Implementing functional languages with abstract machines

Hayo Thielecke
University of Birmingham
http://www.cs.bham.ac.uk/~hxt

December 9, 2015
Contents

Introduction

Lambda calculus and programming languages

CEK machine

CEK machine and control

Optimizations and lambda calculus
Structure of the module

Parsing ✓
- Progression from: Language + Logic, Models of Computation
 - abstract machines, formal, “mathy”

Compiling C with Clang ✓
- Progression from: Computer Systems + Architecture, C/C++
 - not so formal, by example, x86 machine code

Implementing functional languages
- Progression from: functional programming
 - builds on abstract machines and C stack
 - the most research-led section, goes beyond Dragon Book
There are trade-offs in programming language design and implementation. If you know both C and functional languages, you understand much more than just knowing one of them. They are at opposite ends of spectrum of language design.
First-class functions and language design trade-offs

Can a function be:

1. passed as a parameter to another function?
2. returned as the result of another function?
3. defined inside another function and thereby have access to its variables?

- In C, you can do 1 and 2, using function pointers, but not 3.
- In Pascal, you can do 1 and 3 but not 2. Needs a “static link” in the stack frame.
- In Gnu C, you can do all 3, but can get undefined behaviour from returning functions.
- In functional languages, you can do all 3 without restrictions. More powerful, less efficient, as it needs a garbage collector.
Implementing languages like OCaml (or F#, or Scheme, or Clojure, ...) amounts to implementing call-by-value lambda calculus.

There are many abstract machines for functional languages.

They share some critical ingredients: call stack and closures.

There are similarities to the way C is implemented using stack and frame pointer.
Lambda calculus and programming language (pre-)history

- 1879: Frege’s Begriffsschrift clarified variables and functions
- 1930s: Church invents lambda calculus
- Church and Turing invent fixpoint combinators
- Haskell Curry compiles lambda calculus into S and K combinators
- Lisp implements lambda, but without closures (dynamic binding)
- Landin notices that Algol-like languages can be desugared into lambda calculus
- 1964: Landin’s SECD machine includes closures
- 1980s–: modern functional languages, CEK machine, CPS transform, ...
- Now (2015): many different compilers for ML and Haskell; C++ has lambda expressions that build closures
Lambda calculus syntax

\[M ::= x \]
\[M_1 M_2 \]
\[\lambda x. M \]
\[n \]

Here \(n \) ranges over constants such as integers.

Note: this is an ambiguous grammar, so no good for parsing.
Convention: left associative.

\[M_1 M_2 M_3 \]

is read as
\[(M_1 M_2) M_3 \]

Lambda abstraction extends as far to the right as possible:
\(\lambda x.x \ y \) is read as \(\lambda x.(x \ y) \) and not \((\lambda x.x) y \)
Free variables of a lambda term

In an abstraction

$$\lambda x. M$$

the scope of \(x \) is \(M \).

A variable is free in a lambda term if there is an occurrence of that variable that is not in scope of a lambda binding for that variable. A lambda term that contains no free variables is called closed. Note: variables in lambda \(\neq \) variables in most programming languages. The former cannot be updated.
Free variables examples

What are the free variables in:

1. $z(x \ y)$
Free variables examples

What are the free variables in:

1. $z(x\, y)$
2. $\lambda x.x$
Free variables examples

What are the free variables in:

1. $z(x\ y)$
2. $\lambda x. x$
3. $\lambda x. y\ x$
4. $\lambda y.(\lambda x. y\ x)$
5. $(\lambda x. x)(\lambda y. x)$
6. Exercise: for each occurrence of a variable, draw an arrow to the corresponding lambda binding, if there is one.
Free variables examples

What are the free variables in:

1. $z (x y)$
2. $\lambda x. x$
3. $\lambda x. y x$
4. $\lambda y. \lambda x. y x$
Free variables examples

What are the free variables in:

1. \(z(x y) \)
2. \(\lambda x.x \)
3. \(\lambda x.y x \)
4. \(\lambda y.\lambda x.y x \)
5. \((\lambda y.\lambda x.y x)x \)
What are the free variables in:

1. $z(x\,y)$
2. $\lambda x.x$
3. $\lambda x.y\,x$
4. $\lambda y.\lambda x.y\,x$
5. $(\lambda y.\lambda x.y\,x)\,x$
6. $(\lambda x.x)\,(\lambda y.x)\,y$

Exercise: for each occurrence of a variable, draw an arrow to the corresponding lambda binding, if there is one.
We write $M_1[x \mapsto M_2]$ for the substitution in M_1 of x by M_2. Here we assume that the bound variables in M_1 do not occur in M_2, which can always be made to hold by renaming them.

