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Abstract. The lognormal self-adaptation has been used extensively in evolutionary programming (EP) and evo-
lution strategies (ES) to adjust the search step size for each objective variable. However, it was discovered in our
previous study (K.-H. Liang, X. Yao, Y. Liu, C. Newton, and D. Hoffman, in Evolutionary Programming VII. Proc.
of the Seventh Annual Conference on Evolutionary Programming, vol. 1447, edited by V. Porto, N. Saravanan,
D. Waagen, and A. Eiben, Lecture Notes in Computer Science, Springer: Berlin, pp. 291–300, 1998) that such
self-adaptation may rapidly lead to a search step size that is far too small to explore the search space any further,
and thus stagnates search. This is called the loss of step size control. It is necessary to use a lower bound of search
step size to avoid this problem. Unfortunately, the optimal setting of lower bound is highly problem dependent.
This paper first analyzes both theoretically and empirically how the step size control was lost. Then two schemes of
dynamic lower bound are proposed. The schemes enable the EP algorithm to adjust the lower bound dynamically
during evolution. Experimental results are presented to demonstrate the effectiveness and efficiency of the dynamic
lower bound for a set of benchmark functions.

Keywords: self-adaptation, evolutionary programming, evolution strategies, global function optimization, dyna-
mic lower bound

1. Introduction

Evolutionary algorithms (EAs) have been applied to
many optimization problems successfully in recent
years. They are population-based search algorithms
with the generation-and-test feature [1]. New offspring
are generated by perturbations and tested to determine
the acceptable individuals for the next generation.

One of the major applications of EA is global op-
timization on numerical problems [2–6]. A global

optimization problem can be formalized as a pair
(S, f ), where S ⊆ Rn is a bounded set in Rn and
f : S → R is an n-dimensional real-valued func-
tion. The problem is to find a vector xmin ∈ S such that
f (xmin) is a global minimum on S. More specifically,
it is required to find an xmin ∈ S such that

∀x ∈ S : f (xmin) ≤ f (x).

Here f does not need to be continuous, but it has to be
bounded.
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A common feature of EA, especially evolutionary
programming (EP) and evolution strategies (ES), in
numerical function optimization is self-adaptive step
size. During mutation, each object variable x( j), j =
1, . . . , n is added by a normally distributed random
number with mean 0 and standard deviation η( j),
which is referred to as the search step size. These η( j)’s
are not predefined and fixed. They are self-adaptive
and evolve along with x( j)’s. It has been shown by
many researchers that self-adaptation helps evolution-
ary search. However, self-adaptation is not perfect.
It has also been shown that self-adaptation may lead
quickly to a very small search step size in EP and pre-
vent search from making progress [7]. A lower bound
on the search step size is often needed in order to avoid
this problem. This paper studies the issue of dynamic
lower bound in EP, although the techniques proposed
can be applied equally to any other self-adaptive EAs.

According to the description of Fogel [8] and Bäck
and Schwefel [2], EP is implemented in our study as
follows:

1. Generate the initial population of µ individuals at
random, and set the generation counter κ ← 1. Each
individual is taken as a pair of real-valued vectors,
(xi , ηi ), ∀i ∈ {1, . . . , µ}, where ηi is the search step
size. Each xi has n components xi ( j), j = 1, . . . , n.

2. Evaluate the fitness of each individual (xi , ηi ), ∀i ∈
{1, . . . , µ}, in the population based on the objective
function, f (xi ).

3. For each parent (xi , ηi ), i = 1, . . . , µ, create a sin-
gle offspring (x ′

i , η
′
i ) as follows:

η′
i ( j) = ηi ( j) exp(τ ′N (0, 1) + τ N j (0, 1)), (1)

x ′
i ( j) = xi ( j) + η′

i ( j)N j (0, 1), (2)

where xi ( j), x ′
i ( j), ηi ( j) and η′

i ( j) denote the
j-th component of the vectors xi , x ′

i , ηi and η′
i ,

respectively. N (0, 1) denotes a normally distributed
one-dimensional random number with mean 0 and
standard deviation 1. N j (0, 1) indicates that the ran-
dom number is generated anew for each value of
j . The parameters τ and τ ′ are commonly set to
(
√

2
√

n)−1 and (
√

2n)−1, respectively [4].
4. Calculate the fitness of each offspring (x ′

i , η
′
i ), ∀i ∈

{1, . . . , µ}.
5. Conduct pairwise comparisons over the union of

parents (xi , ηi ) and offspring (x ′
i , η

′
i ), ∀i ∈ {1,

. . . , µ}. For each individual, q opponents are chosen
randomly from all the parents and offspring with an

equal probability. For each comparison, if the indi-
vidual’s fitness is no smaller than the opponent’s, it
receives a “win.”

