Computational counting and quantum information theory

Miriam Backens (they/them)
m.backens@cs.bham.ac.uk

University of Birmingham

DIMAP Seminar, 21 April 2020
Outline

Background: computational counting problems

Basic quantum information theory

Exact evaluation of HOLANT^c

Approximating conservative holant (joint work with Leslie Goldberg)

Conclusions
Outline

Background: computational counting problems

Basic quantum information theory

Exact evaluation of HOLANT^C

Approximating conservative holant (joint work with Leslie Goldberg)

Conclusions
problems where the goal is to count number of solutions or compute total weight of all weighted solutions, e.g.

- number of satisfying assignments of some constraint satisfaction problem
- number of perfect matchings of some graph
- number of vertex covers
- strong classical simulation of quantum computations
Computational counting

problems where the goal is to count number of solutions or compute total weight of all weighted solutions, e.g.

▶ number of satisfying assignments of some constraint satisfaction problem
▶ number of perfect matchings of some graph
▶ number of vertex covers
▶ strong classical simulation of quantum computations

Complexity class $\#P$

▶ counting number of accepting paths of a polynomial-time Turing machine
▶ i.e. “counting complexity equivalent” of NP
Holant problems

signature grid $\Omega = (G, \mathcal{F}, \pi)$

- $G = (V, E)$ is a (pseudo-)graph
- \mathcal{F} is a set of algebraic complex-valued functions of Boolean inputs, called signatures
- $\pi : V \to \mathcal{F}$
Holant problems

signature grid $\Omega = (G, \mathcal{F}, \pi)$

- $G = (V, E)$ is a (pseudo-)graph
- \mathcal{F} is a set of algebraic complex-valued functions of Boolean inputs, called signatures
- $\pi : V \to \mathcal{F}$

$\text{HOLANT}(\mathcal{F})$

- Input: a signature grid Ω over \mathcal{F}
- Output:

$$\text{HOLANT}_\Omega := \sum_{\sigma : E \to \{0,1\}} \prod_{v \in V} f_v(\sigma|_{E(v)})$$
Example holant problem

Let $\mathcal{F} = \{\text{ONE}_k \mid 1 \leq k \leq n\}$ for some positive integer n, where

$$\text{ONE}_k : \{0, 1\}^k \to \{0, 1\} : x \mapsto \begin{cases} 1 & \text{if } |x| = 1 \\ 0 & \text{otherwise} \end{cases}$$

and consider the holant for the following signature grid Ω:

$$\text{HOLANT}_\Omega = \sum_{x_1, \ldots, x_5 \in \{0, 1\}} \text{ONE}_3(x_1, x_2, x_3) \text{ONE}_2(x_1, x_4) \text{ONE}_3(x_4, x_2, x_5) \text{ONE}_2(x_5, x_3)$$
Example holant problem

Let \(\mathcal{F} = \{ \text{ONE}_k \mid 1 \leq k \leq n \} \) for some positive integer \(n \), where

\[
\text{ONE}_k : \{0, 1\}^k \to \{0, 1\} :: x \mapsto \begin{cases} 1 & \text{if } |x| = 1 \\ 0 & \text{otherwise} \end{cases}
\]

and consider the holant for the following signature grid \(\Omega \):

\[
\text{HOLANT}_\Omega = \sum_{x_1, \ldots, x_5 \in \{0, 1\}} \text{ONE}_3(x_1, x_2, x_3) \text{ONE}_2(x_1, x_4) \text{ONE}_3(x_4, x_2, x_5) \text{ONE}_2(x_5, x_3)
\]

\[
= \sum_{x_2, \ldots, x_5 \in \{0, 1\}} \text{ONE}_3(0, x_2, x_3) \text{ONE}_2(0, x_4) \text{ONE}_3(x_4, x_2, x_5) \text{ONE}_2(x_5, x_3)
\]

\[
+ \sum_{x_4, x_5 \in \{0, 1\}} \text{ONE}_3(1, 0, 0) \text{ONE}_2(1, x_4) \text{ONE}_3(x_4, 0, x_5) \text{ONE}_2(x_5, 0)
\]
Example holant problem

