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Abstract

Synchronous VLSI design is approaching a critical point,
with clock distribution becoming an increasingly costly and
complicated issue and power consumption rapidly emerg-
ing as a major concern. Hence, recently, there has been a
resurgence of interest in asynchronous digital design tech-
niques as they promise to liberate VLSI systems from clock
skew problems, offer the potential for low power and high
performance and encourage a modular design philosophy
which makes incremental technological migration a much
easier task. In a pipelined architecture, if a control hazard
occurs, the prefetched instructions following a hazard must
be discarded and removed from the pipeline before instruc-
tions from the new stream are executed. In an asynchronous
microprocessor the exact number of the prefetched instruc-
tions is nondeterministic and unpredictable. The processor
must be able to distinguish between instructions originating
from the branch or the exception target, which may thus be
executed, and instructions already prefetched when the haz-
ard took place, which must therefore be thrown away. This
paper will discuss a distributed, asynchronous technique
for dealing with control hazards in asynchronous pipelines
where control hazards may potentially occur in more than
one stage.

1 Introduction

Conventional synchronous architectures use design tech-
niques based on global clocking whereby all the functional
units operate in lockstep under the control of a central clock.
As VLSI technology advances and systems become larger,
faster and more complex, timing problems become increas-
ingly severe and account for more and more of the design
and debugging expense. Increased clock speeds make on-
chip clock skew significant and inter-chip skew a major
problem. One solution to clock-related timing problems is
to use asynchronous design techniques without any global
synchronization signals to control the rate at which different
elements operate.

An asynchronous system may be designed as a set of
functional modules (subsystems), which communicate only
when it is necessary to exchange information. The oper-
ation of the system does not proceed in lockstep. Each
sub-system operates at its own rate synchronising with its
peers only when it needs to exchange information. This
synchronisation is achieved by the communication protocol
employed, which is typically in the form of local request
and acknowledge signals.

Various asynchronous digital design techniques have
been developed, which are typically categorised by the tim-
ing model, the signalling protocol and the data transfer tech-
nique they employ. A number of asynchronous architec-
tures have been developed [8] including two at CalTech, an
early design, and a more recent asynchronous version of
MIPS, NSR and Fred at the University of Utah, STRiP at
Stanford University, Sun’s Counterflow pipeline processor,
FAM and TITAC at Tokyo University and Institute of Tech-
nology respectively, Hades at the University of Hertford-
shire, Sharp’s Data-Driven Media Processor and the series
of asynchronous implementations of the ARM RISC pro-
cessor (AMULET1, AMULET2e and AMULET3i) devel-
oped by the AMULET group at the University of Manch-
ester.

This paper presents a technique for managing control
hazards that may occur in asynchronous, pipelined proces-
sors. This technique was developed as part of our endeavour
to develop an asynchronous implementation of the MIPS ar-
chitecture (SAMIPS [9][10]), which in turn forms part of a
wider collaborative funded research project which aims to
develop an integrated framework for formal verification and
distributed simulation of Asynchronous Hardware, utilising
Balsa, a CSP-oriented synthesis tool developed at the Uni-
versity of Manchester [2].

2 Control Hazards in Asynchronous Systems

In conventional, von Neumann machines, instructions
are executed sequentially, from consecutive memory loca-
tions unless a control hazard, namely the execution of an
instruction such as a branch or a jump, or the occurrence of



an unpredictable event, such as an exception, changes the
flow of control.

In a pipelined architecture, if a control hazard occurs,
the prefetched instructions following a hazard must be dis-
carded and removed from the pipeline before instructions
from the new stream (e.g. the branch target address or
the exception vector address) are executed. Pipeline stall,
branch prediction and delayed branches are techniques that
have been devised to deal with this problem.

In synchronous pipelined systems, the depth of prefetch-
ing, namely, the number of instructions that have entered the
processor and thus must be discarded in the case of a con-
trol hazard, is defined by the clock cycles and is therefore
deterministic. In an asynchronous microprocessor however,
where the prefetch unit is completely autonomous and de-
coupled from the rest of the processor, the exact number
of the prefetched instructions is nondeterministic and there-
fore unpredictable. In this case, the depth of the prefetch-
ing depends on the precise point that the interruption of the
prefetching by the branch target or the exception vector ad-
dress takes place. The processor must be able to distinguish
between instructions originating from the branch or the ex-
ception target, which may thus be executed, and instructions
already prefetched when the hazard took place, which must
therefore be thrown away.