β-reduction:

$$(\lambda x. M_1) M_2 \rightarrow_{\beta} M_1[x \mapsto M_2]$$

This is not efficient if we literally copy M_2 for every occurrence of x.

Instead: remember that x refers to M_2 in an environment.
beta reduction and compiler terminology

\[((\lambda x. M_1) M_2) \rightarrow_\beta (M_1[x \mapsto M_2]) \]

- (\lambda x. M_1) called function, callee
- M_1 function body
- x formal parameter
- M_2 actual parameter
Lambda calculus has first-class functions

Can a function be:

1. passed as a parameter to another function? Yes, e.g.: $(\lambda x. M_1) (\lambda y. M_2)$

2. returned as the result of another function? Yes, e.g.: $\lambda y. (\lambda x. M_1)$

3. defined inside another function and thereby have access to its variables? Yes, e.g.: $\lambda y. \lambda x. y$
The trouble with beta reduction and free variables

Beta reduction by replacing variables with values is fine for pencil and paper calculation, as originally intended in the lambda calculus. As we have seen in C, the compiled code for a function should stay fixed. Different calls have different values in stack frames and registers. Consider a term

$$\lambda x. y x$$

Here x is our formal parameter. We can expect to be passed some value for it using some calling convention (stack or register, say). But what about y? We need some way of knowing what its value is.

In C, we have seen how to find values in memory (and in particular using the frame pointer). What should a machine for lambda calculus do?
Call by name and call by value

Beta reduction is nondeterministic, as there can be more than one redex in a term. A programming language needs to fix an evaluation order; compare making parsing machines deterministic. Consider the following term with multiple β-redexes R_1, R_2, and R_3:

$$\left(\lambda x_1.\left((\lambda x_2.M_2) M_3\right)\right) \left((\lambda x_4.M_4) M_5\right)$$

Under call-by-name, R_1 is the next redex to be reduced. Under call-by-value, it is R_3. R_2 is under a lambda. Reducing R_2 correspond to function inlining rather than function call.
Encoding let as lambda

A local let binding

\[\text{let } x = M_1 \text{ in } M_2 \]

is encoded as

\[(\lambda x. M_2) \ M_1 \]

Idea: evaluate \(M_1 \), bind the result to \(x \) and then evaluate \(M_2 \).
Programs idealized as lambda terms

Typical C-style program

\[f_1(T_1 x_1) \{ \text{return } E_1; \} \]
\[\ldots \]
\[f_n(T_n x_n) \{ \text{return } E_n; \} \]
\[\text{main()} \{ \text{return } E; \} \]

Idealized in lambda calculus

\[\text{let } f_1 = \lambda x_1.E_1 \text{ in } \]
\[\ldots \]
\[\text{let } f_n = \lambda x_n.E_n \text{ in } \]
\[E \]

Exercise: explain how function linlining on the left corresponds to two beta reduction on the right.
Infinite loops

\[(\lambda y. 42)((\lambda x. xx)(\lambda x. xx))\]

The same term may produce a constant or loop forever, depending where we choose to perform the beta reduction.
Encoding of pairs

Data structures such as pairs, lists and trees can be encoded in the lambda calculus. The idea is a kind of protocol between a server that holds data and clients that need the data.

\[\langle M_1, M_2 \rangle = \lambda v. v \; M_1 \; M_2 \]
\[\text{fst} = \lambda p. p (\lambda x. \lambda y. x) \]
\[\text{snd} = \lambda p. p (\lambda x. \lambda y. y) \]

Exercise: Prove that

\[\text{fst} \; \langle M_1, M_2 \rangle \rightarrow_\beta M_1 \]
\[\text{snd} \; \langle M_1, M_2 \rangle \rightarrow_\beta M_2 \]
Abstract machines for functional languages

- History: Peter Landin’s 1964 paper “The mechanical evaluation of expressions”
- SECD machine
- Caml originally came from the Categorical Abstract Machine (CAM)
- Caml compiler based on ZINC machine, itself inspired by the Krivine Abstract Machine
- CEK machine is a cleaner version of the SECD machine by Friedman and Felleisen in the 1980s
- S and D are fused into K
- The CEK machine corresponds to CPS compiling
- CPS is related to the SSA form used in LLVM
The name CEK is due to the fact that the machine has three components:

- **C** stands for control or code. Intuitively, it is the expression that the machine is currently trying to evaluate.
- **E** stand for environment. It gives bindings for the free variables in **C**.
- **K** stands for continuation (given that the letter **C** is already used up). It tells the machine what to do when it is finished with the current **C**.
The CEK machine is strictly speaking not a compiler but an interpreter.
The original program, represented as a lambda term, is manipulated at run time.
A real implementation would translate the lambda term into machine code which the simulates the CEK machine.
Nonetheless, the key ideas are stack and closures.
CEK machine runs lambda terms as programs

The language that the basic CEK machine can interpret is λ calculus with constants n:

$$M ::= x$$

$$| M_1 M_2$$

$$| \lambda x. M$$

$$| n$$

More constructs could be added, e.g., exceptions or assignments.
How to compile lambdas

A closed lambda term can be implemented as a code pointer, as in C.
If a lambda term is not closed, the implementation “makes it closed”, so to speak, by constructing a closure.
Environments

An environment E is a list of the form

$$x_1 \mapsto W_1, \ldots, x_n \mapsto W_n$$

that associates the value W_j to variable x_j. We write \emptyset for the special case when the list is empty.

An environment E can be updated with a new binding, giving x the value W, which we write as

$$E[x \mapsto W]$$

We write

$$\text{lookup } x \text{ in } E$$

For W_j if $x = x_i$
Closures

A closure is of the form

\(\text{clos}(\lambda x. M, E) \)

Here \(x \) is called the parameter, \(M \) the body, and \(E \) the environment of the closure.

A value \(W \) can be a constant \(n \) or a closure:

\[
W ::= n \\
| \text{clos}(\lambda x. M, E)
\]
Objects and closures

In C, a function body has access to parameters (and also global variables).
With objects, a function has access to members of the surrounding object.
With closures, a function has access to variables in surrounding functions.
In both objects and closure, there are additional pointers to data.
CEK frames and stacks

A frame is of the form

\[F ::= (W \circ) \]
\[\mid (\circ M E) \]

A continuation \(K \) is a stack of frames. If \(F \) is a frame and \(K \) a continuation, we write \(F, K \) for the continuation which we get by pushing \(F \) onto the top of \(K \). The empty stack is written as ■.
CEK machine steps

\[\langle x \mid E \mid K \rangle \rightsquigarrow \langle \text{lookup } x \text{ in } E \mid E \mid K \rangle \]
\[\langle M_1 \ M_2 \mid E \mid K \rangle \rightsquigarrow \langle M_1 \mid E \mid (\bigcirc \ M_2 \ E), K) \rangle \]
\[\langle \lambda x. \ M \mid E \mid K \rangle \rightsquigarrow \langle \text{clos}(\lambda x. \ M, E) \mid E \mid K \rangle \]
\[\langle W \mid E_1 \mid (\bigcirc \ M \ E_2), K \rangle \rightsquigarrow \langle M \mid E_2 \mid (W \bigcirc), K \rangle \]
\[\langle W \mid E_1 \mid (\text{clos}(\lambda x. \ M, E_2) \bigcirc), K \rangle \rightsquigarrow \langle M \mid E_2[x \mapsto W] \mid K \rangle \]
CEK machine steps with pattern matching highlighted

\[
\langle x \mid E \mid K \rangle \rightsquigarrow \langle \text{lookup } x \text{ in } E \mid E \mid K \rangle \\
\langle M_1 \, M_2 \mid E \mid K \rangle \rightsquigarrow \langle M_1 \mid E \mid (\bigcirc M_2 \, E) \mid K \rangle \\
\langle \lambda x.\, M \mid E \mid K \rangle \rightsquigarrow \langle \text{clos}(\lambda x.\, M, E) \mid E \mid K \rangle \\
\langle W \mid E_1 \mid (\bigcirc M \, E_2) \mid K \rangle \rightsquigarrow \langle M \mid E_2 \mid (W \bigcirc) \mid K \rangle \\
\langle W \mid E_1 \mid (\text{clos}(\lambda x.\, M, E_2) \bigcirc) \mid K \rangle \rightsquigarrow \langle M \mid E_2[x \mapsto W] \mid K \rangle
\]
CEK steps explained

1. If the current code is a variable x, we must look it up in the environment E.

2. If the current code is an application $M_1 M_2$, then we proceed to evaluate the M_1 in the operator position. M_2 is pushed onto the continuation stack. Note that M_2 may contain free variables. For looking them up later, we push the current environment E along with M_2.

