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Abstract

We present a new classification approach, using a variational Bayesian estimation of probit regression with Laplace priors. Laplace
priors have been previously used extensively as a sparsity-inducing mechanism to perform feature selection simultaneously with classi-
fication or regression. However, contrarily to the ‘myth’ of sparse Bayesian learning with Laplace priors, we find that the sparsity effect is
due to a property of the maximum a posteriori (MAP) parameter estimates only. The Bayesian estimates, in turn, induce a posterior
weighting rather than a hard selection of features, and has different advantageous properties: (1) It provides better estimates of the pre-
diction uncertainty; (2) it is able to retain correlated features favouring generalisation; (3) it is more stable with respect to the hyperpa-
rameter choice and (4) it produces a weight-based ranking of the features, suited for interpretation. We analyse the behaviour of the
Bayesian estimate in comparison with its MAP counterpart, as well as other related models, (a) through a graphical interpretation of
the associated shrinkage and (b) by controlled numerical simulations in a range of testing conditions. The results pinpoint the situations
when the advantages of Bayesian estimates are feasible to exploit. Finally, we demonstrate the working of our method in a gene expres-

sion classification task.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Laplacian density has been widely used as a spar-
sity-inducing prior in various contexts (Shevade and Keer-
thy, 2003; Figueiredo, 2003; Cawley and Talbot, 2006;
Moulin and Liu, 1999). However, since all these works
employ the MAP estimates (even if referred to as Bayesian
in a ‘broad’ sense), it should also be interesting to inspect
the full posterior and examine the working of a Bayesian
estimate.

In (Ju et al., 2002), a Gibbs sampling approach has been
developed, to provide Bayesian estimates. However, the
results were contradictory and largely inconclusive. Indeed,
the computationally demanding sampling procedure has
not been particularly suitable to extensive experimental
studies. Another recent attempt (Park, unpublished), using
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Gibbs sampling, presents some results for the overdeter-
mined linear regression case only.

Apart from these two unpublished works, we know of
no further studies and no conclusive analyses to under-
stand the seemingly pronounced difference in the behaviour
of MAP and Bayesian estimates for this model. This is
what we address in this paper, with a focus on under-deter-
mined classification problems. We develop a practical var-
iational Bayesian algorithm which allows us to conduct a
comprehensive experimental validation.

The remainder of the paper is organised as follows.
After reviewing the model of probit regression with
Laplace priors, Section 2 gives insights into the exact
Bayesian analysis of this model in the univariate case and
develops a practical variational Bayesian estimation algo-
rithm for the multivariate case. Section 3 shows that ‘sparse
Bayesian learning with Laplace priors’ should really be
termed as ‘sparse MAP learning with Laplace priors’ and
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explains how the sparsity effect is actually due to a property
of maximum a posteriori (MAP) parameter estimates.
Section 4 completes the hyperparameter inference in the
variational Bayesian framework. Section 5 discusses rela-
tionships with other models through a graphical interpreta-
tion of the associated shrinkage. Section 6 presents
extensive experimental demonstration analysing the behav-
iour of the Bayesian estimate in comparison with its MAP
counterpart, as well as other related models. The Bayesian
estimate does not provide sparse estimates. In turn, (1) it
provides better estimates of the prediction uncertainty;
(2) it is able to retain correlated features favouring general-
isation; (3) it is more stable with respect to the hyperparam-
eter choice and (4) it produces a weight-based ranking of
the features, suited for interpretation. Finally, Section 7
concludes the paper.

2. Probit regression with Laplace priors

Consider a training set of the form {(x,z),...,
(xn,zn)}, where x,, are T-dimensional input points, N is
the number of observations and z, are labels in {—1,1}.
We will refer to all input points as x € £2"*" and associated
labels as z € 2¥*!. In two-class classification, the task is to
learn a mapping from the inputs to the targets; which is
able to predict the target values of previously unseen points
that follow the same distribution as the training data. In
probabilistic terms, such a mapping is specified by a likeli-
hood model together with prior distributions on the
parameters of the likelihood.

The simplest form of likelihood model is the linear
regression likelihood, where the target values are continu-
ous valued. Denoting by y = (y, .. .yN)T e 2V the con-
tinuous targets, this is the following:

ylx,w o~ N (v]xTw, a%I) (1)

Here, ./"() denotes the normal density with ¢* being the
variance parameter. Further, w € #' is the parameter of
the likelihood model and I € 2"V is the identity matrix.
The dot product x"w also includes a bias term, which can
be handled by concatenating a feature of ones to x, pro-
vided that care is taken that the bias term needs not be
regularised.

A technically convenient way to obtain a likelihood
model suitable to classification is to employ the probit link.
It is common to fix ¢ = 1 (Figueiredo, 2003), and the vari-
ables y are now seen as latent variables of the additional
probit likelihood:

Zply, ~ Pz, = 1]y,) = ¢(xTw) Vn=1,...,N (2)

where 2z, are binary class labels in {—1,1} and
®(y) = [ A (u|0,1)du is the cumulative density function
of a standard Gaussian density.

The prior on w is chosen to be a Laplace density

y -
W~ \/7_ ef\/z\w|

The Laplace density is heavy tailed and peaked at zero,
hence expressing the prior belief that the distribution of
w—equivalently, the distribution of feature relevances
w.r.t. to the target is strongly peaked around zero. In addi-
tion, the Laplace density is log-convex, which conveniently
ensures the convexity of the posterior density.