Let $\mathcal{F} = \{\text{ONE}_k \mid 1 \leq k \leq n\}$ for some positive integer n, where

$$\text{ONE}_k : \{0, 1\}^k \to \{0, 1\} :: x \mapsto \begin{cases} 1 & \text{if } |x| = 1 \\ 0 & \text{otherwise} \end{cases}$$

and consider the holant for the following signature grid Ω:

$$\text{HOLANT}_\Omega = \sum_{x_1, \ldots, x_5 \in \{0, 1\}} \text{ONE}_3(x_1, x_2, x_3)\text{ONE}_2(x_1, x_4)\text{ONE}_3(x_4, x_2, x_5)\text{ONE}_2(x_5, x_3)$$

$$= \sum_{x_2, \ldots, x_5 \in \{0, 1\}} \text{ONE}_3(0, x_2, x_3)\text{ONE}_2(0, x_4)\text{ONE}_3(x_4, x_2, x_5)\text{ONE}_2(x_5, x_3)$$

$$+ \sum_{x_4, x_5 \in \{0, 1\}} \text{ONE}_3(1, 0, 0)\text{ONE}_2(1, x_4)\text{ONE}_3(x_4, 0, x_5)\text{ONE}_2(x_5, 0)$$

$$= 2$$
Holant variants and some existing complexity classifications

<table>
<thead>
<tr>
<th>Exact evaluation</th>
<th>HOLANT ((\mathcal{F}))</th>
<th>HOLANT(^c)((\mathcal{F})) pinning functions</th>
<th>HOLANT(^*)((\mathcal{F})) arbitrary unaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>symmetric</td>
<td>[Cai, Guo, Williams 2012]</td>
<td>[Cai, Huang, Lu 2012]</td>
<td></td>
</tr>
<tr>
<td>non-negative</td>
<td>[Lin, Wang 2017]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>real</td>
<td></td>
<td>[Cai, Lu, Xia 2017]</td>
<td></td>
</tr>
<tr>
<td>full</td>
<td></td>
<td></td>
<td>[Cai, Lu, Xia 2011]</td>
</tr>
</tbody>
</table>
Holant variants and some existing complexity classifications

<table>
<thead>
<tr>
<th>Exact evaluation</th>
<th>\textsc{HOLANT} (\mathcal{F})</th>
<th>\textsc{HOLANT}^c(\mathcal{F})</th>
<th>\textsc{HOLANT}^* (\mathcal{F})</th>
</tr>
</thead>
<tbody>
<tr>
<td>symmetric</td>
<td>[Cai, Guo, Williams 2012]</td>
<td>[Cai, Huang, Lu 2012]</td>
<td></td>
</tr>
<tr>
<td>non-negative</td>
<td>[Lin, Wang 2017]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>real</td>
<td></td>
<td>[Cai, Lu, Xia 2017]</td>
<td></td>
</tr>
<tr>
<td>full</td>
<td></td>
<td>here</td>
<td>[Cai, Lu, Xia 2011]</td>
</tr>
</tbody>
</table>

Approximation

- partial result for \textsc{HOLANT}^* (\mathcal{F}) [Yamakami 2012]
- numerous results in \#CSP framework (i.e. holant with equality functions)
- full result for \textsc{HOLANT}^* (\mathcal{F}) here
Gadgets and holant clones

A signature grid with k “dangling edges” and m internal edges defines a function

$$g(y_1, \ldots, y_k) := \sum_{x_1, \ldots, x_m \in \{0,1\}} F(x_1, \ldots, x_m, y_1, \ldots, y_k)$$

If there exists a gadget over \mathcal{F} which defines the function g, then

$$\text{HOLANT} (\mathcal{F} \cup \{g\}) \equiv_T \text{HOLANT} (\mathcal{F})$$
Gadgets and holant clones

A signature grid with k “dangling edges” and m internal edges defines a function

$$g(y_1, \ldots, y_k) := \sum_{x_1, \ldots, x_m \in \{0,1\}} F(x_1, \ldots, x_m, y_1, \ldots, y_k)$$

If there exists a gadget over \mathcal{F} which defines the function g, then

$$\text{HOLANT } (\mathcal{F} \cup \{ g \}) \equiv_T \text{HOLANT } (\mathcal{F})$$