3. If the current code is a lambda abstraction, we package it up with the current environment to form a closure. That closure is the value of the expression.
4. If the hole in the top frame is on the left, we pop of the term M and its associated environment E, and proceed to evaluate M relative to E. We also push on a new frame that tells us we still have to apply W to the result we hope to get from the evaluation of M.

5. If the hole in the top frame is on the right, we pop off the frame, which should contain a closure. We apply the closure by evaluating its body in the environment extended with the value W for the argument of the closure. If there is no closure in the frame, then the machine gets stuck and there is no transition step. That situation arises if we get a run-time type error from ill-typed code such as applying a constant to something, as in $7(\lambda x.x)$.

Function call (application) in the CEK machine

Evaluating an application

\[M_1 \ M_2 \]

is done in three stages:

1. evaluate \(M_1 \), while remembering \(M_2 \) and the current environment in frame \((\mathcal{O} \ M_2 \ E)\)

2. evaluate \(M_2 \), while remembering the value \(W_1 \) we got from \(M_2 \) in the frame \((W_1 \mathcal{O})\)

3. When \(M_2 \) has been evaluated to some \(W_2 \), pop the frame \((W_1 \mathcal{O})\) and apply \(W_1 \) to \(W_2 \). This only works if \(W_1 \) is a closure, say

\[W_1 = \text{clos}(\lambda x. M, E) \]

If so, \(x \) gets bound to \(W_2 \).

This may be a little subtle to understand due to the switching between \(M_1 \) and \(M_2 \).
We say that a term M evaluates to a value W if there is a sequence of steps:

$$\langle M \mid \emptyset \mid \square \rangle \rightsquigarrow \cdots \rightsquigarrow \langle W \mid E \mid \square \rangle$$

The end state must have a value in the C position and an empty stack/final continuation $K = \square$.
The environment need not be empty.
Note: the machine is done when its stack is empty, like the LL machine.
The CEK machine is deterministic.
The CEK machine may get stuck.
Example: function as result and function inside another

\((\lambda x. \lambda y. x) 1\) 2 evaluates to 1

\[\langle ((\lambda x. \lambda y. x) 1) 2 \mid \emptyset \mid ■ \rangle\]
Example: function as result and function inside another

$$((\lambda x. \lambda y. x) 1) 2$$ evaluates to 1

$$\langle ((\lambda x. \lambda y. x) 1) 2 \mid \emptyset \mid \Box \rangle$$

$$\rightsquigarrow \langle (\lambda x. \lambda y. x) 1 \mid \emptyset \mid (\bigcirc 2 \emptyset) \rangle$$
Example: function as result and function inside another

$((\lambda x.\lambda y.x)\,1)\,2$ evaluates to 1

$\langle ((\lambda x.\lambda y.x)\,1)\,2 \mid \emptyset \mid \blacksquare \rangle$

$\Rightarrow \langle (\lambda x.\lambda y.x)\,1 \mid \emptyset \mid (\,\bigcirc\,\,2\,\emptyset) \rangle$

$\Rightarrow \langle (\lambda x.\lambda y.x) \mid \emptyset \mid (\,\bigcirc\,\,1\,\emptyset), (\,\bigcirc\,\,2\,\emptyset) \rangle$
Example: function as result and function inside another

\((\lambda x.\lambda y.x)\,1\,2\) evaluates to 1

\[\langle ((\lambda x.\lambda y.x)\,1\,2 \mid \emptyset \mid □) \rangle \]
\[\leadsto \langle ((\lambda x.\lambda y.x)\,1 \mid \emptyset \mid (∘\,2\,\emptyset) \rangle \]
\[\leadsto \langle (\lambda x.\lambda y.x) \mid \emptyset \mid (∘\,1\,\emptyset)\,,\,(∘\,2\,\emptyset) \rangle \]
\[\leadsto \langle \text{clos}((\lambda x.\lambda y.x),\emptyset) \mid \emptyset \mid (∘\,1\,\emptyset)\,,\,(∘\,2\,\emptyset) \rangle \]
Example: function as result and function inside another

