhee.html MaggieMCasale.html MitchellFinzel.html ThomasHelmuth.html LeeSpector.html
  54. McPhee:2017:GECCOa Using Algorithm Configuration Tools to Optimize Genetic Programming Parameters: A Case Study NicholasFreitagMcPhee.html ThomasHelmuth.html LeeSpector.html
  55. Miller:2017:GECCO A Developmental Artificial Neural Network Model for Solving Multiple Problems JulianFMiller.html DennisGWilson.html
  56. Miranda:2017:GECCOa How Noisy Data Affects Geometric Semantic Genetic Programming LuisFernandoMiranda.html LuizOtavioVilasBoasOliveira.html JoaoFranciscoBSMartins.html GiseleLPappa.html
  57. Moraglio:2017:GECCO Geometric Semantic Genetic Programming for Recursive Boolean Programs AlbertoMoraglio.html KrzysztofKrawiec.html
  58. Mrazek:2017:GECCO Parallel Optimization of Transistor Level Circuits Using Cartesian Genetic Programming VojtechMrazek.html ZdenekVasicek.html
  59. Naredo:2017:SC The training set and generalization in grammatical evolution for autonomous agent navigation EnriqueNaredo.html PauloUrbano.html LeonardoTrujillo.html
  60. nguyen:2017:CECa A PSO-based hyper-heuristic for evolving dispatching rules in job shop scheduling SuNguyen.html MengjieZhang.html
  61. Nicolau:GPEM:initGE Understanding grammatical evolution: initialisation MiguelNicolau.html
  62. NoamanLRV16 Recommending degree studies according to students' attitudes in high school by means of subgroup discovery AminYousefMohammadNoaman.html JoseMariaLuna.html AbdulHamidMohamedRagab.html SebastianVentura.html
  63. Novaes:2017:GECCO Econometric Genetic Programming Outperforms Traditional Econometric Algorithms for Regression Tasks AndreLuizFariasNovaes.html RicardoTanscheit.html DouglasMotaDias.html
  64. oksanen:2017:CEC Lexicase selection promotes effective search and behavioural diversity of solutions in Linear Genetic Programming KaroliinaOksanen.html TingHu.html
  65. oneill:2017:CEC Common subtrees in related problems: A novel transfer learning approach for genetic programming DamienO'Neill.html HarithAl-Sahaf.html BingXue.html MengjieZhang.html
  66. OReilly:2017:GECCO Genetic Programming: A Tutorial Introduction Una-MayO'Reilly.html
  67. PadilloLV17 An evolutionary algorithm for mining rare association rules: A Big Data approach FranciscoPadillo.html JoseMariaLuna.html SebastianVentura.html
  68. Pantridge:2017:GECCO PyshGP: PushGP in Python EdwardRPantridge.html LeeSpector.html
  69. Pantridge:2017:GECCOa On the Difficulty of Benchmarking Inductive Program Synthesis Methods EdwardRPantridge.html ThomasHelmuth.html NicholasFreitagMcPhee.html LeeSpector.html
  70. Penaloza-Mejia:2017:GECCO GP-based Motion Control Design for the Double-integrator System Subject to Velocity Constraint OllinPenaloza-Mejia.html EddieHelbertClementeTorres.html MarlenMeza-Sanchez.html CynthiaBPerez.html FranciscoChavez.html
  71. phillips:2017:CEC Genetic programming for solving common and domain-independent generic recursive problems TessaPhillips.html MengjieZhang.html BingXue.html
  72. picek:2017:CEC On the evolution of bent (n, m) functions StjepanPicek.html KarloKnezevic.html DomagojJakobovic.html
  73. pillay:2017:CEC EvoHyp - a Java toolkit for evolutionary algorithm hyper-heuristics NelishiaPillay.html DerrickBeckedahl.html
  74. price:2017:CEC Genetic prOgramming for image feature descriptor learning StantonRPrice.html DerekTAnderson.html
  75. Raja:IEEEAccess On Losses, Pauses, Jumps and the Wideband E-Model AdilRaja.html AnnaJagodzinska.html VincentBarriac.html
  76. ribaric:2017:CEC Genetic programming for improved cryptanalysis of elliptic curve cryptosystems TimRibaric.html SheridanHoughten.html