The holant clone $\langle \mathcal{F} \rangle_h$ is the set of all functions that can be realised by gadgets using functions from \mathcal{F}.
The vector perspective and holographic reductions

Let \(\{|x\rangle\}_{x \in \{0,1\}^n} \) be an orthonormal basis for \(\mathbb{C}^{2^n} \), then there exists a bijection:

\[
f : \{0, 1\}^n \rightarrow \mathbb{C} \quad \iff \quad |f\rangle = \sum_{x \in \{0,1\}^n} f(x) |x\rangle \in \mathbb{C}^{2^n}
\]

For any invertible \(2 \times 2 \) matrix \(M \), define a holographic transformation:

\[
\begin{align*}
\text{if} & \quad M \odot f \\
\text{if} & \quad M \odot F = \{ M \odot f \mid f \in F \}
\end{align*}
\]

Theorem (Valiant's Holant Theorem)

Let \(F \) and \(G \) be two sets of functions, and \(M \) an invertible \(2 \times 2 \) matrix. Then:

\[
\text{HOLANT}(F | G) \equiv \text{THOLANT}(M \odot F | M^{-1} \odot G)
\]
Let \(\{|x\rangle\}_{x \in \{0, 1\}^n} \) be an orthonormal basis for \(\mathbb{C}^{2^n} \), then there exists a bijection:

\[
f : \{0, 1\}^n \rightarrow \mathbb{C} \quad \leftrightarrow \quad |f\rangle = \sum_{x \in \{0, 1\}^n} f(x) |x\rangle \in \mathbb{C}^{2^n}
\]

For any invertible \(2 \times 2 \) matrix \(M \), define a holographic transformation:

- \(M \circ f \) is the function corresponding to \(M^{\otimes \text{arity}(f)} |f\rangle \), and
- \(M \circ \mathcal{F} = \{M \circ f \mid f \in \mathcal{F}\} \).
The vector perspective and holographic reductions

Let \(\{|x\rangle\}_{x \in \{0,1\}^n} \) be an orthonormal basis for \(\mathbb{C}^{2^n} \), then there exists a bijection:

\[
f : \{0, 1\}^n \rightarrow \mathbb{C} \quad \leftrightarrow \quad |f\rangle = \sum_{x \in \{0,1\}^n} f(x) |x\rangle \in \mathbb{C}^{2^n}
\]

For any invertible \(2 \times 2 \) matrix \(M \), define a holographic transformation:

- \(M \circ f \) is the function corresponding to \(M^{\otimes \text{arity}(f)} |f\rangle \), and
- \(M \circ \mathcal{F} = \{ M \circ f \mid f \in \mathcal{F} \} \).

Theorem (Valiant’s Holant Theorem)

Let \(\mathcal{F} \) and \(\mathcal{G} \) be two sets of functions, and \(M \) an invertible \(2 \times 2 \) matrix. Then:

\[
\text{HOLANT} (\mathcal{F} \mid \mathcal{G}) \equiv_T \text{HOLANT} \left(M \circ \mathcal{F} \left| (M^{-1})^T \circ \mathcal{G} \right. \right).
\]
Outline

Background: computational counting problems

Basic quantum information theory

Exact evaluation of HOLANTc

Approximating conservative holant (joint work with Leslie Goldberg)

Conclusions
Quantum states and their vector description

<table>
<thead>
<tr>
<th>system</th>
<th>state space</th>
<th>computational basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 qubit</td>
<td>\mathbb{C}^2</td>
<td>${</td>
</tr>
<tr>
<td>2 qubits</td>
<td>$\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$</td>
<td>${</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>n qubits</td>
<td>$(\mathbb{C}^2)^n \cong \mathbb{C}^{2^n}$</td>
<td>${</td>
</tr>
</tbody>
</table>
Quantum states and their vector description