$((\lambda x. \lambda y. x) 1) 2$ evaluates to 1

\[
\langle ((\lambda x. \lambda y. x) 1) 2 \mid \emptyset \mid \Box \rangle \\
\Rightarrow \langle (\lambda x. \lambda y. x) 1 \mid \emptyset \mid (\bigcirc 2 \emptyset) \rangle \\
\Rightarrow \langle (\lambda x. \lambda y. x) \mid \emptyset \mid (\bigcirc 1 \emptyset), (\bigcirc 2 \emptyset) \rangle \\
\Rightarrow \langle \text{clos}((\lambda x. \lambda y. x), \emptyset) \mid \emptyset \mid (\bigcirc 1 \emptyset), (\bigcirc 2 \emptyset) \rangle \\
\Rightarrow \langle 1 \mid \emptyset \mid (\text{clos}((\lambda x. \lambda y. x), \emptyset) \bigcirc), (\bigcirc 2 \emptyset) \rangle
\]
Example: function as result and function inside another

$$(\lambda x. \lambda y. x)\ 1\ 2$$ evaluates to 1

$$\langle ((\lambda x. \lambda y. x)\ 1)\ 2\ |\ \emptyset\ |\ ■ \rangle$$

$$\Downarrow \quad \langle (\lambda x. \lambda y. x)\ 1\ |\ \emptyset\ |\ (\bigcirc\ 2\ \emptyset) \rangle$$

$$\Downarrow \quad \langle (\lambda x. \lambda y. x)\ |\ \emptyset\ |\ (\bigcirc\ 1\ \emptyset), (\bigcirc\ 2\ \emptyset) \rangle$$

$$\Downarrow \quad \langle \text{clos}((\lambda x. \lambda y. x), \emptyset)\ |\ \emptyset\ |\ (\bigcirc\ 1\ \emptyset), (\bigcirc\ 2\ \emptyset) \rangle$$

$$\Downarrow \quad \langle 1\ |\ \emptyset\ |\ (\text{clos}((\lambda x. \lambda y. x), \emptyset)\bigcirc), (\bigcirc\ 2\ \emptyset) \rangle$$

$$\Downarrow \quad \langle \lambda y. x\ |\ x \mapsto 1\ |\ (\bigcirc\ 2\ \emptyset) \rangle$$
Example: function as result and function inside another

$((\lambda x.\lambda y.x)\ 1)\ 2$ evaluates to 1

$\langle ((\lambda x.\lambda y.x)\ 1)\ 2 \mid \emptyset \mid ■ \rangle$

$\leadsto \langle (\lambda x.\lambda y.x)\ 1 \mid \emptyset \mid (\bigcirc \ 2 \ \emptyset) \rangle$

$\leadsto \langle (\lambda x.\lambda y.x) \mid \emptyset \mid (\bigcirc \ 1 \ \emptyset), (\bigcirc \ 2 \ \emptyset) \rangle$

$\leadsto \langle \text{clos}((\lambda x.\lambda y.x), \emptyset) \mid \emptyset \mid (\bigcirc \ 1 \ \emptyset), (\bigcirc \ 2 \ \emptyset) \rangle$

$\leadsto \langle 1 \mid \emptyset \mid (\text{clos}((\lambda x.\lambda y.x), \emptyset)\bigcirc), (\bigcirc \ 2 \ \emptyset) \rangle$

$\leadsto \langle \lambda y.x \mid x \mapsto 1 \mid (\bigcirc \ 2 \ \emptyset) \rangle$

$\leadsto \langle \text{clos}((\lambda y.x), x \mapsto 1) \mid x \mapsto 1 \mid (\bigcirc \ 2 \ \emptyset) \rangle$
Example: function as result and function inside another

$$((\lambda x. \lambda y. x) 1) 2$$ evaluates to 1

$$\langle ((\lambda x. \lambda y. x) 1) 2 \mid \emptyset \mid \blacksquare \rangle$$

$$\mapsto \langle (\lambda x. \lambda y. x) 1 \mid \emptyset \mid (\bigcirc 2 \emptyset) \rangle$$

$$\mapsto \langle (\lambda x. \lambda y. x) \mid \emptyset \mid (\bigcirc 1 \emptyset), (\bigcirc 2 \emptyset) \rangle$$

$$\mapsto \langle \text{clos}((\lambda x. \lambda y. x), \emptyset) \mid \emptyset \mid (\bigcirc 1 \emptyset), (\bigcirc 2 \emptyset) \rangle$$

$$\mapsto \langle 1 \mid \emptyset \mid (\text{clos}((\lambda x. \lambda y. x), \emptyset) \bigcirc), (\bigcirc 2 \emptyset) \rangle$$

$$\mapsto \langle \lambda y. x \mid x \mapsto 1 \mid (\bigcirc 2 \emptyset) \rangle$$

$$\mapsto \langle \text{clos}((\lambda y. x), x \mapsto 1) \mid x \mapsto 1 \mid (\bigcirc 2 \emptyset) \rangle$$

$$\mapsto \langle 2 \mid \emptyset \mid (\text{clos}(\lambda y. x, x \mapsto 1) \bigcirc) \rangle$$
Example: function as result and function inside another