  77. Rosa:2017:GECCO Feature Selection Using Geometric Semantic Genetic Programming GustavoRosa.html JoaoPapaPapa.html LucienePatriciPapa.html
  78. ruotsalainen:2017:CEC Learning of a tracker model from multi-radar data for performance prediction of air surveillance system MarjaRuotsalainen.html JuhaJylha.html
  79. Scott:2017:GECCO Multitask Evolution with Cartesian Genetic Programming EricOScott.html KennethDeJong.html
  80. Sherry:2017:GECCO Performance Testing of Automated Modeling for Industrial Applications DylanSherry.html MichaelDSchmidt.html
  81. Smith:2017:GECCO Coevolving Deep Hierarchies of Programs to Solve Complex Tasks RobertJSmith.html MalcolmHeywood.html
  82. Sohn:2017:GECCO Toward the Automated Analysis of Complex Diseases in Genome-wide Association Studies Using Genetic Programming AndrewSohn.html RandalSOlson.html JasonHMoore.html
  83. Sotto:2017:GECCO A Probabilistic Linear Genetic Programming with Stochastic Context-free Grammar for Solving Symbolic Regression Problems LeoFrancosoDalPiccolSotto.html ViniciusVelosodeMelo.html
  84. Spector:2017:GECCO Expressive Genetic Programming: Concepts and Applications LeeSpector.html NicholasFreitagMcPhee.html
  85. Spector:2017:GECCOa Recent Developments in Autoconstructive Evolution LeeSpector.html EvaMoscovici.html
  86. Staats:2016:mastersthesis Genetic programming applied to RFI mitigation in radio astronomy KaiStaats.html
  87. Staats:2017:GECCO TensorFlow Enabled Genetic Programming KaiStaats.html EdwardRPantridge.html MarcoCavaglia.html IuriiMilovanov.html ArunAniyan.html
  88. Suganuma:2017:GECCO A Genetic Programming Approach to Designing Convolutional Neural Network Architectures MasanoriSuganuma.html ShinichiShirakawa.html TomoharuNagao.html
  89. tahmassebi:2017:CEC An evolutionary approach for fMRI big data classification AmirhessamTahmassebi.html AHGandomi.html IanMcCann.html MiekeHJSchulte.html LianneSchmaal.html AnnaEGoudriaan.html AnkeMeyer-Baese.html
  90. Tavafi:2017:GECCO A Hybrid Genetic Programming Decision Making System for RoboCup Soccer Simulation AmirTavafi.html WolfgangBanzhaf.html
  91. Thuong:2017:GECCO Combining Conformal Prediction and Genetic Programming for Symbolic Interval Regression PhamThiThuong.html NguyenXuanHoai.html XinYao.html
  92. Tran:2017:GECCO Multiple Imputation and Genetic Programming for Classification with Incomplete Data CaoTruongTran.html MengjieZhang.html PeterAndreae.html BingXue.html
  93. Tran:2017:GECCOa Genetic Programming Based Feature Construction for Classification with Incomplete Data CaoTruongTran.html MengjieZhang.html PeterAndreae.html BingXue.html
  94. vanneschi:2017:CEC An initialization technique for geometric semantic GP based on demes evolution and despeciation LeonardoVanneschi.html IllyaBakurov.html MauroCastelli.html
  95. vanneschi:2017:CECa A parallel and distributed semantic Genetic Programming system LeonardoVanneschi.html BernardoGalvao.html
  96. vanneschi:2017:CECb Geometric semantic genetic programming for biomedical applications: A state of the art upgrade LeonardoVanneschi.html MauroCastelli.html IvoGoncalves.html LucaManzoni.html SaraSilva.html
  97. Virgolin:2017:GECCO Scalable Genetic Programming by Gene-pool Optimal Mixing and Input-space Entropy-based Building-block Learning MarcoVirgolin.html TanjaAlderliesten.html CeesWitteveen.html PeterANBosman.html
  98. Xiao:2017:GECCO Indicator-based Multi-objective Genetic Programming for Workflow Scheduling Problem Qin-zheXiao.html JinghuiZhong.html Wen-NengChen.html Zhi-HuiZhan.html JunZhang.html
  99. Zegklitz:2017:GECCO Linear Combinations of Features As Leaf Nodes in Symbolic Regression JanZegklitz.html PetrPosik.html