6. Select the µ individuals out of (xi , ηi ) and (x ′
i , η

′
i ),

∀i ∈ {1, . . . , µ}, that have the most wins to be par-
ents of next generation.

7. Stop if the halting criterion is satisfied; otherwise,
κ ← κ + 1 and go to Step 3.

Equation (1) above describes the implementation of
lognormal self-adaptation of search step size ηi ( j). The
evolution of ηi ( j) enables EP to adaptively adjust the
search step size for each objective variable. The ideal
situation is to have a large step size for the objective
variable at the beginning of the evolutionary process in
order to explore different regions of the search space,
and have a smaller step size at the later stage for bet-
ter exploitation within a good region. However, self-
adaptation may not work sometimes. The search step
size ηi ( j) may reduce to a very small value quickly and
thus prevents EP from searching for better solutions [7].

For example, if the distance from x( j) to the mini-
mum x( j)∗ for the j-th component is |x( j)− x( j)∗| ≥
1 and the adaptive parameter η( j) < 10−6, the proba-
bility for x( j) to mutate into a small neighborhood of
x( j)∗ will be extremely small. If such an individual x
survives in the population, it will propagate the poor η

values and stagnate the whole search process. Section 2
of this paper shows an example how this happens and
why it is harmful to search.

In ES [3, 9], a fixed lower bound η− is used to prevent
the step size control from being lost. A lower bound was
also used in EP [10], but for a very different purpose. It
was used to replace negative values of η [10]. Applying
a recombination operator to η may reduce the chance
of losing the step size control since the probability of
recombining two individuals with very small η values
is small [2, 3]. Some previous empirical studies [7, 11]
have shown that a properly set lower bound on η can
improve EP’s performance significantly.

Setting a near optimal lower bound for η is a diffi-
cult task since it is problem dependent. Different prob-
lems require different settings. It is difficult for human
beings to guess what a suitable lower bound should
be for a given new problem. Furthermore, an optimal
lower bound at the beginning of search may not be
the same as that in the end because different stages
of search requires different search strategies (and thus
different lower bounds). In this paper, we propose two
schemes to adjust lower bounds dynamically. Only
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information contained in the population is used in the
dynamic schemes. The first scheme is based on the
success rate and the second is based on mutation’s step
size. The use of such dynamic schemes can improve
the performance of EP significantly.

The rest of this paper is organized as follows.
Section 2 explains how the loss of step size control
happens. Section 3 introduces two dynamic schemes
for setting lower bounds automatically based on the
population information. Section 4 presents the experi-
mental results of EP with different schemes for setting
lower bounds. Finally, Section 5 concludes the paper
with some remarks.

2. Analysis of Self-Adaptation of Search
Step Size

Self-adaptation of search step size in EP does not work
as well as one hopes without a proper lower bound. The
loss of step size control happens when an individual
with very small η but a good fitness value survives
and reproduces in the population. The poor η could be
regarded as a parasite in this case. It survives not
because it is good, but because the individual is
good. To observe how this happens in the evolutionary
process, a set of experiments of EP without any lower
bound on η were carried out on a set of five benchmark
functions [7]. Figure 1 shows the average result over 50
independent runs for the 30-dimensional sphere model,
i.e.,

f (x) =
30∑

i=1

x2
i ,

which is the simplest function among the five.
It is interesting to note that EP without any lower

bound on η could only find a value which is well above
100, a very poor result indeed considering that the

Figure 1. The sphere model stagnates early from mean of 50 runs.

Table 1. The 19th component and the fitness of the best individual
in a typical run.

Generation (x1(19), η1(19)) f (x1)
1
µ

∑
f (xi )

:

300 (−14.50, 4.52E–3) 812.85 846.52

:

600 (−14.50, 8.22E–6) 547.05 552.84

:

1000 (−14.50, 1.33E–8) 504.58 504.59

:

1500 (−14.50, 1.86E–12) 244.93 244.93

exact global optimum is 0. It is even more interesting
to discover that the worst η values for all individuals
in the population were around 10−12 while the related
object variables were still large. Hence little process
could be made after 1500 generations.