\((\lambda x. \lambda y. x) \ 1\) 2 evaluates to 1

\[
\langle ((\lambda x. \lambda y. x) \ 1) \ 2 \ | \ \emptyset \ | \ ■ \rangle
\]

\[
\twoheadrightarrow \langle (\lambda x. \lambda y. x) \ 1 \ | \ \emptyset \ | (\bigcirc \ 2 \ \emptyset) \rangle
\]

\[
\twoheadrightarrow \langle (\lambda x. \lambda y. x) \ | \ \emptyset \ | (\bigcirc \ 1 \ \emptyset), (\bigcirc \ 2 \ \emptyset) \rangle
\]

\[
\twoheadrightarrow \langle \text{clos}((\lambda x. \lambda y. x), \emptyset) \ | \ \emptyset \ | (\bigcirc \ 1 \ \emptyset), (\bigcirc \ 2 \ \emptyset) \rangle
\]

\[
\twoheadrightarrow \langle 1 \ | \ \emptyset \ | (\text{clos}((\lambda x. \lambda y. x), \emptyset) \bigcirc), (\bigcirc \ 2 \ \emptyset) \rangle
\]

\[
\twoheadrightarrow \langle \lambda y. x \ | x \mapsto 1 | (\bigcirc \ 2 \ \emptyset) \rangle
\]

\[
\twoheadrightarrow \langle \text{clos}((\lambda y. x), x \mapsto 1) \ | x \mapsto 1 | (\bigcirc \ 2 \ \emptyset) \rangle
\]

\[
\twoheadrightarrow \langle 2 \ | \ \emptyset \ | (\text{clos}(\lambda y. x, x \mapsto 1) \bigcirc) \rangle
\]

\[
\twoheadrightarrow \langle x \ | x \mapsto 1, y \mapsto 2 | \ ■ \rangle
\]
Example: function as result and function inside another

\((\lambda x. \lambda y. x) \ 1\)\ 2 evaluates to 1

\[
\langle ((\lambda x. \lambda y. x) \ 1) \ 2 \mid \emptyset \mid ■ \rangle \\
\downarrow \downarrow \langle ((\lambda x. \lambda y. x) \ 1) \mid \emptyset \mid (\bigcirc 2 \emptyset) \rangle \\
\downarrow \downarrow \langle ((\lambda x. \lambda y. x) \mid \emptyset \mid (\bigcirc 1 \emptyset), (\bigcirc 2 \emptyset) \rangle \\
\downarrow \downarrow \langle \text{clos}((\lambda x. \lambda y. x), \emptyset) \mid \emptyset \mid (\bigcirc 1 \emptyset), (\bigcirc 2 \emptyset) \rangle \\
\downarrow \downarrow \langle 1 \mid \emptyset \mid (\text{clos}((\lambda x. \lambda y. x), \emptyset) \bigcirc), (\bigcirc 2 \emptyset) \rangle \\
\downarrow \downarrow \langle \lambda y. x \mid x \mapsto 1 \mid (\bigcirc 2 \emptyset) \rangle \\
\downarrow \downarrow \langle \text{clos}(\lambda y. x, x \mapsto 1) \mid x \mapsto 1 \mid (\bigcirc 2 \emptyset) \rangle \\
\downarrow \downarrow \langle 2 \mid \emptyset \mid (\text{clos}(\lambda y. x, x \mapsto 1) \bigcirc) \rangle \\
\downarrow \downarrow \langle x \mid x \mapsto 1, y \mapsto 2 \mid ■ \rangle \\
\downarrow \downarrow \langle 1 \mid x \mapsto 1, y \mapsto 2 \mid ■ \rangle \smiley
\]
Example 2: function as parameter

\((\lambda f.f\ 2)(\lambda x.x)\) evaluates to 2

\[\langle(\lambda f.f\ 2)(\lambda x.x)\ | \emptyset | \square\rangle\]
Example 2: function as parameter

\((\lambda f. f \, 2) (\lambda x. x)\) evaluates to 2

\[
\langle (\lambda f. f \, 2) (\lambda x. x) \mid \emptyset \mid □ \rangle
\]

\[\leadsto\]
\[
\langle (\lambda f. f \, 2) \mid \emptyset \mid (\circ (\lambda x. x) \emptyset), □ \rangle
\]
Example 2: function as parameter