In regression, the use of the Laplacian prior is known
as the LASSO (Tibshirani, 1996; Efron et al., 2004). A
probabilistic re-interpretation was given in (Figueiredo,
2003), by rewriting the Laplace density in a hierarchical
manner

wylt, ~ A (w0, 1) (3)

Ttu,rv Ga(f,|1,/1/2) :;e—/lrl/Z (4)

Here, the variances t, of the Gaussian are hidden variables
and Ga() is the gamma distribution (in the present instan-
tiation, an exponential (Bernardo and Smith, 1994)). Inte-
grating over t, recovers the Laplacian marginal prior
density.

In (Figueiredo, 2003), an expectation maximisation
(EM) procedure was derived for this model, which itera-
tively computes the maximum a posteriori (MAP) esti-
mates of w.

2.1. Estimation methods

In models having prior distributions, two main estima-
tion techniques are available to use.

Bayesian estimation makes no difference between para-
meters and latent random variables. This presents several
advantages, such as finding a full distribution of the
parameters, avoiding overfitting and assessing model order
selection in the Bayesian framework (Bernardo and Smith,
1994; MacKay, 2003). After observing the data, the poster-
ior density is computed with the use of Bayes theorem, e.g.
in case of linear regression this is the following:

wly) = PWp(w)
pwly) = [ dwp(y|w)p(w)

Often the integral in the denominator (also known as the
marginal likelihood or the evidence) is not analytically
computable and approximations must be employed.

The Maximum a posteriori (MAP) estimation method
avoids the intractable integral of the Bayesian approach,
by computing the mode of the posterior only, and using
that as a point estimate.

argmax p(wy) = argmax p(w, y)

The mode can be computed without computing the full
posterior distribution. It is however well known that the
price is a tradeoff of some information loss against compu-
tational efficiency, and in general the MAP method is also
known to be more prone to overfitting in small sample size
problems (MacKay, 2003).
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We now turn to developing a Bayesian analysis of the
probit regression model with Laplace priors.

2.2. Bayesian analysis: insights

Observe that in the 1D case, the convolution of a Gaus-
sian likelihood with a Laplace prior is analytically com-
putable (by elementary integration or using symbolic
computation packages). Fig. 1 depicts the posterior mean
and one posterior standard deviation on both sides, against
fixed equidistant values of y, __y in the range between —3
and 3, and having set all x;.y to 1. Equivalently, the same
plot can be regarded as the multivariate posterior mean
vector of w against the ‘true’ Maximum Likelihood vector
value of w, when the input set x;.x is fixed to the identity
matrix.

Fig. 1 reveals the rather interesting insight that the
Laplace prior induces a nonlinear shrinkage (feature
weighting) effect rather than a hard thresholding (feature
selection). The smaller the values w,, the larger the shrink-
age incurred, however, in no interval is w mapped to a
value of zero. This is in contrast with the known sparsity
promoting property of the MAP estimator and this will
be discussed in some detail later. We can also observe from
Fig. 1, that the posterior variances are such that the Bayes-
ian credible interval shrinks gradually for small values of
w;, although it always remains non-zero. In other words,
small values are ‘less important’ but are not discarded.

It is now of interest to know what are the practical
implications of this posterior, and whether the Bayesian
estimate would be preferable to the MAP estimate. Before
we can conduct empirical studies on multivariate data to
address these questions, we need to derive a practical algo-
rithm for obtaining Bayesian estimates. Since apart from
the univariate case exact inference is no longer possible,
in the next section we derive a variational solution.

-2 -1 0 1 2 3

Fig. 1. Posterior mean and one standard deviation on both sides (vertical
axis), against the maximum likelihood values of w (horizontal axis), when
x is set to the identity matrix and A= 1.

2.3. A variational Bayesian solution

Employing Jensen’s inequality, it is straightforward to
lower bound the log probability of y|x:

m@mwwﬂ%/mmeMwmwdem

pOlw, x)p(w|9) [ Lp(x)
> /dwdrq(w, 1) log 4(w.7)

where g(w,7) = q(w)][],g(r,) is the variational posterior
sought in a factorial form (Bernardo and Smith, 1994;
MacKay, 2003; Bishop et al., 2000). This decouples into
computing the approximate posteriors for each parameter
separately, as follows. Denoting by A the diagonal matrix
with elements 1/7,, we have

q(w) o exp/drq(‘c) log A" (y|x™w, I/6*)./"(w|0, A)

= AN (wlp,, E)
where
B, =0 Eyxy = (w) (5)
L, = {(A) + o 2xx"} " = (o) = (w)(w)" (6)

and (-) = E[-] denotes the expectation operator, taken w.r.t.
to the variational posterior. The matrix inversion is com-
puted using the well-known Sherman—Morrison—-Wood-
bury formula, and (A) = diag,({(1/z,)). Further, we have

13)
& m(\/@no, ) exp(0.50%) 7)