<table>
<thead>
<tr>
<th>system</th>
<th>state space</th>
<th>computational basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 qubit</td>
<td>\mathbb{C}^2</td>
<td>${</td>
</tr>
<tr>
<td>2 qubits</td>
<td>$\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$</td>
<td>${</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n qubits</td>
<td>$(\mathbb{C}^2)^\otimes n \cong \mathbb{C}^{2^n}$</td>
<td>${</td>
</tr>
</tbody>
</table>

n-ary signature $\leftrightarrow n$-qubit state
Quantum entanglement

A quantum state of multiple qubits is entangled if it cannot be written as a tensor product of single-qubit states.

\[
\left| \begin{array}{c}
00 \\
\end{array} \right
angle + \left| \begin{array}{c}
11 \\
\end{array} \right
angle \text{ is fully entangled}
\]

\[
\left| \begin{array}{c}
011 \\
\end{array} \right
angle - \left| \begin{array}{c}
101 \\
\end{array} \right
angle = \left(\left| \begin{array}{c}
01 \\
\end{array} \right
angle - \left| \begin{array}{c}
10 \\
\end{array} \right
angle \right) \otimes \left| \begin{array}{c}
1 \\
\end{array} \right
angle \text{ is entangled, but not fully so}
\]

Multipartite entanglement refers to states in which at least 3 qubits are fully entangled with each other, for example:

\[
\left(i \left| \begin{array}{c}
000 \\
\end{array} \right
angle - 3 \left| \begin{array}{c}
111 \\
\end{array} \right
angle \right) \otimes \left| \begin{array}{c}
101 \\
\end{array} \right
angle
\]
Quantum entanglement

A quantum state of multiple qubits is entangled if it cannot be written as a tensor product of single-qubit states.

A quantum state is fully entangled if there is no way of writing it as a tensor product:

▶ $|00\rangle + |11\rangle$ is fully entangled

▶ $|011\rangle - |101\rangle = (|01\rangle - |10\rangle) \otimes |1\rangle$ is entangled, but not fully so
Quantum entanglement

A quantum state of multiple qubits is **entangled** if it cannot be written as a tensor product of single-qubit states.

A quantum state is **fully entangled** if there is no way of writing it as a tensor product:

- $|00⟩ + |11⟩$ is fully entangled
- $|011⟩ − |101⟩ = (|01⟩ − |10⟩) ⊗ |1⟩$ is entangled, but not fully so

Multipartite entanglement refers to states in which at least 3 qubits are fully entangled with each other, for example:

$$(i |000⟩ − 3 |111⟩) ⊗ |101⟩$$
<table>
<thead>
<tr>
<th>Counting problems</th>
<th>Quantum information theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>signature</td>
<td>quantum state</td>
</tr>
<tr>
<td>degenerate signature</td>
<td>product state</td>
</tr>
<tr>
<td>non-degenerate signature</td>
<td>entangled state</td>
</tr>
<tr>
<td>affine signature</td>
<td>stabiliser state</td>
</tr>
<tr>
<td>equality signature</td>
<td>generalised GHZ state</td>
</tr>
<tr>
<td>holographic transformation</td>
<td>stochastic local operation with classical communication (SLOCC)</td>
</tr>
<tr>
<td>(exact) Holant problem</td>
<td>(strong) classical simulation of quantum circuits</td>
</tr>
</tbody>
</table>
Outline

Background: computational counting problems

Basic quantum information theory

Exact evaluation of HOLANT^c

Approximating conservative holant (joint work with Leslie Goldberg)

Conclusions
Idea

\(\text{HOLANT}^c(\mathcal{F}) := \text{HOLANT}(\mathcal{F} \cup \{\delta_0, \delta_1\}) \)

\(\delta_0(x) = 1 - x \) and \(\delta_1(x) = x \)

know complexity classifications for

- \(\text{HOLANT}(\{f\} | \{g\}) \) for symmetric \(f, g \) with \(\text{arity}(f) = 3 \) and \(\text{arity}(g) = 2 \)
 \[\text{[Cai, Huang, Lu 2012]} \]