\((\lambda f. f\ 2)(\lambda x. x)\) evaluates to 2

\[
\langle (\lambda f. f\ 2)(\lambda x. x) \mid \emptyset \mid \Box \rangle \\
\leadsto \langle (\lambda f. f\ 2) \mid \emptyset \mid (\bigcirc (\lambda x. x) \emptyset) , \Box \rangle \\
\leadsto \langle \text{clos}((\lambda f. f\ 2), \emptyset) \mid \emptyset \mid (\bigcirc (\lambda x. x) \emptyset) , \Box \rangle
\]
Example 2: function as parameter

$$(\lambda f. f 2)(\lambda x. x)$$ evaluates to 2

$$\langle (\lambda f. f 2)(\lambda x. x) \mid \emptyset \mid ■ \rangle$$

$$\leadsto \langle (\lambda f. f 2) \mid \emptyset \mid (\bigcirc (\lambda x. x) \emptyset), ■ \rangle$$

$$\leadsto \langle \text{clos}((\lambda f. f 2), \emptyset) \mid \emptyset \mid (\bigcirc (\lambda x. x) \emptyset), ■ \rangle$$

$$\leadsto \langle \lambda x. x \mid \emptyset \mid (\text{clos}((\lambda f. f 2), \emptyset) \bigcirc), ■ \rangle$$
Example 2: function as parameter

$$(\lambda f.f\ 2)(\lambda x.x)$$ evaluates to 2

$$\langle (\lambda f.f\ 2)(\lambda x.x) \mid \emptyset \mid \Box \rangle$$

$$\leadsto \langle (\lambda f.f\ 2) \mid \emptyset \mid (\circ (\lambda x.x) \emptyset), \Box \rangle$$

$$\leadsto \langle \text{clos}((\lambda f.f\ 2), \emptyset) \mid \emptyset \mid (\circ (\lambda x.x) \emptyset), \Box \rangle$$

$$\leadsto \langle \lambda x.x \mid \emptyset \mid (\text{clos}((\lambda f.f\ 2), \emptyset) \circ), \Box \rangle$$

$$\leadsto \langle \text{clos}(\lambda x.x, \emptyset) \mid \emptyset \mid (\text{clos}((\lambda f.f\ 2), \emptyset) \circ), \Box \rangle$$
Example 2: function as parameter

\((\lambda f . f\ 2) (\lambda x . x)\) evaluates to 2

\[
\langle (\lambda f . f\ 2) (\lambda x . x) \mid \emptyset \mid \mathbb{I} \rangle
\]
\[
\Downarrow
\langle (\lambda f . f\ 2) \mid \emptyset \mid (\circ (\lambda x . x) \emptyset) , \mathbb{I} \rangle
\]
\[
\Downarrow
\langle \text{clos}((\lambda f . f\ 2), \emptyset) \mid \emptyset \mid (\circ (\lambda x . x) \emptyset) , \mathbb{I} \rangle
\]
\[
\Downarrow
\langle \lambda x . x \mid \emptyset \mid (\text{clos}((\lambda f . f\ 2), \emptyset) \circ) , \mathbb{I} \rangle
\]
\[
\Downarrow
\langle \text{clos}(\lambda x . x, \emptyset) \mid \emptyset \mid (\text{clos}((\lambda f . f\ 2), \emptyset) \circ) , \mathbb{I} \rangle
\]
\[
\Downarrow
\langle f\ 2 \mid f \mapsto \text{clos}(\lambda x . x, \emptyset) \mid \mathbb{I} \rangle
\]
Example 2: function as parameter

\((\lambda f. f \ 2)(\lambda x. x)\) evaluates to 2

\[
\langle (\lambda f. f \ 2)(\lambda x. x) \mid \emptyset \mid \Box \rangle
\]

\[
\downarrow
\langle (\lambda f. f \ 2) \mid \emptyset \mid (\circ (\lambda x. x) \emptyset) \rangle , \Box
\]

\[
\downarrow
\langle \text{clos}((\lambda f. f \ 2), \emptyset) \mid \emptyset \mid (\circ (\lambda x. x) \emptyset) \rangle , \Box
\]

\[
\downarrow
\langle \lambda x. x \mid \emptyset \mid (\text{clos}((\lambda f. f \ 2), \emptyset) \circ) \rangle , \Box
\]

\[
\downarrow
\langle \text{clos}(\lambda x. x, \emptyset) \mid \emptyset \mid (\text{clos}((\lambda f. f \ 2), \emptyset) \circ) \rangle , \Box
\]

\[
\downarrow
\langle f \ 2 \mid f \mapsto \text{clos}(\lambda x. x, \emptyset) \rangle , \Box
\]

\[
\downarrow
\langle f \mid f \mapsto \text{clos}(\lambda x. x, \emptyset) \mid (\circ \ 2 \ f \mapsto \text{clos}(\lambda x. x, \emptyset)) \rangle , \Box
\]
Example 2: function as parameter