The normalisation constant of this density is

/dr,ﬂf(\/rwﬂ 0, r,)Ga(rt l,;) = ézexp{*\/@}

and the expectation required in (6) is computed as

qmam/mwm%mwmw@

<um:/M%mm: &; (®)

t

Formally, the difference between this algorithm and the
algorithm derived in (Figueiredo, 2003) for the model (1)
and (3)—(4) is in Egs. (7) and (8), where the posterior vari-
ances (w?) appear (instead of (w,)? of Figueiredo (2003)).
In other words, in (Figueiredo, 2003) ¢(w) was assumed
to be a delta function around the mode of the true poster-
ior! which amounts to computing the MAP estimate of w.
Here, in turn, ¢g(w) is a full approximating Gaussian.
Further, for probit-classification, y is an intermediate

latent variable, so in addition to the above, y needs to be

! Although the mode equals the mean in the case of Gaussian posteriors,
the mode and mean of the posterior corresponding to the overall
hierarchical (Laplace) prior differ.
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Fig. 2. True (dotted line) versus approximate (continuous line) posteriors in the univariate case, at y = 0.5 (left) and y =1 (right). 2 =1 was fixed

throughout.

integrated out from ¢(w), and this amounts to replacing y
in (5) by its expectation (y) w.r.t. the additional variational
posterior g(y). The latter, as in (Figueiredo, 2003), is a
product of truncated Gaussians, whose expectation is then

) = xT<W> +2M

DT (w) ®)

2.4. Inspecting the posterior approximation

Using the feasible univariate case, it is of interest to
inspect the true posterior induced by the Laplace prior ver-
sus the approximation ¢g(w). These are shown in Fig. 2 for
two fixed values of y. The mean of the best approximating
Gaussian ¢(w) is indistinguishable from the mean of the
true posterior, and the approximate posterior does capture
the probability mass quite well. However, it is most appar-
ent that on both of these plots the mass of the true poster-
ior density differs from its mode and while the mode is at
zero for both target values, the mean is non-zero. The next
section shows that there is a measurable interval, where the
mode of the true posterior stays at zero.

3. The maximum a posteriori method: whence
the sparsity?

Sparse prediction machines have been quite popular,
however, with few exceptions (Tibshirani, 1996; Efron
et al., 2004), there has been little explanation on how and
why do sparse solutions emerge. Based on earlier works in
the area of signal denoising (Moulin and Liu, 1999; Goutte
and Hansen, 1997), in this section we provide details show-
ing how the sparsification occurs in the MAP estimates. For
the ease of exposition, the formulation is given for regres-
sion. Similar reasoning applies for the probit likelihood.

For the analysis pursued here it is more convenient to
work with the Laplace prior directly, rather than its hierar-

chical formulation. Assume that one component w; is to be
estimated while keeping the others fixed. The MAP solu-
tion is the maximum argument of the log probability of
the complete data, i.e.

* (.yn — x:”’)z 1
w :argmax—ZT—\/ﬂM (10)

This is not differentiable at zero, therefore the unique max-
imum may be achieved either at zero or at a stationary
point on the strictly negative or strictly positive domain.
Consider the positive case first, w, > 0. Taking deriva-
tives on the positive domain and equating to zero, we obtain

_ Ologp(wly, x)

0
ow,
=3 (y" = D = W”“’”)’“fn/az Vi
n 1+t
= Z (y,, - Zwﬂx,/,,>xm/02 - W,E:xtzn/a2 —Va
n £t n
W, — Zn(yn - Zz’;étwt’xl’n)xtn _ 0_2 \/Z
t > i >

Note the first term above is in fact the ML solution of w,,
which will be denoted by wMt. Note further that, since we
assumed w, > 0, the above equation admits a solution only
if WML > 2

Analogously, on the strictly negative domain, w, <0, we
get that a solution exists only if WMl < — % Thus, in all
other cases (i.e. when the ML solution lies between these
two thresholds), the solution must be exactly zero. Indeed,
Moulin and Liu (1999) proves in a denoising context that
for any log-prior that is non-differentiable at zero, there
is a non-zero neighbourhood around zero where the
MAP solution is zero. In summary, for the unique maxi-
mum argument w; we have that
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. wME — ¢sign(wME), when [wML| > ¢,
w = L (11)
0, when [wM| <
where €, = z\:ﬁ"; The obtained threshold levels are quite

intuitive: The level of threshold is inversely proportional
to the sample variance and the number of training exam-
ples and directly proportional to the noise variance. The
lower the sample variance of a feature, the more likely it
is negligible. Also, a smaller sample size, and a larger obser-
vation noise implies a higher overall threshold level. In
addition, 2 may be varied to further control the sparsity
level.

4. Hyperparameter inference

Irrespective of the estimation method used, the hyperpa-
rameter A controls the strength of shrinkage globally.
Cross-validation over a grid of values is often the method
of choice, for the MAP-estimated model or in the case of
non-probabilistic formulations (Tibshirani, 1996; Shevade
and Keerthy, 2003). The Bayesian framework also offers
more efficient alternatives, such as the maximum likelihood
IT (MLII), known also as the evidence maximisation proce-
dure, or the specification of a hyper-prior on 1. We follow
the latter option here. Since problems have been noted with
vague (non-informative) hyper-priors or a MLII procedure
when the sample size is too small (Qi et al., 2004; Park,
unpublished), we specify a Gamma hyper-prior

A~ Ga(Aa, ) (12)

with o = f =1 far enough from zero to avoid problems of
vague priors in small sample size conditions. In other
words, 4 can vary cf. an exponential hyper-prior with mean
of 1.