Different approaches have been followed in different
asynchronous processors to deal with this problem.

For instance, NSR avoids the problem by having con-
trol flow decisions being made by the Instruction Fetch Unit
based on conditions set up in advance by the execution Unit
(essentially there is no prefetching as such).

FRED (roughly based on NSR) utilises an Instruction
Window and a Dispatch Unit to implement a two-phase
branch model (address generating and sequence change)and
avoid undoing prefetched instructions - exceptions are dealt
with by tagging instructions and passing information to the
Despatch Unit which is at the top of the pipeline.

Caltech’s asynchronous MIPS makes use of a Decoder
(immediately after the prefetching unit) which records the
order of instructions and deals with branches - a Write Back
(WB) unit can cancel instructions in the case of exceptions
reconstructing the program order.

The Sun’s Counterflow processor takes advantage of
the two asynchronous pipelines running in opposite direc-
tions - hazard information flows backwards, invalidating
prefetched instructions on its way.

A very neat and efficient solution was devised for the
AMULET1 processor by the AMULET group at the Uni-
versity of Manchester. Their technique uses a single bit to
“colour” of the state of the processor at any particular mo-
ment.

Each instruction address issued to memory, carries the
current operating colour of the processor, which will be
used to mark the corresponding fetched instruction. When
a control hazard occurs (branch or exception), the colour of
the processor changes, causing a change in the colour of in-
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Figure 1. Colouring and Rejecting Instruc-
tions in AMULET1
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Figure 2. Control Hazards in Multiple Stages

structions subsequently fetched from the new target address.
The colour bit of an instruction which arrives at the datap-
ath for execution, is compared with the current colour of
the processor (figure 1). If a match is found, the instruction
belongs to the current valid instruction stream and is thus
executed, otherwise it is discarded. Thus, all the prefeched
instructions following the hazard will be discarded until an
instruction from the new valid instruction stream (i.e. the
branch target) is encountered.

3 The Need for a New Colouring Algorithm

AMULET1’s colouring technique is particularly perti-
nent to our own work, as it does not require any complex
hardware or any substantial change in the pipeline structure
of the processor. A decision has therefore been made to
adopt it for our asynchronous MIPS.

The 1-bit colouring technique works in AMULET1, as
the change of the processor colour, the occurrence of a con-
trol hazard with the generation of the new transfer address
and the decision as to whether an instruction should be dis-
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Figure 3. Pipeline Stages Colour State Vec-
tors

carded (comparison of the respective colour bits) all take
place in the same pipeline stage (the ALU).

If, however, the asynchronous architecture is such that
control hazards can occur at different stages in the pipeline,
the above mechanism which uses a single colour bit to de-
fine the state of the system is insufficient, as the operating
colour of the system may be modified by more than one
stage in a distributed, non-deterministic fashion. An exam-
ple is MIPS, where control hazards may potentially occur
in more than one stage (e.g. where conditional branches
maybe taken in the EXE stage while unconditional jumps
are executed in ID stage) [6].

This model is illustrated in figure 2 where control trans-
fer addresses may be generated by any stage in the pipeline
and they may arrive at the prefetching unit at any order.

The fundamental problem is that in an asynchronous,
distributed system, global snapshots of the state of the sys-
tem at any particular moment are not easily obtainable. If
a single colour bit is used to hold the state of the processor,
it is not clear where this bit should be maintained, or how
a pipeline stage can know that the colour has been changed
by a different stage, or how to adhere to causality and asso-
ciate a change in colour with a particular hazard event. In
this case, an improved technique is required to deal with the
distributed, non-deterministic nature of the system. The rest
of the paper describes such a technique.

4 A Generic Distributed Solution

The proposed solution is based on two fundamental ob-
servations:

� The state of the system is distributed.

� Stages that are deeper in the pipeline have higher prior-
ity than stages before them. In other words, a control
transfer event that occurs at a pipeline stage renders
other events that may occur in pipeline stages earlier
in the pipeline irrelevant and invalid, event if the latter
precede the former in time.