  100. Zerenner:2017:GECCO Downscaling Near-surface Atmospheric Fields with Multi-objective Genetic Programming TanjaZerenner.html VictorVenema.html PetraFriederichs.html ClemensSimmer.html

Modified

  1. 1 Afshar:2017:RSE The added utility of nonlinear methods compared to linear methods in rescaling soil moisture products MehdiHesamiAfshar.html MustafaTolgaYilmaz.html
  2. 6 Altenberg:2017:GPEM Probing the axioms of evolutionary algorithm design: Commentary on ``On the mapping of genotype to phenotype in evolutionary algorithms'' by Peter A. Whigham, Grant Dick, and James Maclaurin LeeAltenberg.html
  3. 1 Atmosukarto:2010:UGP:1904935.1906046 The Use of Genetic Programming for Learning 3D Craniofacial Shape Quantifications IndriyatiAtmosukarto.html LindaGShapiro.html CarrieHeike.html
  4. 1 babovic:1999:cskd-veg Computer supported knowledge discovery - A case study in flow resistance induced by vegetation VladanBabovic.html MaartenKeijzer.html
  5. 1 Bauer:2008:TREC Network Management Practices and Sector Performance - A Genetic Programming Approach JohannesMBauer.html KurtDeMaagd.html
  6. 1 abrabazon_moneill:ppsn2010 Natural Computing and Finance AnthonyBrabazon.html MichaelO'Neill.html
  7. 1 DBLP:conf/ideal/BrazierRW04 Implicit Fitness Sharing Speciation and Emergent Diversity in Tree Classifier Ensembles KarlJBrazier.html GraemeRichards.html WenjiaWang.html
  8. 1 Burke2013 Hyper-heuristics: a survey of the state of the art EdmundBurke.html MichelGendreau.html MatthewRHyde.html GrahamKendall.html GabrielaOchoa.html EnderOzcan.html RongQu.html
  9. 1 CarPai02 Interactive Evolution of Speech using VoiceXML Speaking to your GP System JonasCarlsson.html CarlosPaiz.html KristerWolff.html PeterNordin.html
  10. 1 Castelli:2017:ESA An expert system for extracting knowledge from customers' reviews: The case of Amazon.com, Inc. MauroCastelli.html LucaManzoni.html LeonardoVanneschi.html AlesPopovic.html
  11. 2 DBLP:journals/ijait/Cazenave13 Monte-Carlo Expression Discovery TristanCazenave.html
  12. 2 chia-hsuanyeh:2001:gecco The Differences between Social and Individual Learning on the Time Series Properties: The Approach Based on Genetic Programming ChiaHsuanYeh.html Shu-HengChen.html
  13. 2 Cilibrasi:2005:ITIT Clustering by Compression RudiCilibrasi.html PaulMBVitanyi.html
  14. 1 Coelho2010494 Inducing multi-objective clustering ensembles with genetic programming AndreLuisVasconcelosCoelho.html EverlandioReboucasQueirozFernandes.html KattiFaceli.html
  15. 1 conf/iciap/CordellaSFM05 A Novel Genetic Programming Based Approach for Classification Problems LuigiPietroCordella.html ClaudioDeStefano.html FrancescoRFontanella.html AngeloMarcelli.html
  16. 8 daida:1996:ircERSSARias Ice Roughness Classification and ERS SAR Imagery of Arctic Sea Ice: Evaluation of Feature-Extraction Algorithms by Genetic Programming JasonMDaida.html RGOnstott.html TommasoFBersano-Begey.html StevenJRoss.html JohnFVesecky.html
  17. 1 Das:2009:DATE A graph grammar based approach to automated multi-objective analog circuit design AnganDas.html RangaVemuri.html
  18. 2 DenHeijer:2016:IJART Using scalable vector graphics to evolve art EelcodenHeijer.html GuszEiben.html
  19. 1 oai:CiteSeerPSU:444392 Iterated Mutual Observation with Genetic Programming PeterDittrich.html ThomasKron.html ChristianKuck.html WolfgangBanzhaf.html
  20. 1 Drake:thesis Crossover Control in Selection Hyper-heuristics: Case Studies using MKP and HyFlex JohnHDrake.html
  21. 6 Ekart:2017:GPEM Genotype-phenotype mapping implications for genetic programming representation: Commentary on ``On the mapping of genotype to phenotype in evolutionary algorithms'' by Peter A. Whigham, Grant Dick, and James Maclaurin AnikoEkart.html PeterRLewis.html