Now, the algorithm derived in Section 2.3 needs to be
extended to accommodate 4 as a random variable, by com-
puting the variational posterior ¢(4) and the expectation
(A), and then replacing /4 by (1) throughout in Section
2.3. These additions are the following.

mem/mmmZN%mmmmmm}

= Ga (m +T,p +% Zm)

which yields

, 2(+T7)

) = 13
() =5 Bt 5 (0 (13)
Further, the posterior expectation additionally required for
computing (13) is evaluated as

I N E VA LA N A )
<Tr>—/dth( I)_ <)v> _<i>+ </L>
— s (14)

The algorithm is then to iterate the updating of all required
posterior statistics until convergence.

4.1. An extension: feature-specific hyperparameters

Similarly to generalised LASSO (Roth, 2004), we may
also consider separate A parameters for each feature and
place independent Gamma priors on each.

2e ~ Ga(A|a, ) (15)

Of course, it should be noted that in this case the overall
prior on w;, is no longer a Laplacian, but a convolution
of a Laplacian with a Gamma. This is no longer log-convex
and may be expected to behave similarly to a Student ¢
prior.

Then we have

q(%4) = Ga (/1,|oc +1,p +%<r,)>

and so,

) 2(+1) 1 1

(A) = W+ (0 (1) = ) +(1/7)

It is outside the scope of this paper to study this extension
in great detail but we find it useful for making a connection
to the RVM (Tipping, 2001; Bishop et al., 2000; Li et al.,
2002). As will be seen in the experiments shortly, if
a=f=10"° (non-informative priors) are employed in
(15), then a very similar behaviour to that of the RVM is
obtained.

5. Related methods

To eliminate the parameter A, Figueiredo (2003) pro-
poses to use Jeffreys improper prior for the variables t,.
In our experiments with high-dimensional and scarce data
sets (detailed in a later section) we found this leads to an
exaggerated sparsification, which did not turn out to be
beneficial.

A slightly different but related model, known as the Rel-
evance Vector Machine (RVM) (Tipping, 2001) is based on
the notion of automatic relevance determination (Neal,
1996). Essentially, the prior adopted in RVM is an inde-
pendent Student density and this is seen as an approxima-
tion to the Laplace (Bishop et al., 2000).

An obvious difficulty with attempting to study the rela-
tionship between various methods on the modelling level is
that it would be difficult to disentangle the effects of the
prior specification from those of the employed posterior
approximations. To get round of this problem, we will
characterise the joint effects of these two factors together,
on the algorithmic level. Analogously to the so-called
shrinkage functions, frequently used in the statistical
regression literature to illustrate the behaviour of various
methods, we obtain and visualise the posterior shrinkage
(estimated posterior mean and posterior variance against
the true values of w) induced by the various algorithms



1276 A. Kaban | Pattern Recognition Letters 28 (2007) 1271-1282

considered in this paper. This provides a graphical inter-
pretation that is easy and intuitive to follow.

The posterior estimates of w against the true values, as
obtained from simulations, when x = I is fixed, are com-
paratively shown in Fig. 3, for several methods and para-
meter settings. The solid lines depict the posterior means
obtained from the variational solution with Laplace prior
(as derived in Section 2.3). The larger the 1 value is, the
greater the shrinkage effect. However, for any fixed 4, the
shape of the posterior mean shrinkage is smoothly nonlin-
ear, so that no components are completely discarded. Com-
paratively, the dash-dot curves show the MAP solutions.
We see that for any fixed A value, there is an interval
around the origin, where the w component gets mapped
to exactly zero. On the same plot, for comparison, the dot-
ted line shows the estimates of w obtained with Jeffreys
prior as proposed in (Figueiredo, 2003). This generates a
rather large interval where weights are mapped to zero
and there is no parameter to adjust the length of this inter-
val. Finally the posterior mean estimates obtained from
RVM (Tipping, 2001) are also plotted, and as expected,
the posterior mean shrinkage obtained with variational
Bayes estimation (Bishop et al., 2000) and MLII estimation
(Tipping, 2001) are practically indistinguishable for the
RVM. The input-specific modelling discussed in Section
4.1 produces identically looking estimates too. This indi-
cates that both variants of RVM, as well as the method
in Section 4.1 may be expected to behave very similarly
and they all exhibit a severe feature down-weighting effect,
rather close to thresholding.

A more refined intuition is provided by additionally
plotting the posterior variances, and these plots are shown
in Fig. 4. Again the two RVM variants and the component-
wise Laplace + Gamma are indistinguishable, both in
terms of posterior means and posterior variances. The pos-
terior variances shrink dramatically within an interval
around the origin, which means that some of the features

3 B
solid: VB, Laplace(n) AOSTL
dashdot: MAP, Laplace(}) \

2} dash: RVM Student(1075107); e

extLaplace&Ga(107%107°) ‘
dotted: Jeffreys =1 2

thin dash:w_=w__(OLS) -

est true

-1}t

o

3 A A A A A
-3 -2 -1 0 1 2 3

Fig. 3. Comparative plot of the estimated w against ‘true’ wy, values,
when x is set to identity matrix.

b

-2

-3 -2 -1 0 1 2 3 -3 -2 - 0 1 2 3

Fig. 4. Posterior mean + one posterior standard deviation of w plotted
against wyq. when x is fixed to identity matrix and 2 = 1. Top left: Laplace
prior, VB solution (cf. Sec 2.3); Bottom left: Laplace prior, MAP solution
(cf. Figueiredo, 2003); Top right: RVM (Tipping, 2001; Bishop et al.,
2000); Bottom right: Gauss and Jeffreys hierarchical prior with MAP
solution (cf. Figueiredo, 2003). For the latter two, the posterior variances
do not play any role in the model estimation but were computed
afterwards, for the purpose of displaying. The dashed line represents
Westimate = Wirue (the OLS solution).

will be severely down-weighted. The variational estimate
of the log-convex model (left top corner), however, exhibits
a ‘mild’ feature down-weighting (shrinkage) effect com-
pared to all other methods. The posterior mean is indistin-
guishable from the true one (Fig. 1), the posterior variance
being somewhat affected by the variational approximation.
Still, it should be stressed there is a genuine difference from
a ridge or Bayesian ridge regression model, which is imme-
diately visible from the nonlinear shape of the shrinkage,
and also recalling that t, are input feature specific.