Based on the above two observations, in the proposed
scheme the colour state of the processor at any particular
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moment is defined as a vector �������
	������������������ in the set� � , where
�

is the set of colours
� ����������� , � is the

number of stages in the pipeline and �� is the colour of the
stage ! . Priority of �" $# Priority of �&% , !'#)( .

Each pipeline stage *,+ where control hazards may oc-
cur maintains a copy of the vector of the colour state �-�
�.��	/�������"+0�"����� ����� but is in charge of managing only the el-
ement that corresponds to it (figure 3). Since target ad-
dresses may be generated at any time by any pipeline stage,
this scheme assumes the existence of an arbitration unit, re-
ferred to as the Address Arbitration Unit - AAU) in the fig-
ure which is described in the following section.

4.1 The Address Arbitration Unit

The Address Arbitration Unit issues all instruction ad-
dress information to memory, namely, sequential instruction
addresses as they arrive from the Program Counter (normal
operation) or from the pipeline stages (in the case when a
control hazard occurs) as illustrated in figure 4.

In the case of control hazards, the role of the AAU is
to let through to memory instruction addresses that are the
result of high priority control hazards, while blocking any
subsequent lower priority target addresses from reaching
memory and thus interrupting the high priority instruction
stream.

To achieve this, the AAU keeps a record of the colour
state of the processor (vector c), which it updates based on
the colour vectors of the instruction addresses arriving to it.

When a new transfer address arrives from stage *1+ (see
figure 4), the AAU checks the state vector carried by that
address.

If all the high priority bits �2% (where (3#54 ) in the trans-
fer address vector are the same as the corresponding colour
bits of the AAU, then this instruction belongs to the cur-
rent stream (i.e. no other higher priority control hazard has
taken place) and therefore the address is allowed through to
memory. The colour state vector of the instruction becomes
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Figure 5. A Constructive Proof

now the state vector of the AAU too.
If any higher priority colour bit �6% (where (7#84 ) in the

transfer address vector is different than the corresponding
colour bit of the AAU, that means that a higher priority con-
trol hazard has already taken place, and its target address
has gone through to memory, and therefore the transfer ad-
dress is rejected.

4.2 Functionality of a Pipeline Stage

For each new instruction that arrives for execution at
a stage *,+ (figure 3), its colour state vector is compared
against the state vector of the stage. If any higher prior-
ity colour bit ( � % where (9#:4 ) in the instruction is different
than the corresponding colour bit of the stage, that means
that the instruction is the first of a transfer address as a re-
sult of a control hazard that has taken place deeper in the
pipeline. Thus, the stage lets the instruction through (per-
forming the required processing) and now the state vector
of the instruction becomes its own.

If the stage’s own colour bit ( � + ) is different than the cor-
responding bit in the instruction vector then, this instruction
is one of the instructions following an instruction that has
already caused a control hazard in the stage, and therefore
the instruction is rejected. Otherwise, the instruction is ex-
ecuted and the state vector of the instruction becomes its
own.

5 A Constructive Proof

As a constructive proof for the proposed mechanism, fig-
ure 5 presents a possible scenario to illustrate how the pro-
posed mechanism works.

In the example scenario, a program (figure 5a) is exe-
cuted in a four stage asynchronous pipeline (figure 5b). The
colour state vector consists of four values (bits) and is ini-

tially (0,0,0,0); this is the vector piggybacked on the instruc-
tions as they initially enter the pipeline. Two instructions
may cause control hazards, namely CH1 and CH2 in stages
*<; and * � respectively. The control hazards may take place
in any order, non-deterministically, depending on the order
that CH1 and CH2 reach the respective stages ( *=; and * � ).
Irrespectively of the order they occur, CH1 has higher pri-
ority than CH2 since it is deeper in the pipeline. Depending
on the relative order of the occurrence of the two control
hazards, two scenarios are distinguished.

In the first scenario, CH2 causes a control hazard before
CH1 reaches * ; (figure 5b). Then the operation proceeds
based on the algorithm: the state vector of *,� and AAU
changes to (0,1,0,0), following instructions (e.g. >
? ) are
rejected at *=@ up to the point when >
+ enters the pipeline
whereupon the vector of *1	 changes too.