- \(\#\text{CSP}_2^c(\mathcal{F}) := \text{HOLANT}(\mathcal{F} \cup \{\delta_0, \delta_1\} \cup \{\text{EQ}_{2n} \mid n \in \mathbb{N}_{>0}\}) \)
 \[\text{[Cai, Lu, Xia 2017]} \]
Idea

\[
\text{HOLANT}^c(\mathcal{F}) := \text{HOLANT}(\mathcal{F} \cup \{\delta_0, \delta_1\})
\]

\[
\delta_0(x) = 1 - x \quad \text{and} \quad \delta_1(x) = x
\]

know complexity classifications for

- \(\text{HOLANT}(\{f\} | \{g\})\) for symmetric \(f, g\) with \(\text{arity}(f) = 3\) and \(\text{arity}(g) = 2\)

 \[\text{[Cai, Huang, Lu 2012]}\]

- \(\#\text{CSP}_2^c(\mathcal{F}) := \text{HOLANT}(\mathcal{F} \cup \{\delta_0, \delta_1\} \cup \{\text{EQ}_{2n} \mid n \in \mathbb{N}_{>0}\})\)

 \[\text{[Cai, Lu, Xia 2017]}\]

Approach

- if \(\text{HOLANT}(\mathcal{F} \cup \{\delta_0, \delta_1\})\) known to be polynomial-time computable: done

- in particular, this includes the case \(\mathcal{F} \subseteq \langle \Upsilon_1, \Upsilon_2 \rangle_h\)

- so assume there exists \(h \in \mathcal{F} \setminus \langle \Upsilon_1 \cup \Upsilon_2 \rangle_h\) with \(\text{arity}(h) \geq 3\), build gadgets of decreasing arity by pinning and self-loops

- either get function of arity 3 and reduce from \(\text{HOLANT}(\{f\} | \{g\})\)

- or get specific function or arity 4, interpolate \(\text{EQ}_4\), and reduce from \(\#\text{CSP}_2^c\)
Arity reduction

For any function h with $n := \text{arity}(h) > 3$, consider the functions

\[h_a(x_1, \ldots, x_{n-1}) = \sum_{y \in \{0,1\}} \delta_a(y) h(x_1, \ldots, x_{j-1}, y, x_{j+1}, \ldots, x_{n-1}) \quad \text{for } a \in \{0, 1\} \]

\[h_{jk}(x_1, \ldots, x_{n-2}) = \sum_{y \in \{0,1\}} h(x_1, \ldots, x_{j-1}, y, x_{j+1}, \ldots, x_{k-1}, y, x_{k+1}, \ldots, x_{n-2}) \]

If one of these contains a non-decomposable tensor factor of arity > 3, replace h by that factor and repeat. If the arity of the non-decomposable tensor factor is 3, stop and proceed to symmetrisation.
Arity reduction

For any function h with $n := \text{arity}(h) > 3$, consider the functions

- $h^a_j(x_1, \ldots, x_{n-1}) = \sum_{y \in \{0,1\}} \delta_a(y) h(x_1, \ldots, x_{j-1}, y, x_{j+1}, \ldots, x_{n-1})$ for $a \in \{0, 1\}$
- $h_{jk}(x_1, \ldots, x_{n-2}) = \sum_{y \in \{0,1\}} h(x_1, \ldots, x_{j-1}, y, x_{j+1}, \ldots, x_{k-1}, y, x_{k+1}, \ldots, x_{n-2})$

If one of these contains a non-decomposable tensor factor of arity > 3, replace h by that factor and repeat. If the arity of the non-decomposable tensor factor is 3, stop and proceed to symmetrisation.

The above process always works unless $n = 4$ and h has the following property (up to permutations of the input variables)

$$h(x) = 0 \text{ unless } x \in \{0000, 0011, 1100, 1111\}$$

In that case, can realise or interpolate EQ_4, then realise $\{EQ_{2n} \mid n \in \mathbb{N}_{>0}\}$, thus problem is as hard as $\#\text{CSP}_2^\mathbb{C}$.

A different perspective on ternary signatures

From quantum theory we know that, up to non-symmetric holographic transformations, there are only two distinct non-decomposable ternary signatures.