6. Class prediction
6.1. Predictive distributions

Having estimated the model, let us denote a test input
point by x*. The predictive distribution of the target for
this test point, y* is computed as the following:

pO|x") = / dwdesip(y*[x*Tw)g(w)q(t)q(2)
= /dtd).JV(y*|x*Tyw,x*wa*T +0%)q(t)q(1)

where u,, and X,, are conditioned on the higher level vari-
ables. The commonly used approximation to the above
integral is adopted in the reported experiments:

pOyIx") = A (e, v0) (16)

where
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e = X0 {(A) + 0w} aTy (17)
vy = x"((A) + o 2xx") ' T + &% (18)

Further for probit regression, we have

Pz =1|x*) = /dy*P(z = 1|y")p(y'|x*) = @( By ) (19)

6.2. Numerical simulations

Here we empirically study the behaviour and the predic-
tion performance of the methods in the under-determined
case, i.e. when the number of features exceeds the number
of examples. Such settings are of interest from the perspec-
tive of gene expression classification applications, since the
number of measured genes typically exceeds the number of
samples. In addition, it is the under-determined case when
the prior distribution may be expected to have a substantial
influence on the estimate.

This study was partly motivated by a recent controversy
regarding the relative fraction of genes that are in a causal
relationship with a certain medical condition. While it has
been commonly believed that a large fraction of genes are
not needed for predicting the target condition, recent stud-
ies (Zou and Hastie, 2005; Qi et al., 2004) challenge this
assumption. Although obtained on different grounds, these
works seem to indicate that an intensive use of feature
selection or feature thresholding may not necessarily be
the optimal choice in terms of diagnosis prediction perfor-
mance and this finding motivates further research.

6.2.1. Li.d features

The first set of experiments is concerned with synthetic
data having 200-dimensional i.i.d. features. The training
and test sets were generated using w=1[3,...,3,0,.. .,()]T,
where the number of non-zero components (equivalently,
the number of relevant features) was varied in the set
{5,10,30,50,100}, to provide a range of testing conditions.
A data matrix x was drawn from independent zero-mean
and unit variance Gaussians, and y drawn from a Gaussian

5 relevant feat / 200 10 relevant feat / 200

30 relevant feat / 200

with mean Xw and unit variance. These y were then thres-
holded at zero to provide the class labels z. The training set
size was varied in {30,60}. For each training set, a test set
of 3000 points was also generated from the same model as
the associated training set.

Fig. 5 presents the test set classification errors averaged
over 30 data sets for each of the experimental setting
described above. For Laplace-MAP, we did an internal
5-fold cross-validation within the training phase in order
to determine a suitable value for /, from a grid of candidate
vales. Since the square root of A is required in the algo-
rithms, the grid of values that we included in this search
was {0.1,0.5,1,4}. For Laplace-VB, we investigate two ver-
sions, one using a fixed value of 1 =1 throughout, and the
other inferring / from the data as described in Section 4.
The method using Jeffreys prior (Figueiredo, 2003), the
RVM (Tipping, 2001) and our component-wise Lapla-
ce + Gamma extension discussed in Section 4.1 were also
included in the comparison. As expected, the latter two
turned out to perform identically.

6.2.1.1. Misclassification results. A first observation from
the comparative results is that for scarce data, the method
with Jeffreys prior (Figueiredo, 2003), is inadequate. With
insufficient training data, this method tends to switch all
or nearly all weights to zero, leading to a random classifi-
cation. Naturally, this would unlikely be the case if data
was abundant and in addition, it is also possible that a dif-
ferent algorithmic implementation would lead to a different
behaviour. However, because we are concerned with under-
determined data settings, this finding warns for extra care.

It is also apparent from the plots that as expected, all
methods improve with increasing the training set (from
30 to 60 points), and the rate of the improvements is typi-
cally greater in the case of the ‘sparse’ methods (Jeffreys,
Laplace-MAP, RVM, Laplace and Gamma (extension)).
This is because the influence of the data is greater than that
of the prior specification for those methods.