  22. 1 Elshorbagy:2010:HESS Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: Concepts and methodology AminElshorbagy.html GCorzo.html SSrinivasulu.html DimitriPSolomatine.html
  23. 4 Fajfar:2016:EC Evolving a Nelder-Mead Algorithm for Optimization with Genetic Programming IztokFajfar.html JanezPuhan.html ArpadBurmen.html
  24. 1 Feiler:book Ultra-Large-Scale Systems -- The Software Challenge of the Future PeterFeiler.html RichardPGabriel.html JohnGoodenough.html RickLinger.html TomLongstaff.html RickKazman.html MarkKlein.html LindaNorthrop.html DouglasCSchmidt.html KevinSullivan.html KurtWallnau.html
  25. 3 Fenton:2014:AC Automatic innovative truss design using grammatical evolution MichaelFenton.html CiaranMcNally.html JonathanByrne.html ErikHemberg.html JamesMcDermott.html MichaelO'Neill.html
  26. 1 Foster:2010:gecco Object-level recombination of commodity applications BlairFoster.html AnilSomayaji.html
  27. 6 Foster:2017:GPEM Taking ``biology'' just seriously enough: Commentary on ``On the Mapping of Genotype to Phenotype in Evolutionary Algorithms'' by Peter A. Whigham, Grant Dick, and James Maclaurin JamesAFoster.html
  28. 1 Giustolisi:2004:JH Using genetic programming to determine Chezy resistance coefficient in corrugated channels OrazioGiustolisi.html
  29. 1 Gonzalez:2008:ibergrid Interpreted Applications within BOINC Infrastructure DanielLombranaGonzalezRodriguez.html FranciscoFernandezdeVega.html LeonardoTrujillo.html GustavoOlague.html MiguelCardenasMontes.html LourdesAraujo.html PedroACastilloValdivieso.html KennethCSharman.html ArlindoFerreiradaSilva.html
  30. 1 Gruau:1994:thesis Neural Network Synthesis using Cellular Encoding and the Genetic Algorithm FredericGruau.html
  31. 1 Haraldsson:2017:GI Fixing Bugs in Your Sleep: How Genetic Improvement Became an Overnight Success SaemundurOskarHaraldsson.html JohnRWoodward.html AlexanderEIBrownlee.html KristinSiggeirsdottir.html
  32. 1 Hilder:2009:PRIME Designing variability tolerant logic using evolutionary algorithms JamesAHilder.html JamesAlfredWalker.html AndrewMTyrrell.html
  33. 7 Iqbal:xd:ieeeTEC Cross-Domain Reuse of Extracted Knowledge in Genetic Programming for Image Classification MuhammadIqbal.html BingXue.html HarithAl-Sahaf.html MengjieZhang.html
  34. 1 Jamiolahmadi:2016:Measurement Study of detailed deviation zone considering coordinate metrology uncertainty SaeedJamiolahmadi.html AhmadBarari.html
  35. 1 Janssen:thesis Improvements in clinical prediction research KristelJMJanssen.html
  36. 1 conf/acal/KarunakaranCZ16 Parallel Multi-objective Job Shop Scheduling Using Genetic Programming DeepakKarunakaran.html GangChen.html MengjieZhang.html
  37. 1 Kattan:thesis Evolutionary Synthesis of Lossless Compression Algorithms: the GP-zip Family AhmedKattan.html
  38. 6 Kell:2017:GPEM Evolutionary algorithms and synthetic biology for directed evolution: commentary on ``on the mapping of genotype to phenotype in evolutionary algorithms'' by Peter A. Whigham, Grant Dick, and James Maclaurin DouglasBKell.html
  39. 1 Kordon:book Applying Computational Intelligence How to Create Value ArthurKKordon.html
  40. 1 Kovacic:2009:QUALITY Extra Machinability Quality Prediction MihaKovacic.html MatejPsenicnik.html
  41. 1 koza:1996:96db Design of a 96 Decibel operational amplifier and other problems for which a computer program evolved by genetic programming is competitive with human performance JohnKoza.html DavidAndre.html ForrestBennett.html MartinAKeane.html
  42. 1 Kronberger:thesis Symbolic Regression for Knowledge Discovery - Bloat, Overfitting, and Variable Interaction Networks GabrielKronberger.html
