Module 06-27110 (2016)
ICY Introduction to Artificial Intelligence
Level 1/C I
Claudio Zito | Semester 2 | 10 credits |
Co-ordinator: Claudio Zito
Reviewer: Nicholas Hawes
The Module Description is a strict subset of this Syllabus Page.
Outline
This module provides a general introduction to artificial intelligence, its techniques, and main subfields. The principal focus of the module will be on the common underlying principles, such as knowledge representation, search, and learning.
Aims
The aims of this module are to:
- Provide a general introduction to artificial intelligence, its techniques and its main subfields.
- Give an overview of key underlying ideas, such as knowledge representation, reasoning, search, and learning.
- Demonstrate the need for different approaches for different problems.
Learning Outcomes
On successful completion of this module, the student should be able to:
- Discuss the major issues and techniques in a variety of sub-fields of AI, such as vision, robotics, natural language processing, planning, probabilistic reasoning, and machine learning.
- Compare common AI techniques, describing their strengths and weaknesses.
- Apply a variety of standard AI techniques to simple examples.
Restrictions
None
Taught with
- 06-27112 - MSc Introduction to Artificial Intelligence
Teaching methods
Large Group Lectures and Lab sessions in Computer Science Labs.
Contact Hours:
39
Assessment
Sessional: Assessments: 1.5 hr Examination (70%) Continuous Assessment (30%)
Supplementary (where allowed): 1.5 hr Examination (100%)
Detailed Syllabus
- Overview of AI terms and concepts
- Rational Agents
- Search Algorithms
- Optimality and Heuristics in Search
- Game Algorithms
- Probability Theory
- Monte Carlo Methods
- Belief Networks and Bayesian Inference
- Markov Chains and Decision Processess
- Reinforcement Learning
Programmes containing this module
- BSc Year in Computer Science [5955]