Interestingly, for Laplace-VB with fixed /=1 and
Laplace-VB with adaptively inferred 4, the misclassification

50 relevant feat / 200 100 relevant feat / 200

T— =
0.48 -
0.45 e 048 048
; 0.46
g 04 0.46 0461 T :\
e 0.44 044} o
5 035 0.4 0.44 |
) 0.42 0.42 ’
= 03 042 I
(]
@ 04 04
025 035 04
0.38 0.38
0.2 038
03l 0361 I !
30 60 30 60 60 30 60 ° 30 60

Training set size Training set size

Training set size

Training set size Training set size

[ La-maP

— — — La(1)-vB —=— La-VB

La&Ga(ext)-VB

RVM = — Jeffr |

Fig. 5. Test classification errors in terms of mean and one standard error on both sides, computed over 30 generated data sets for each experiment. Each
data set contained 200 i.i.d. features, of which the fraction of relevant features is varied in {5, 10,30,50, 100}, as indicated in the title line of each plot. For
each of these four settings, the test results with a sample size of 30 and 60 points are shown on each plot. The test performance was measured on an
independent test set of 3000 points, generated from the same distribution as the corresponding training set.
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rates obtained are statistically equal. This suggests that
Laplace-VB is quite stable against the specification of A.

The comparison of the Laplace-MAP method against
Laplace-VB is also interesting. As we know, Laplace priors
have been previously used extensively as a sparsity-induc-
ing mechanism and often referred to as ‘sparse Bayesian
learning’. However we have just seen that this really refers
to sparse Bayesian MAP learning, since the sparsity effect is
only a property of the MAP parameter estimates in models
that employ a Laplace prior. The Bayesian estimate, in
turn, induces a posterior weighting rather than a hard
selection of features. The results confirm that this implies
significant differences in the behaviour of VB versus
MAP and we now seek to clarify these differences and char-
acterise the situations in which one is preferable to use over
the other.

Concerning misclassification error rates, it is clear from
Fig. 5 that Laplace-MAP is superior when the fraction of
relevant features is small, whereas Laplace-VB is superior
when a moderate or larger fraction of features is relevant
w.r.t. to the target. The RVM and Laplace-MAP perfor-
mance is fairly similar, the latter having slightly more pos-
sibility to adapt to moderate levels of sparsity. In the light
of the shrinkage effects shown in the previous subsection,
these observations should not be really surprising, even
though they might have been difficult to foresee otherwise.
The hope is, of course, that the understanding gained from
this study will facilitate the understanding of real data sets,
and we may get a clue for the relative fraction of relevant
features they may contain.

6.2.1.2. Brier score results. In certain applications, e.g. in a
medical context, the uncertainty estimates are also impor-
tant. It is not the same to what confidence a prediction is
given. Therefore, beyond misclassification rates, it is
enlightening to inspect error measures that incorporate
the uncertainty information. The Brier score is such a mea-
sure, previously proposed for the evaluation of gene
expression classification results (Yeung et al., 2005). This
is simply the mean square error between the prediction (a
number between 0 and 1) and the binary (0 or 1) target,
ie. 1/NY (za—plz, = 1|x,))’. The Brier scores for the
same set of synthetic data experiments are shown in Fig. 6.

5 relevant feat / 200 10 relevant feat / 200

30 relevant feat / 200

These results highlight an important point, namely a
weakness incurred by ‘sparse’ approaches in not represent-
ing uncertainties appropriately. The VB method in turn is
able to consistently improve over MAP in terms of Brier
scores—in all those test cases in which the Laplace prior
is an appropriate description of the distribution of feature
relevances. Moreover, the benefit of the hyperparameter
inference now becomes evident: The adaptive version does
provide additional improvements in terms of predictive
uncertainties and this is nicely seen in the obtained Brier
scores.

These results also pinpoint the cases when the advantage
of Laplace-VB in terms of providing better estimates of the
prediction uncertainty is feasible to exploit, and just as
importantly, when it is not. As we see, the latter concerns
the cases when the relative fraction of irrelevant features
is excessively high, so that a log-convex density is no longer
a good enough description. This latter point is a negative
finding (in the most positive sense) given the wide use of
phrases like ‘sparse Bayesian learning with Laplace priors’.

6.2.2. Correlated features

Most real-world data sets contain some redundancy in
their feature sets. Before turning to real data sets, next
we demonstrate experiments on simulated data having cor-
related features. Now we generated the data X as the con-
catenation of 10 groups of 5 correlated features each, as
follows. A 10 x N data set X was first generated from a
1.i.d. standard Gaussian, then each group of 5 correlated
features of X was derived from one of the features of X
by adding Gaussian noise with zero-mean and variance
of 0.1. One hundred and fifty noise features were also
concatenated to X, so we have 200-dimensional data of N
samples. N was varied in {30,60}, as before. The true
generating w was then set to (3,...,3,0,.. .,0)T where the
number of non-zero components is 50 and the number of
zero components is 150. The target labels were obtained
from thresholding ./"(Xw, I) at zero, as before.

The results are shown in Fig. 7, summarised from 30
repeated experiments for both training set sizes. The left
hand plot sows the misclassification rates. The Jeffrey prior
approach is again quasi-random, RVM and Laplace-MAP
perform equally, and Laplace-VB with both fixed hyperpa-

50 relevant feat / 200 100 relevant feat / 200
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Fig. 6. Test Brier scores computed from the experiment described in the previous figure.
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Fig. 7. Test classification errors (left) and brier scores (right) from experiments on 200-D data sets having 10 groups of 5 correlated features each, and 150
ii.d noise features. The test performance was measured on an independent test set of 3000 points, generated from the same distribution as the
corresponding training set. Each result represents the average and one standard error over 30 generated train + test sets from the same model.

rameter (4= 1) and adaptively inferred hyperparameter
produce significantly lower error rates. The two variants
of Laplace-VB are again equal in terms of misclassification
error rates.