  43. 1 Langdon:2013:ieeeTEC Optimising Existing Software with Genetic Programming WilliamBLangdon.html MarkHarman.html
  44. 1 Langdon:2015:GECCO Improving CUDA DNA Analysis Software with Genetic Programming WilliamBLangdon.html BrianYeeHongLam.html JustynaPetke.html MarkHarman.html
  45. 7 Langdon:2017:GECCO Long-Term Evolution of Genetic Programming Populations WilliamBLangdon.html
  46. 13 Langdon:2017:GI Improving SSE Parallel Code with Grow and Graft Genetic Programming WilliamBLangdon.html RonnyLorenz.html
  47. 5 langdon:2017:ECCSB Genetic Improvement of Computational Biology Software WilliamBLangdon.html KarinaZile.html
  48. 1 Li:2008:ICNC GEP-NFM: Nested Function Mining Based on Gene Expression Programming TaiyongLi.html ChangjieTang.html JiangWu.html XuzhongWei.html ChuanLi.html ShuchengDai.html JunZhu.html
  49. 1 luke:2003:gecco Population Implosion in Genetic Programming SeanLuke.html GabrielCatalinBalan.html LiviuPanait.html
  50. 1 Mojumder:2017:RSER The intelligent forecasting of the performances in PV/T collectors based on soft computing method JuwelChandraMojumder.html HwaiChyuanOng.html WenTongChong.html NimaIzadyar.html ShahaboddinShamshirband.html
  51. 1 MorenoSalinas:2015:IFAC-PapersOnLine Symbolic Regression for Marine Vehicles Identification DMoreno-Salinas.html EBesada-Portas.html JALopez-Orozco.html DChaos.html JesusManueldelaCruz.html JAranda.html
  52. 2 nachbar:1998:me:hrctam Molecular Evolution: A Hierarchical Representation for Chemical Topology and Its Automated Manipulation RobertBNachbar.html
  53. 1 Oksel:2016:Nanotoxicology Accurate and interpretable nanoSAR models from genetic programming-based decision tree construction approaches CeydaOksel.html DavidAWinkler.html CaiYMa.html TerryWilkins.html XueZhongWang.html
  54. 6 O'Neill:2017:GPEM Distilling the salient features of natural systems: Commentary on ``On the mapping of genotype to phenotype in evolutionary algorithms'' by Whigham, Dick and Maclaurin MichaelO'Neill.html MiguelNicolau.html
  55. 10 Orlov:2017:GI Evolving Software Building Blocks with FINCH MichaelOrlov.html
  56. 6 Picek:2017:GECCO Evolving S-boxes Based on Cellular Automata with Genetic Programming StjepanPicek.html LucaMariot.html AlbertoLeporati.html DomagojJakobovic.html
  57. 1 Rabunal-Dopico:tesis Uso de Tecnicas de Inteligencia Artificial en Ingenieria Civil JuanRamonRabunalDopico.html
  58. 13 Roux:2000:ants Ant Programming: Or How to Use Ants for Automatic Programming OliverRoux.html CyrilFonlupt.html
  59. 1 Rowe01 The effects of crossover and mutation operators on variable length linear structures JonathanERowe.html NicholasFreitagMcPhee.html
  60. 2 Ryan:1998:mendle Grammatical Evolution: Solving Trigonometric Identities ConorRyan.html MichaelO'Neill.html JohnJamesCollins.html
  61. 6 Ryan:2017:GPEM A rebuttal to Whigham, Dick, and Maclaurin by one of the inventors of Grammatical Evolution: Commentary on ``On the Mapping of Genotype to Phenotype in Evolutionary Algorithms'' by Peter A. Whigham, Grant Dick, and James Maclaurin ConorRyan.html
  62. 5 Saghiri:2017:GPEM A closed asynchronous dynamic model of cellular learning automata and its application to peer-to-peer networks AliMohammadSaghiri.html MohammadRezaMeybodi.html
  63. 1 seo:2002:IJCSS Automated Design Approaches for Multi-Domain Dynamic Systems Using Bond Graphs and Genetic Programming KisungSeo.html JianjunHu.html ZhunFan.html ErikGoodman.html RonaldCRosenberg.html
  64. 1 Sharma:2013:IJCSI A Survey on Software Testing Techniques using Genetic Algorithm ChayanikaSharma.html SangeetaSabharwal.html RituSibal.html
  65. 1 shen_thesis Analytical and numerical analyses for rock slope stability using the generalized Hoek-Brown criterion JiayiShen.html