It can be convenient to think of signatures as gadgets even if they are not defined that way, e.g. for a non-decomposable ternary signature:

\[
\begin{array}{c}
\text{A} \\
\downarrow \\
\text{B} \\
\text{C}
\end{array}
\]

where \(\downarrow \) is assigned either

\[
\text{EQ}_3(x) = \begin{cases}
1 & \text{if } x_1 = x_2 = x_3 \\
0 & \text{otherwise}
\end{cases}
\]

or

\[
\text{ONE}_3(x) = \begin{cases}
1 & \text{if } x_1 + x_2 + x_3 = 1 \\
0 & \text{otherwise}
\end{cases}
\]

and \(A, B, C \) are non-decomposable binary signatures.
Symmetrising ternary signatures

To a holographic transformation, the following gadget is determined by 2 cases with 4 parameters each:

```
A
B
C
B
C
A
A
C
B
```
Symmetrising ternary signatures

Up to a holographic transformation, the following gadget is determined by 2 cases with 4 parameters each:
Gadgets for non-decomposable symmetric ternary signatures

Given a set \mathcal{F} containing a non-decomposable ternary signature, can show:

- either it is possible to realise a symmetric non-decomposable ternary signature using the above gadget (among others),
- or $\mathcal{F} \cup \{\delta_0, \delta_1\}$ is one of the known polynomial-time computable families.

Can similarly realise non-decomposable symmetric binary g, and then get hardness by reduction from HOLANT ($\{f\} \mid \{g\}$).
The HOLANTc dichotomy

Theorem

Let \mathcal{F} be a set of algebraic complex-valued functions of Boolean inputs. Then $\text{HOLANT}^c(\mathcal{F})$ is polynomial time computable if:

- $\text{HOLANT}^*(\mathcal{F})$ can be solved in polynomial time, or
- \mathcal{F} contains only affine functions under certain holographic transformations, or
- \mathcal{F} contains only local affine functions.

In all other cases, $\text{HOLANT}^c(\mathcal{F})$ is $\#P$-hard.
Outline

Background: computational counting problems

Basic quantum information theory

Exact evaluation of HOLANT\(^c\)

Approximating conservative holant (joint work with Leslie Goldberg)

Conclusions
Approximation vs exact evaluation

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOLANT (\mathcal{F})</td>
<td>determine holant value exactly</td>
</tr>
<tr>
<td>HolantNorm$(\mathcal{F}; 1.01)$</td>
<td>approximate norm to within multiplicative error of 1.01</td>
</tr>
<tr>
<td>HolantArg$(\mathcal{F}; \pi/3)$</td>
<td>approximate argument to within additive error of $\pi/3$</td>
</tr>
</tbody>
</table>

- Specific values of accuracy parameters not relevant
- Cannot use technique of polynomial interpolation when analysing approximation complexity, hence many existing results cannot be used
Exact dichotomy for conservative holant (aka HOLANT*)

Theorem ([Cai, Lu, Xia 2011])

Suppose \mathcal{F} is a finite set of functions. If

1. $\mathcal{F} \subseteq \langle \Upsilon_1 \cup \Upsilon_2 \rangle_h$, or
2. there exists an orthogonal matrix O such that $\mathcal{F} \subseteq O \circ \langle \Upsilon_1, \text{EQ}_3, \text{NEQ} \rangle_h$, or
3. $\mathcal{F} \subseteq \left(\begin{smallmatrix} 1 & 1 \\ i & -i \end{smallmatrix} \right) \circ \langle \Upsilon_1, \text{EQ}_3, \text{NEQ} \rangle_h$, or
4. there exists a matrix $K \in \left\{ \left(\begin{smallmatrix} 1 & 1 \\ i & -i \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 & 1 \\ -i & i \end{smallmatrix} \right) \right\}$ such that $\mathcal{F} \subseteq \langle K \circ M \rangle_h$, where

$$M = \{ f \mid f(x) = 0 \text{ unless } |x| \leq 1 \},$$

then, for any finite subset $S \subseteq \mathcal{U}$, the problem $\text{HOLANT}(\mathcal{F}, S)$ is polynomial-time computable. Otherwise, there exists a finite subset $S \subseteq \mathcal{U}$ such that $\text{HOLANT}(\mathcal{F}, S)$ is $\#P$-hard. The dichotomy is still true even if the inputs are restricted to planar graphs.

