Logical and computational aspects of Gleason’s theorem in probability theory

Willem L. Fouché

Write E^n for the Hilbert space of dimension n over the reals and write S^{n-1} for the unit sphere in E^n.

In this case Gleason’s theorem states that, if $p : S^{n-1} \rightarrow [0,1]$ is such that if p is in fact a function on the rays in H, (meaning that $p(-x) = p(x)$, for all relevant x), and for each frame (orthonormal basis) $f = (e_i) \subset S^{n-1}$, we have that $\sum_{\alpha \in f} p(\alpha) = 1$; then there is some density matrix (a quantum state) ρ on H such that $p(x) = (x, \rho x)$, for all $x \in S^{n-1}$.

A (quantum) state ρ or a density matrix, is a Hermitian, positive operator on H of trace 1. Being positive means that $(\rho x, x) \geq 0$ for all $x \in H$.

We shall discuss the computational ramifications and physical implications of the following statement. This statement is a consequence of the arguments in the paper HP [3].

Theorem 1 We can algorithmically and uniformly and construct for every natural number n, a first-order statement Π_n in the theory \mathbb{R} of real closed fields which is classically equivalent to Gleason’s theorem for E^n. An analogous result holds for the first order theory \mathbb{C} for the field \mathbb{C} of complex numbers and the version of Gleason’s theorem for finite dimensional Hilbert spaces over \mathbb{C}.

References