In the meantime, CH1 reaches * ; and causes a control
hazard there (figure 5c), changing the state vector of * ;
from (0,0,0,0) to (0,0,0,1). When the transfer address from
* ; reaches AAU, AAU will change its vector from (0,1,0,0)
to (0,0,0,1), as a higher priority bit (4th) is different in the
vector of the transfer address. Henceforth, any instruction
that reaches * ; with a lower priority vector than that of * ;
(namely, (0,0,0,0) from the original stream, or(0,1,0,0) from
the CH2 target address, e.g. > + ) will be rejected. Finally, >2% ,
the first instruction from the CH1 transfer address, will en-
ter the pipeline, changing the all state vectors to that of *,;
(0,0,0,1) (figure 5d).

In the second scenario CH1 reaches *=; and causes a haz-
ard before CH2 reaches * � , thus changing AAU vector to
(0,0,0,1) (figure 5e). When CH2 reaches * � and causes a
control hazard, the transfer address that the * � will issue,
will be rejected by AAU as the vector of the former has
lower priority than that of the latter.
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import[type]

procedure S1(input InsIn: Ins;            
             output InsOut:Ins;           
             output NTAdd: NTAdd) --if a control hazard happens
is local variable Ins_R: Ins        NTAdd is output
         variable Col_S1: Col     --if the colour is matched or high
begin                               priority colour bit is different, 
 loop                               the current Ins should be executed
  Ins -> Ins_R;                     in S1

  if ((Ins_R.Col = Col_S1) or (Ins_R.Col.S2 /= Col_S1.S2) or
      (Ins_R.Col.S3 /= Col_S1.S3) or (Ins_R.Col.S4 /= Col_S1.S4)) then
     Col_S1:= Ins_R.Col;          --if the current Ins cuase CH1,change
     if Ins_R.Code = CH1 then       first colour bit of S1 and sent out
        Col_S1.S1:= not Col_S1.S1;  NTAdd(assumed to be 0x08 here
        NTAdd <- {S1, {8, Col_S1}}  
     else InsOut <- Ins_R   end   --otherwise pass it to S2
  end  
 end                                                               (S1)
end

if ((Ins_R.Col = Col_S2) or (Ins_R.Col.S3 /= Col_S2.S3) or 
    (Ins_R.Col.S4 /= Col_S2.S4) or 
    ((Ins_R.Col.S1 /= Col_S2.S1) and (Ins_R.Col.S2 = Col_S2.S2))) then
                                                                   (S2)

if ((Ins_R.Col = Col_S4) or (Ins_R.Col.S4 = Col_S4.S4)) then
                                                                   (S4)

begin
Arb(NTAdd1, NTAdd2, NTAdda) ||         --a binary arbiter tree is used
Arb(NTAdd3, NTAdd4, NTAddb) ||
Arb(NTAdda, NTAddb, NTAdd)  || 
...
if (((NTAdd_R.Stage = S1) and (NTAdd_R.InsAdd.Col.S2 = Col_Arb.S2) and
     (NTAdd_R.InsAdd.Col.S3 = Col_Arb.S3) and 
     (NTAdd_R.InsAdd.Col.S4 = Col_Arb.S4)) 
 or ((NTAdd_R.Stage = S2) and (NTAdd_R.InsAdd.Col.S3 = Col_Arb.S3) and 
     (NTAdd_R.InsAdd.Col.S4 = Col_Arb.S4)) 
 or ((NTAdd_R.Stage = S3) and (NTAdd_R.InsAdd.Col.S4 = Col_Arb.S4)) 
 or (NTAdd_R.Stage = S4)) then         -- check the validity of NTAdd
    Col_Arb := NTAdd_R.InsAdd.Col ||   -- change the colour
    InsAdd <- NTAdd_R.InsAdd ||        -- send out new address
    Npc <- NTAdd_R.InsAdd
else                                   -- check the validity of pc
    if pc_R.Col=Col_Arb then InsAdd <- pc_R ||
                             Npc <- pc_R end
end 
...                                                              (AAU)
end

Figure 7. The Balsa Model
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6 Balsa and SAMIPS

This colouring algorithm has been implemented and is
currently being evaluated using Balsa system [3], an asyn-
chronous synthesis toolkit developed by AMULET group.