We will refer to conditions 1–4 as the four conditions.
Exact dichotomy for conservative holant (aka HOLANT*)

Theorem ([Cai, Lu, Xia 2011])

Suppose \mathcal{F} is a finite set of functions. If

1. $\mathcal{F} \subseteq \langle \Upsilon_1 \cup \Upsilon_2 \rangle_h$, or

2. there exists an orthogonal matrix O such that $\mathcal{F} \subseteq O \circ \langle \Upsilon_1, \text{EQ}_3, \text{NEQ} \rangle_h$, or

3. $\mathcal{F} \subseteq \left(\begin{smallmatrix} 1 & 1 \\ i & -i \end{smallmatrix} \right) \circ \langle \Upsilon_1, \text{EQ}_3, \text{NEQ} \rangle_h$, or

4. there exists a matrix $K \in \left\{ \left(\begin{smallmatrix} 1 & 1 \\ i & -i \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 & 1 \\ -i & i \end{smallmatrix} \right) \right\}$ such that $\mathcal{F} \subseteq \langle K \circ \mathcal{M} \rangle_h$, where

$$\mathcal{M} = \{ f \mid f(x) = 0 \text{ unless } |x| \leq 1 \},$$

then, for any finite subset $S \subseteq \mathcal{U}$, the problem $\text{HOLANT}(\mathcal{F}, S)$ is polynomial-time computable. Otherwise, there exists a finite subset $S \subseteq \mathcal{U}$ such that $\text{HOLANT}(\mathcal{F}, S)$ is $\#P$-hard. The dichotomy is still true even if the inputs are restricted to planar graphs.

We will refer to conditions 1–4 as the four conditions.
Universal quantum circuits as holant clones

The following is well-known in quantum computing:

Any $2^n \times 2^n$ *unitary matrix* can be realised from 2×2 *unitary matrices* and

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

via Kronecker products and matrix products.

Lemma

Any algebraic complex-valued function is contained in $\langle \Upsilon_2, \text{CNOT}, \delta_0 \rangle_h$, *where*

$$\text{CNOT}(\mathbf{x}) = \begin{cases}
1 & \text{if } \mathbf{x} \in \{0000, 0101, 1011, 1110\} \\
0 & \text{otherwise.}
\end{cases}$$
Universal conservative holant clones

Theorem
\(\langle F, \Upsilon_1 \rangle_h \) is universal unless \(F \) satisfies one of the four conditions.

Proof (sketch).

▷ If \(F \subseteq \langle \Upsilon_1, \Upsilon_2 \rangle_h \), it satisfies the first condition.
▷ So assume otherwise, i.e. there is \(f \in F \setminus \langle \Upsilon_1, \Upsilon_2 \rangle_h \).
▷ Use this \(f \) to realise a ternary function \(f' \).
▷ If \(F \) does not satisfy conditions 2–4, can use \(f' \) (and possibly some other functions in \(F \cup \Upsilon_1 \)) to realise \(\text{EQ}_3 \).
▷ Similarly, can show \(\Upsilon_2 \subseteq \langle F, \Upsilon_1 \rangle_h \).
▷ Realise CNOT from \(\text{EQ}_3 \) and \(h(x, y) = (-1)^{xy} \).
▷ Then apply the universality lemma.
Approximating conservative holant

Theorem
Suppose that \(\mathcal{F} \) is finite. Then there exists a finite subset \(S \subseteq \gamma_1 \) such that both \(\text{HolantArg}(\mathcal{F} \cup S; \pi/3) \) and \(\text{HolantNorm}(\mathcal{F} \cup S; 1.01) \) are \(\#P \)-hard, unless \(\mathcal{F} \) satisfies one of the four conditions.

Proof (sketch).

- If \(\mathcal{F} \) does not satisfy any of the four conditions, \(\langle F \cup \gamma_1 \rangle_h \) is universal.
- Pick some computational problem that is known to be hard to approximate, e.g. approximating the independent set polynomial on graphs of maximum degree 3.
- Only need a finite number of functions from \(\mathcal{F} \cup \gamma_1 \) to build the gadgets necessary to reduce from that problem.
Outline

Background: computational counting problems

Basic quantum information theory

Exact evaluation of HOLANTc

Approximating conservative holant (joint work with Leslie Goldberg)

Conclusions
Conclusions

- **Holant problems** are a framework for counting problems characterised by sets of signatures.