In order to understand how and why η values were
reduced to such a small value while the objective values
were still large, we followed the evolutionary process
from generation to generation. It was discovered that
mutation of an individual might generate a small η in
one dimension, but the fitness of the individual could
still be very high due to good mutations along other
dimensions. Such a good individual would survive and
reproduce quickly in the population and carry the small
η with it. Some generations later, the whole popu-
lation would be filled with individuals with such a
small η and would not be able to make much progress.
Table 1 shows how the step size control was lost using
a randomly selected example from our experiment. In
generation 600, the 19th component of the best indi-
vidual in the population was −14.5. Its η value was
only 8.22E-6. However, the individual survived and
reproduced quickly because it was the best one in the
population. After another 400 generations (i.e., in gene-
ration 1000), the average fitness of the population had
become very close to the fitness of the best individual.
In other words, all individuals have a similarly small η

in the 19th component. The evolution almost entirely
stagnated. Similar phenomena could be observed on
other benchmark functions we tested.

Figure 2 compares the average result over 50 inde-
pendent runs of EP with and without a lower bound
on η. It is clear that using a lower bound has improved
EP’s performance significantly. A lower bound enables
EP to reduce the function value steadily. Similar signifi-
cant improvement has been shown on other benchmark
functions [7].
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Figure 2. Comparison between EP with and without a lower bound
on the sphere model.

In order to get some ideas on how likely the step size
control will be lost in evolutionary search, it is worth
analyzing the impact of the number of generations on
the likelihood of losing the step size control. While it is
obvious that the larger the number of generations, the
more likely the step size control is lost, it is unclear how
fast the increase in likelihood will be. In other words,
we are most interested in the rate of such increase. To
simplify our analysis, a (1 + 1) EP will be used in the
following discussion.

Given an n-dimensional real-valued function f (x),
using one parent in each generation, the adaptive pa-
rameter η′( j) is created by:

η(κ+1)( j) = η(κ)( j) exp(τ N (0, 1))

where j denotes the j-th component and τ = 1√
n

[12].
This is a modified version of Eq. (1). Given initial
η(0)( j), we can find η(κ)( j) after running κ generations
of successful mutations. Note that the actual genera-
tion number will be greater or equal to κ as the success
rate of generating a better offspring is no more than 1.
Therefore, through the sequence{

η(1)( j), η(2)( j), η(3)( j), . . . , η(κ)( j)
}
,

we get

η(κ)( j) = η(0)( j) exp

(
τ

κ∑
i=1

Ni (0, 1)

)
.

The probability that η(κ)( j) will be smaller than an
arbitrary small number ε (ε > 0) is:

Pη = P
(
η(κ)( j) < ε

)
= P

(
η(0)( j) exp

(
τ

κ∑
i=1

Ni (0, 1)

)
< ε

)

Since the sum of κ independent N (0, 1) random vari-
ables has the distribution [13, p. 267]:

κ∑
i=1

Ni (0, 1) ∼ N (0, κ),

we get

Pη = P
(
η(0)( j) exp(τ N (0, κ)) < ε

)
= P

(
N (0, κ) < ln

(
ε

η(0)( j)

)/
τ

)

=
∫ C

−∞

1√
2πκ

exp

(
− t2

2κ

)
dt

= �

(
C√
κ

)

where C = ln( ε
η(0)( j) )/τ . For sufficiently large C√

κ
, the

following approximation [14, p. 175] can be used:

�(x) � 1 − 1√
2π

exp

(
−1

2
x2

)
· 1

x

The derivative ∂
∂κ

(Pη) can be used to evaluate the im-
pact of κ on Pη.

∂

∂κ
(Pη) = ∂

∂κ

(
1 − 1√

2π
exp

(
−C2

2κ

)
·
√

κ

C

)

= −1√
2π · C

exp

(
−C2

2κ

)(
1

2
√

κ
+ C2

2
κ− 3

2

)

For C = √
n ln(ε/η(0)( j)), it is apparent from the

above equation that

∂

∂κ
(Pη)

{
>0, if ε < η(0)( j)

<0, if ε > η(0)( j)
.

According to the above inequalities, the initial search
step size can influence the likelihood of losing the step
size control. If the initial step size is larger than ε,
which is usually the case in practice, the likelihood of
losing the step size control will accelerate quickly with
large κ . In other words, the probability that the adaptive
parameter η(k)( j) becomes smaller than an arbitrary
small number ε will be higher when κ is large. This
can also be shown empirically.