  66. 1 siegel:thesis Linguistic Indicators for Language Understanding: Using Machine Learning Methods to Combine Corpus-Based Indicators for Aspectual Classification of Clauses EricSiegel.html
  67. 1 Smart:mastersthesis Genetic Programming for Multiclass Object Classification WillSmart.html
  68. 1 Sohani:2017:ATE A comprehensive performance investigation of cellulose evaporative cooling pad systems using predictive approaches AliSohani.html MitraZabihigivi.html MohammadHosseinMoradi.html HoseynSayyaadi.html HamidrezaHasaniBalyani.html
  69. 7 Spector:2017:GPEM Introduction to the peer commentary special section on ``On the Mapping of Genotype to Phenotype in Evolutionary Algorithms'' by Peter A. Whigham, Grant Dick, and James Maclaurin LeeSpector.html
  70. 6 Squillero:2017:GPEM (Over-)Realism in evolutionary computation: Commentary on ``On the Mapping of Genotype to Phenotype in Evolutionary Algorithms'' by Peter A. Whigham, Grant Dick, and James Maclaurin GiovanniSquillero.html AlbertoTonda.html
  71. 1 Standish04b Tierra's missing neutrality: case solved RussellKStandish.html
  72. 1 Valencia:2014:arXiv Genetic Programming for Smart Phone Personalisation PhilipValencia.html AidenHaak.html AlbanCotillon.html RajaJurdak.html
  73. 1 belle:2003:ICES Using Genetic Programming to Generate Protocol Adaptors for Interprocess Communication WernerVanBelle.html TomMens.html TheoD'Hondt.html
  74. 1 Veerapen:2017:GI Modelling Genetic Improvement Landscapes with Local Optima Networks NadarajenVeerapen.html FabioDaolio.html GabrielaOchoa.html
  75. 1 Wei:2010:NCA Parsimonious genetic programming for complex process intelligent modeling: algorithm and applications XunkaiWei.html YinghongLi.html YueFeng.html
  76. 6 Whigham:2017:GPEM On the mapping of genotype to phenotype in evolutionary algorithms PeterAlexanderWhigham.html GrantDick.html JamesMaclaurin.html
  77. 6 Whigham:2017:GPEM2 Just because it works: a response to comments on ``On the Mapping of Genotype to Phenotype in Evolutionary Algorithms'' PeterAlexanderWhigham.html GrantDick.html JamesMaclaurin.html
  78. 1 WolNor01 Evolution of Efficient Gait with Humanoids using Visual Feedback KristerWolff.html PeterNordin.html
  79. 1 WolNor02b Walking humanoids for robotics research KristerWolff.html PeterNordin.html
  80. 1 WolNor02 Physically Realistic Simulators and Autonomous Humanoid Robots as Platforms for Evolution of Biped Walking Behavior using Genetic Programming KristerWolff.html PeterNordin.html
  81. 1 wolff:2003:gecco Learning Biped Locomotion from First Principles on a Simulated Humanoid Robot Using Linear Genetic Programming KristerWolff.html PeterNordin.html
  82. 5 Xue:GPEM:bookreview Sebastian Ventura and Jose Maria Luna: Pattern mining with evolutionary algorithms BingXue.html
  83. 9 Yoo:TOSEM:sbfl Human Competitiveness of Genetic Programming in Spectrum Based Fault Localisation: Theoretical and Empirical Analysis ShinYoo.html XiaoYuanXie.html Fei-Ching_Diana_Kuo.html TsongYuehChen.html MarkHarman.html
  84. 1 conf/edm/ZafraV09 Predicting Student Grades in Learning Management Systems with Multiple Instance Learning Genetic Programming AmeliaZafraGomez.html SebastianVentura.html
  85. 1 Zangeneh:2009:iwamlcf Analyzing the Credit Default Swap Market Using Cartesian Genetic Programming LalehZangeneh.html PeterJBentley.html
  86. 1 DBLP:conf/seal/ZhangLM06 Refining Fitness Functions and Optimising Training Data in GP for Object Detection MengjieZhang.html MalcolmLett.html YuejinMa.html
  87. 1 Zubi:2010:IJOC Using sequence DNA chips data to Mining and Diagnosing Cancer Patients ZakariaSulimanZubi.html MarimAboajelaEmsaed.html

New and modified entries