On the right-hand plot of Fig. 7 we see the Brier scores
for the same experiments. The picture is similar, again
Laplace-VB is superior and the version with hyperparame-
ter inference is the overall winner.

Observe also that the actual values of the errors in both
measures are much lower than those obtained on the data
with 50 1.1.d. features. The Laplace-VB model has an addi-
tional advantage over the sparse approaches in settings
with correlated features. This stems from the fact that the
latter tend to discard the redundant features and this is det-
rimental to their generalisation performance. This was also
pointed out in (Qi et al., 2004). The following toy example
will illustrate the issue.

Fig. 8 shows the decision boundaries obtained by the
different methods under consideration, for a small 2D gen-
erated data set. The data set has two correlated features,
therefore one of them is redundant. Apart from Laplace-
VB, all sparsity-inducing methods discard one of these fea-
tures and come up with a separation boundary based on a
single feature only. However, clearly this is highly subopti-
mal from the generalisation point of view.

6.3. Colon cancer prediction

The colon data set (Alon et al., 1999) contains expres-
sion levels of 2000 genes from 40 tumour and 22 normal

colon tissues. It is a widely studied benchmark data set
for gene expression classification algorithms, and so it per-
mits a comprehensive comparison with previous results.

We perform bootstrap repeats, randomly sampling 50
points for training and testing on the remaining 12 points.
We have chosen this splitting proportion because it is the
most frequently used by other authors on this data set
(see e.g. Li et al., 2002; Qi et al., 2004; Shevade and Keer-
thy, 2003) so that more meaningful comparisons can be
made.

In each repeat, we use an identical pre-processing to that
employed in (Chu et al., 2005), which is as follows. Each
gene (feature) of the normalised (zero-mean and unit vari-
ance) training data is tested with the Wilcoxon rank sum
test, at significance level p = 0.01. This procedure is closely
related to the Significance Analysis of Microarrays (Tusher
et al., 2001). The genes found non-differentially expressed
at this stage are then discarded both from training and test-
ing. We performed 100 independent bootstrap repeats
(train-test splits) with Laplace-MAP (each time determin-
ing the value of A by internal 5-fold cross-validation) and
500 independent bootstrap repeats with the Laplace-VB
method (using the hyperparameter inference described in
Section 4). Table 1 summarises the results. We also exper-
imented with the full 2000-genes data set, and results will
be discussed later in this section.

Table 1 details the number of false positives, the number
of false negatives, the accuracy (error rates) both as the
number of miss-classifications and as a percentage, and in
addition it gives the area under the ROC curve (Fawcett

Laplace-MAP Laplace-VB RVM-VB (&MLII) Jeffreys
5 L) 5 L) 5 L) 5 L)
L) L) L) L)
0 0 \ 0 0
=514 514 o =514 o 5[4 »
H
-5 0 5 -5 0 5 -5 0 5 -5 0 5

Fig. 8. The decision boundary as obtained with the different methods on a synthetic example.
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Table 1

Classification results on the Colon data set: average and one standard
error (in brackets), over bootstrap repeats randomly splitting the data into
50 training and 12 test points

PROBIT

La-MAP
100 rep

0.660 (0.074)
1.410 (0.108)
2.070 (0.122)

17.250 (1.014)

87.976 (1.059)

La(4)-VB
500 rep

0.678 (0.034)
1.270 (0.042)
1.948 (0.050)

16.233 (0.414)

88.225 (0.482)

False +ves (#)
False —ves (#)
Error rate (#)

Error rate (%)
AUROC x 100

et al., 2004) (AUROC). The latter is a measure that takes
both prediction uncertainties (in the case of probit-classifi-
cation) and class imbalances (unequally represented clas-
ses) into account.

The results of the method employing Jeffreys prior
(Figueiredo, 2003) is not given in the table, since it resulted
in no better than a random classifier due to its tendency to
turn off all features when the sample size is too small. RVM
(with MLII) has been previously used in (Li et al., 2002),
and their results are cited for comparison in the sequel.

6.3.1. Comparison with previous results for Colon:
discussion

There are a number of results available from previous
studies of the colon data set that we review here for com-
parison. The best 10-fold cross-validation result recently
reported in (Chu et al., 2005) for the Colon data set (iden-
tically preprocessed) has been 16.19 £ 13.65% and selected
26 genes, using a variant of a non-convex model (probit
Gaussian process with Gamma priors on the length scale
parameters) estimated by MLII and combined with a
sophisticated heuristic gene ranking scheme involving data
resampling. The rest of the quoted results use identical
experimental protocol as ours and utilise the full 2000
genes Colon data set. Sparse logistic regression with data
resampling heuristic to aid stability was used in (Shevade
and Keerthy, 2003) and produced 17.7% miss-classifica-
tions. Both of these are comparable to our result, despite
we do not use any data resampling. The best results of
Qi et al. (2004), using a technically involved method they
call predictive-ARD-EP with logistic likelihood was
1.63 £ 0.11 miss-classifications, with 156.76 + 11.86 genes
in average. Another method they devised, called evi-
dence-ARD-EP gave 2.54 +0.13 miss-classifications in
average, selecting 7.92 4+ 0.14 genes. Earlier results of Li
et al. (2002) have been 2.90 + 0.13% miss-classifications
in average selecting 8.15 4+ 0.13 genes, using RVM with
MLII with some speed-up heuristics. Results obtained by
support vector methods (Guyon et al., 2002) were
2.84 £+ 0.14 misclassification with 4.25 + 0.12 genes, and
2.68 4 0.15 misclassification with 14.45 &+ 5.35 genes, using
SVM with recursive feature elimination and SVM with
Fisher score respectively.