We conducted an experiment with (1 + 1) EP
using the three-dimensional sphere function f (x) =∑3

i=1 x2
i . Starting point of the experiment was

(10,10,10). The total number of trials was 100, the
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Figure 3. The average variations of η(3) are shown. The start of
η

(0)
j > η

(κ)
j is found at κ = 4.

maximum generation was 3000, the initial adaptive
parameter η(0)( j) was 3. We randomly selected one
vector of η to observe the variation. Only η’s with suc-
cessful mutations were recorded. Figure 3 shows the
average variations of the adaptive parameter η(3). All
η(3)’s on every successful generation were averaged
over the trial number. Only trial numbers over 50 were
drawn. It is clear from Fig. 3 that less trials can generate
successful mutations for large κ .

When the adaptive parameters decrease, the best
situation is when the objective variables are already
very close to the global optimum. Thus, smaller step
sizes are preferred. If any of the step sizes decreases
faster than the rate that the objective variables approach
to the optimum, the search process may stagnate. That
is, the step size becomes too small to change objective
variables sufficiently differently. In Fig. 4, the ratio
x(3)/η(3) for each successful generation is shown.

Figure 4. The average relation pairs x3/η3 are shown. For, example,
after κ = 158 on average of 85 trials, the worst pair begins to be
greater than 106 where the stagnation is about to happen.

The average per trial number and the experimental data
were obtained from the same experiment as above. The
stagnation largely begins when x(3)/η(3) is over 106.

The previous analysis and experimental results
demonstrate that the lognormal self-adaptation in EP
does not work very well without a lower bound. Fixed
lower bounds can improve EP’s performance signi-
ficantly [7], but they do not take into account that
different stages in evolutionary search require different
lower bounds and different functions require differ-
ent lower bounds. In the next section, two different
dynamic lower bound schemes will be introduced.

3. Dynamic Lower Bounds (DLBs)

The key issue in developing a dynamic lower bound
scheme is how to adjust a lower bound based on the
information accumulated so far in evolutionary search.
Two schemes are proposed in this section. One is based
on the success rate. The other is based on mutation’s
step size.

3.1. Success Rate Based DLB Scheme—DLB1

The lower bound in EP has a major impact on how
evolutionary search is conducted. A large lower bound
encourages long-range search and makes escaping
from a poor local optimum easier, while a small lower
bound is only good at exploitation in a small region.
For an unknown function to be optimized, it is hard to
predict when to explore in a large space and when to
exploit in a small region.

We propose that population information can be used
to guide the tradeoff between coarse-grained explo-
ration and fine-grained exploitation. Instead of using
component level adaptation [15], such as the “1/5
success rule” [9, p. 110], we introduce a dynamic
lower bound scheme based on the success rate of the
whole population. The population level adaptation may
provide us with richer and more accurate information
about the search because it is the whole population
which is evolving, not just separate individuals. In
particular, if the success rate of the population is high,
the lower bound will be increased. If it is low, the lower
bound will be decreased. That is, the lower bound can
be updated according to the following rule:

ηκ+1
− = ηκ

−

(
Sκ

A

)
, (3)
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where Sκ is the success rate at generation κ and A is a
reference parameter, which has been set between 0.25
and 0.45 in our experiments. A here is nice because it
gives us a handle on defining what “large” and “small”
mean in terms of lower bound. The success rate Sκ

is obtained by first computing the number of offspring
selected for the next generation and then taking the ratio
of successes to all offspring. It will be shown later in
the paper that this dynamic lower bound update scheme
works very well, at least for the benchmark functions
we have tested.

The update scheme in Eq. (3) contains the reference
rate A, which is a parameter needs to be determined by
the user. It is a convenient way for a user to define what
is large and what is small for his/her problem. How-
ever, it may be inconvenient for a user which has little
knowledge about his/her problem and thus unable to
decide what is large or small. The next subsection pro-
poses a parameter-free dynamic lower bound updating
scheme that can get around this problem.

3.2. Mutation Step Size based DLB Scheme—DLB2

The survival of an offspring is a good indicator that
the mutation which generated this offspring may be a
good one. It is the right mutation applied to the right
parent that has generated a successful offspring. The
mutation performed by Eq. (2) described in Section 1 is
additively applied with the normal distributed random
number. DLB2 uses the median of the mutation step
size from all accepted (successful) offspring as the new
lower bound for the next generation.

Note that the mutation step size added to the
j-component of the object vector can be described as:

δi ( j) = η′
i ( j)N j (0, 1). (4)

Table 2. The 6 benchmark functions used in our experimental studies, where n is the dimension of the
function, fmin is the minimum value of the function, and S ⊆ Rn .