Balsa is based on CSP. It uses CSP-based constructs to
express Register Transfer Level design descriptions in terms
of channel communications and fine grain concurrent and
sequential process decomposition. Descriptions of designs
(.balsa file) are then translated (balsa-c) into implementa-
tions in a syntax directed-fashion with language constructs
being mapped into networks of parameterised instances of
”handshake components” (.breeze file) each of which has a
concrete gate level implementation [4]. balsa-netlist auto-
matically generates CAD native netlist files (Avant, Xilinx
Alliance FPGA or Cadence), which can then be fed into the
commercial CAD tools that further synthesize the netlist to
the fabricable layout. Three levels of simulation are sup-
ported. Balsa has a simple behavioural simulator while
memory related behavioural simulation relies on the LARD
[5] toolkit. breeze2lard tool helps to translate the .breeze
file to a LARD simulation model. The native simulators of
those commercial CAD tools carry out the other two low
levels simulation.

As mentioned in the Introduction, the proposed dis-
tributed colouring algorithm was developed as part of our
effort to design SAMIPS, an asynchronous implementation
of the MIPS processor [9]. A Balsa model of SAMPIS as
been developed (BAL-SAMIPS [10]) and is depicted in fig-
ure 6. SAMIPS adheres to the five-stage pipeline Datapath
of the synchronous MIPS processor which comprises the
following stages: Instruction Fetch (IF), Decode/Register
File Read (ID), Execution or Address Calculation (EX),
Memory Access (MEM) and Register Write-back (WB).
Control Hazards may occur in ID, EX or WB stages.

7 Evaluation and Results

To evaluate the proposed algorithm we have developed a
Balsa model of 4-stage pipeline as depicted in figure 7. The



model consists of 5 parallel processes, one for each of the 4
stages and one for the AAU module.

Figure 7 ( * 	 ) shows the Balsa description of * 	 . The
modelling of the rest of the stages is similar, the only differ-
ence is in their respective implementation of their instruc-
tion validity checking statement (IF statement) since as we
move from stage to stage, different number of bits have to
be checked. Interestingly, all the “middle” stages make use
of exactly the same IF statement while the two “ends” of
the pipeline are different. Figure 7 (AAU) shows the mod-
elling of the AAU. A set of arbiters is used to make an arbi-
trated nondeterministic choice amongst the five input chan-
nels. As illustrated in previous section, AAU also has a va-
lidity checking statement for the incoming address and the
new addresses with matched colour are accepted.

Figures 8 and 9 illustrate the area costs obtained from the
Balsa (breeze-cost) utility. The costs provided by breeze-
cost are only guideline figures and depend on particular
back-end implementation. The units presented in the figure
are linear microns of standard cells based on an old 1um
library with a cell pitch of 37.5um and a typical density of
about 2/3 cells, 1/3 routing.

Figure 8 shows the costs estimation for the 4 pipeline
stages. The difference in costs are due to the different IF
statements, as explained above. Figure 9 is meant to show
the overhead in terms of space, that would be introduced
in SAMIPS if the proposed distributed colouring algorithm
was to be incorporated in it. It compares the costs of the
extra functionality required for each stage (average figure
of costs in figure 8) and the AAU with the rest of the main
stages of SAMIPS. Clearly the overheads introduced are in-
significant in comparison with the rest of the processor.

8 Summary and Further Work

This paper has presented a distributed colouring algo-
rithm for dealing with control hazards in asynchronous
pipelines. The main advantage of this technique is that it
provides flexibility in designing the pipeline of the proces-
sor, enabling prefetching at any depth. The overhead it in-
troduces is the AAU unit, comparison circuitry in the stages
and extra control bits (for the colour). However, as the re-
sults obtained from Balsa indicate, this overhead, in terms
of space is not significant. Future work will evaluate the
performance of this approach and the overhead it imposes
in terms of time and power. We are currently incorporating
this technique in the asynchronous version of MIPS which
is under development.
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