All these results are comparable to ours. The Laplace-
VB procedure is just as simple to run as Laplace-MAP, it

does not require data resampling heuristics and it also com-
putes the hyperparameters without having to resort to
expensive cross-validation.

In the light of our experiments and analysis, Laplace-VB
is suitable when the feature importance is uneven and
can also deal with correlated features. However, it is not
suitable in cases when a too large fraction of features is com-
pletely irrelevant. We also did experiments on the full 2000
genes data set and found the accuracy of the variational
procedure does drop (we obtained AUROC x 100 =
82.688 + 1.493 from 100 bootstrap repeats) below that of
the MAP-Laplace (AUROC x 100 = 87.753 + 1.436) and
the RVM. This suggests the number of genes that have an
effect on the target must be significantly less than 2000 but
larger than a handful few of the order of ten, in accordance
with recent results (Qi et al., 2004).

It is yet an open problem to find a more flexible prior
suitable to describing more realistic distributions of feature
relevance. Nevertheless, it is clear that a thorough and sys-
tematic understanding of the behaviour of the methods is
fundamental for making progress and this is what we pri-
marily attempted in this paper. The synthetic examples
were designed to showcase the differences in behaviour,
which gives improved understanding of the difficulties
faced in under-determined problems, the reasons behind
results obtained on real data and can guide the ways of
improving them or interpreting them. From a practical
point of view, features with zero importance can easily fil-
tered out at a pre-processing stage and we found this ben-
eficial both in terms of accuracy and for saving
computation time.

6.4. Interpretability and stability

Methods that select a small subset of the original fea-
tures are often thought of as favouring interpretability.
Although this is desirable for a biologist, the cautionary
notes flashed out in (Diaz-Uriate, 2005) cannot be stressed
enough and are once more highlighted in our results. Dif-
ferent technical approaches lead to different parameters
and consequently different feature rankings, even when
their predictive capabilities are comparable.

Here we use all 62 samples of the Colon data set to esti-
mate w and we ask the question whether the magnitudes
associated with the genes would be interpretable in the
sense of an importance ranking. The ultimate answer to
this question is down to the domain experts, however to
gain insights into the meaningfulness of the larger number
of genes brought up by Laplace-VB, we evaluate leave-one-
out validation errors on nested subsets of genes by progres-
sively adding genes according to |(w,)|. Note these numbers
are validation errors only—they could be used e.g. to
inform a post-processing procedure but not as an absolute
indication of prediction performance, since w was esti-
mated from all the data. Fig. 9 shows these results compar-
atively for the methods under consideration. We included
several choices of 1 in these plots because this gives us
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Fig. 9. Validation errors corresponding to subsets of genes ranked by the magnitudes of |(w)].

another opportunity to show the extent of sensitivity to this
choice. We see that Laplace-MAP is more sensitive to the
misspecification of A whereas Laplace-VB is fairly stable.
This was also seen in previous experiments from the fact
that the somewhat arbitrarily fixed value of A =1 and the
inferred posterior expectation (1 ) produced very similar
misclassification results.

In terms of interpretability of the higher weighted genes,
as measured by the leave-one-out validation errors, clearly,
Laplace-MAP is also more sensitive to the exact number of
genes included, even with the optimally selected A. Laplace-
VB in turn displays stability in this respect as well.

Finally, the last plot of Fig. 9 shows the 1-0-0 errors for
the two RVM variants and the method with Jeffreys prior.
We see that RVM-MLII and RVM-VB are equal, and are
less stable than Laplace-VB and the parameter-free Jeffreys
prior, is again quasi-random.

We also computed 1-0-0 validation errors in the same
way on the full 2000 genes data set and interestingly, the
results have been qualitatively similar. This suggests that
further experiments may be conducted to investigate the
incorporation of a post-processing stage into Laplace-VB,
which may improve its performance when the fraction of
irrelevant features is too high.

7. Conclusions

We presented a variational Bayesian analysis of probit
regression with Laplace priors and investigated this model
for high-dimensional (under-determined) classification,
including its potential use in diagnosis prediction problems
from microarray gene expressions. We explained how and
why with the use of Laplace priors sparsity is induced in
the MAP parameter estimates but not in the Bayesian esti-
mates. We discussed and demonstrated the advantageous
properties of Bayesian estimates, which include better
uncertainty estimates, stability with respect to the hyperpa-
rameter choice and the ability to retain correlated features.
Extensive numerical experiments and detailed analysis was

provided to understand the somewhat complementary nat-
ure of the behaviour of Laplace-VB versus Laplace-MAP
and other related methods for the first time and to pinpoint
the situations when the expected advantages are exploitable
in practice. From a practical point of view, a pre-filtering of
irrelevant features was found to be beneficial to obtain a
better match of the distribution of feature relevances with
the model density and this also reduces subsequent
computations.

There are a number of avenues for further research. The
interplay between the practical desire for obtaining sparse
solutions and manner of obtaining them as a byproduct
of an approximate inference method due to model intracta-
bility is a rather interesting issue, which should deserve fur-
ther study. One potentially fruitful direction would be to
investigate a more detailed modelling of the origins of
uncertainty factors.
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