Test function n S fmin

f1(x) = �n
i=1x2

i 30 [−100, 100] 0

f2(x) = �n
i=1|xi | + ∏n

i=1 |xi | 30 [−10, 10] 0

f5(x) = �n−1
i=1 [100(xi+1 − x2

i )2 + (xi − 1)2] 30 [−30, 30] 0

f9(x) = �n
i=1[x2

i − 10 cos(2πxi ) + 10] 30 [−5.12, 5.12] 0

f10(x) = −20 exp(−0.2
√

1
n �n

i=1x2
i )

−exp( 1
n �n

i=1 cos(2πxi )) + 20 + e 30 [−32, 32] 0

f11(x) = 1
4000 �n

i=1x2
i − ∏n

i=1 cos( xi√
i
) + 1 30 [−600, 600] 0

We first calculate the average mutation step size from
all accepted (successful) offspring:

δ( j) = 1

m

m∑
v=1

δv( j), j = 1, . . . , n,

where m is the number of the accepted offspring. Then,
the lower bound of η for the next generation is

ηκ+1
− = median{δ( j), j = 1, 2, . . . , n}. (5)

This method regards the whole population as an
aggregation point. The movement from generation to
generation is like one point moving to another point.
The δ can be viewed as an n-dimensional vector
approximating the movement of the generation. Using
the median value of δ( j) as the lower bound encour-
ages, on average, a half of the components perform
long-range exploration while the other half perform
fine-tuned search.

4. Experimental Results

In order to evaluate the effectiveness of the two
dynamic lower bound updating schemes, we compare
them empirically with the fixed lower bound scheme
which has been proven to be superior to EP without
the lower bound.

4.1. Experimental Setup

Six benchmark functions were used, as shown in
Table 2, in our experiments. The functions were
numbered as in [5, 6] in order to facilitate further
comparison with previous results. There are three
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Table 3. Comparison among IFEP with FLB, DLB1 and DLB2 on functions f1, f2, f5, f9, f10, f11.

Func. DLB2 DLB1 FLB DLB2–DLB1 DLB2–FLB DLB1–FLB
F eval. Mean best Mean best Mean best t-test t-test t-test

f1 150,000 0 9.23E–30 5.85E–7 −2.02a −12.69a −12.69a

f2 200,000 4.52E–26 9.13E–21 2.30E–3 −1.89 −106.35a −106.35a

f5 2,000,000 8.12E–4 1.61E–1 5.57E–1 −1.45 −3.75a −2.14a

f9 500,000 29.33 21.03 2.89 4.68a 20.48a 14.21a

f10 150,000 7.69E–15 1.03E–14 6.33E–4 −4.47a −11.58a −11.58a

f11 200,000 1.24E–2 9.60E–3 1.27E–1 1.05 −4.27a −4.37a

“Mean best” indicates the mean best function values found in the last generation. “Func Eval” means the number
of function evaluations.
aThe value of t with 49 degrees of freedom is significant at α = 0.05 by a two-tailed test.

unimodal functions: f1 is the sphere function, f2 is the
test problem numbered 2.22 from [9, p. 341], and f5

is the extended Rosenbrock function. The other three
are multimodal functions with many local minima: f9

is the Rastrigin function [16], f10 is a modified version
of the Ackley function [17], and f11 is the Griewank
function [18].

The EP algorithm used in our study was the
improved fast evolutionary programming (IFEP)
[6, 19]. The difference between IFEP and classical
EP (CEP) is in Step 3 of the algorithm described in
Section 1. Instead of generating one offspring using
Gaussian mutation, IFEP creates two offspring, one
by Gaussian mutation and the other by Cauchy mu-
tation. The better one is then chosen as the offspring.
Therefore, each mutation will use two function evalua-
tions. Three IFEP experiments were conducted with
different lower bound schemes: fixed lower bound
(FLB), DLB1 and DLB2. The tournament size q = 10
for selection and the initial standard deviations 3.0
were used. For FLB, the population size µ = 50 and
the lower bound η− = 0.0001 were set. For DLB1
and DLB2, µ = 10 and the lower bounds were ini-
tialized to 0.1. The reason for using smaller popu-
lation sizes for DLB is that they can indirectly per-
form more global searches by raising the lower bound.
Therefore, using the population size to support more
search diversity is not really necessary. The reference
parameter of DLB1 is set as A = 0.3. The DLB1 and
DLB2 schemes were updated every 5 generations us-
ing Eq. (3) and Eq. (5), respectively. The reason for not
updating the lower bound in every generation is due
to our belief that one or two generations are not really
enough to obtain statistically useful information about
the search.