 - Holant problems have the same mathematical description as quantum states: vectors in \mathbb{C}^{2^n}.
 - Use knowledge from quantum theory, particularly about entanglement, to analyse Holant problems.
 - This has led to new complexity dichotomies.

 - Exact evaluation of $\text{Holant}(F)$ can be computed as $\text{Holant}(F \cup \{\delta_0, \delta_1\})$. [arXiv:1704.05798]
 - Approximation of conservative Holant [with Leslie Goldberg, arXiv:1811.00817].

- Approach has also been taken up by other authors, leading to further exact holant dichotomies.
Conclusions

- **Holant problems** are a framework for counting problems characterised by sets of signatures.
- Signatures have the same mathematical description as quantum states: vectors in \mathbb{C}^{2^n}.

Thank you!
Conclusions

- **Holant problems** are a framework for counting problems characterised by sets of signatures.
- Signatures have the same mathematical description as quantum states: vectors in \mathbb{C}^{2^n}.
- Use knowledge from quantum theory, particularly about entanglement, to analyse Holant problems.

Thanks!
Conclusions

- **Holant problems** are a framework for counting problems characterised by sets of signatures.
- Signatures have the **same mathematical description** as quantum states: vectors in \mathbb{C}^{2^n}.
- Use knowledge from quantum theory, particularly about entanglement, to analyse Holant problems.
- This has led to **new complexity dichotomies**.
Conclusions

- Holant problems are a framework for counting problems characterised by sets of signatures
- signatures have the same mathematical description as quantum states: vectors in \mathbb{C}^{2^n}
- use knowledge from quantum theory, particularly about entanglement, to analyse Holant problems
- this has led to new complexity dichotomies
 - exact evaluation of $\text{HOLANT}^c (\mathcal{F}) = \text{HOLANT} (\mathcal{F} \cup \{\delta_0, \delta_1\})$ [arXiv:1704.05798]

approximation of conservative HOLANT [with Leslie Goldberg, arXiv:1811.00817]
approach has also been taken up by other authors, leading to further exact holant dichotomies

Thank you!
Conclusions

- **Holant problems** are a framework for counting problems characterised by sets of signatures
- signatures have the **same mathematical description** as quantum states: vectors in \mathbb{C}^{2^n}
- use **knowledge from quantum theory**, particularly about entanglement, to analyse Holant problems
- this has led to **new complexity dichotomies**
 - exact evaluation of $\text{HOLANT}^c (\mathcal{F}) = \text{HOLANT} (\mathcal{F} \cup \{\delta_0, \delta_1\})$ [arXiv:1704.05798]

Thank you!
Conclusions

- **Holant problems** are a framework for counting problems characterised by sets of signatures.
- Signatures have the same mathematical description as quantum states: vectors in \mathbb{C}^{2^n}.
- Use knowledge from quantum theory, particularly about entanglement, to analyse Holant problems.
- This has led to new complexity dichotomies:
 - Exact evaluation of $\text{HOLANT}^c (\mathcal{F}) = \text{HOLANT} (\mathcal{F} \cup \{\delta_0, \delta_1\})$ [arXiv:1704.05798]
 - Approximation of conservative HOLANT [with Leslie Goldberg, arXiv:1811.00817]
- Approach has also been taken up by other authors, leading to further exact holant dichotomies.
Conclusions

- Holant problems are a framework for counting problems characterised by sets of signatures.
- Signatures have the same mathematical description as quantum states: vectors in \mathbb{C}^{2^n}.
- Use knowledge from quantum theory, particularly about entanglement, to analyse Holant problems.
- This has led to new complexity dichotomies.
 - Exact evaluation of $\text{HOLANT}^c (\mathcal{F}) = \text{HOLANT} (\mathcal{F} \cup \{\delta_0, \delta_1\})$ [arXiv:1704.05798]
 - Approximation of conservative HOLANT [with Leslie Goldberg, arXiv:1811.00817]
- Approach has also been taken up by other authors, leading to further exact holant dichotomies.

Thank you!