4.2. Results and Discussion

Table 3 summarizes the experimental results of IFEP
with and without a dynamic lower bound. All results
have been averaged over 50 runs. It is clear that
IFEP with a dynamic lower bound performed signi-
ficantly better than IFEP with a fixed lower bound
for five out of six functions. IFEP with a dynamic
lower bound produced substantially better solutions for
these five functions. The only exception is function
f9, which will be analyzed in more detail in the next
subsection.

Comparing the results of DLB1 and those of DLB2,
we discover that DLB2 has a better performance on
f1 and f10, but worse on f9. This can be explained by
DLB2 being more greedy than DLB1. Thus, DLB2 has
a better progress rate on finer exploitation, but worse
ability on global exploration. Another advantage of
DLB2 is that its design does not introduce any new
parameters. For DLB1, the reference parameter A is a
new parameter. However, the results of our IFEP were
not very sensitive to the change of A values.

Figures 5–10 show the average evolutionary pro-
cesses for the six benchmark functions. These
processes show that IFEP with the DLB schemes have
better convergence rates than IFEP with FLB for all
functions except for f9 where IFEP with the DLB
schemes were trapped in the local optima and stag-
nated. Comparing the two DLB schemes, DLB2 per-
formed better than DLB1 for most functions. The only
exception was again f9.

The experimental results in Figs. 5–10 showed that
IFEP with FLB usually stagnated as the whole popu-
lation moved close to the global optimum. On the other
hand, the DLB schemes were able to control the search
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Figure 5. Comparison among IFEP with the FLB, DLB1 and DLB2
schemes on f1.

Figure 6. Comparison among IFEP with the FLB, DLB1 and DLB2
schemes on f2.

Figure 7. Comparison among IFEP with the FLB, DLB1 and DLB2
schemes on f5.

Figure 8. Comparison among IFEP with the FLB, DLB1 and DLB2
schemes on f9.

Figure 9. Comparison among IFEP with the FLB, DLB1 and DLB2
schemes on f10.

Figure 10. Comparison among IFEP with the FLB, DLB1 and
DLB2 schemes on f11.
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Figure 11. One dimension landscape for the Rastrigin function
( f9).

step size and quite effective and efficient in finding a
near optimal solution.

4.3. Why Is f9 Difficult for IFEP with DLB

The major reason for DLB’s poor performance on func-
tion f9 is the small η value. The DLB schemes are
rather greedy in the sense that they try to imitate good
mutations. Both DLB schemes make use of success
rate which depends on successful mutations. However,
successful mutations in one region (neighborhood) may
not be successful anymore in a different region in the
search space. Hence, using successful mutations to
adjust lower bounds may fall into traps.

Figure 11 shows the one dimension landscape of the
Rastrigin function ( f9). In this case, if individuals in a
population fall into one of the deep valleys, the lower
bound will be reduced gradually since individuals are
more likely to go down the valley than to jump to a
better point in the next valley. Large jumps may not
pay off unless the point jumped to is better than the
current one. Hence there is no incentive of increasing
the lower bound.

5. Conclusions

The lognormal self-adaptation in EAs without a lower
bound does not work very well. A lower bound for the
search step size is needed in order for EAs to work
effectively and efficiently. However, the optimal lower

bound is problem dependent. A trial-and-error process
often has to be used to find a good lower bound. This
paper proposes two dynamic lower bound schemes
where the lower bound changes dynamically during
evolution. The first scheme, i.e., the success rate based
dynamic lower bound scheme, combines population-
level adaptation of the success rate with the component-
level self-adaptation of the adaptive parameters to opti-
mize evolutionary performance. The second scheme,
i.e., the mutation step size based dynamic lower bound
scheme, uses the median of the average mutation step
sizes to set the lower bound, so that both long-range
exploration and small-region exploitation are consi-
dered. Both schemes compare favorably with the fixed
lower bound method on the set of benchmark functions
we tested. However, when tackling a problem whose
fitness landscape consists of many deep and narrow
valleys, the dynamic lower bound schemes may not
work well. They tend to reduce the lower bound to an
overly small value. More work needs to be done in this
area.

References

1. X. Yao, “An overview of evolutionary computation,” Chinese
Journal of Advanced Software Research, vol. 3, no. 1, pp.
12–29, 1996.
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