\((\lambda f . f 2)(\lambda x . x)\) evaluates to 2

\[
\langle (\lambda f . f 2)(\lambda x . x) \mid \emptyset \mid \Box \rangle \\
\Rightarrow \langle (\lambda f . f 2) \mid \emptyset \mid (\Box (\lambda x . x) \emptyset), \Box \rangle \\
\Rightarrow \langle \text{clos}((\lambda f . f 2), \emptyset) \mid \emptyset \mid (\Box (\lambda x . x) \emptyset), \Box \rangle \\
\Rightarrow \langle \lambda x . x \mid \emptyset \mid (\text{clos}((\lambda f . f 2), \emptyset) \Box), \Box \rangle \\
\Rightarrow \langle \text{clos}(\lambda x . x, \emptyset) \mid \emptyset \mid (\text{clos}((\lambda f . f 2), \emptyset) \Box), \Box \rangle \\
\Rightarrow \langle f 2 \mid f \mapsto \text{clos}(\lambda x . x, \emptyset) \mid \Box \rangle \\
\Rightarrow \langle f \mid f \mapsto \text{clos}(\lambda x . x, \emptyset) \mid (\Box 2 f \mapsto \text{clos}(\lambda x . x, \emptyset)), \Box \rangle \\
\Rightarrow \langle \text{clos}(\lambda x . x, \emptyset) \mid f \mapsto \text{clos}(\lambda x . x, \emptyset) \mid (\Box 2 f \mapsto \text{clos}(\lambda x . x, \emptyset)), \Box \rangle
\]
Example 2: function as parameter

\((\lambda f. f\ 2)(\lambda x. x)\) evaluates to 2

\[
\langle (\lambda f. f\ 2)(\lambda x. x) \mid \emptyset \mid ■ \rangle \\
\downarrow\\
\langle (\lambda f. f\ 2) \mid \emptyset \mid (\bigcirc (\lambda x. x) \emptyset) \rangle, ■ \rangle \\
\downarrow\\
\langle \text{clos}((\lambda f. f\ 2), \emptyset) \mid \emptyset \mid (\bigcirc (\lambda x. x) \emptyset) \rangle, ■ \rangle \\
\downarrow\\
\langle \lambda x. x \mid \emptyset \mid (\text{clos}((\lambda f. f\ 2), \emptyset) \bigcirc) \rangle, ■ \rangle \\
\downarrow\\
\langle \text{clos}(\lambda x. x, \emptyset) \mid \emptyset \mid (\text{clos}((\lambda f. f\ 2), \emptyset) \bigcirc) \rangle, ■ \rangle \\
\downarrow\\
\langle f\ 2 \mid f \mapsto \text{clos}(\lambda x. x, \emptyset) \rangle, ■ \rangle \\
\downarrow\\
\langle f \mid f \mapsto \text{clos}(\lambda x. x, \emptyset) \mid (\bigcirc 2 f \mapsto \text{clos}(\lambda x. x, \emptyset)) \rangle, ■ \rangle \\
\downarrow\\
\langle \text{clos}(\lambda x. x, \emptyset) \mid f \mapsto \text{clos}(\lambda x. x, \emptyset) \mid (\bigcirc 2 f \mapsto \text{clos}(\lambda x. x, \emptyset)) \rangle, ■ \rangle \\
\downarrow\\
\langle 2 \mid f \mapsto \text{clos}(\lambda x. x, \emptyset) \mid (\text{clos}(\lambda x. x, \emptyset) \bigcirc) \rangle, ■ \rangle
Example 2: function as parameter

\((\lambda f. f \ 2)(\lambda x. x)\) evaluates to 2

\[
\langle (\lambda f. f \ 2)(\lambda x. x) \ | \ \emptyset \ | \ ■ \rangle
\]

\[
\Downarrow
\langle (\lambda f. f \ 2) \ | \ \emptyset \ | \ (\circ \ (\lambda x. x) \ \emptyset) \ , \ ■ \rangle
\]

\[
\Downarrow
\langle \text{clos}((\lambda f. f \ 2), \emptyset) \ | \ \emptyset \ | \ (\circ \ (\lambda x. x) \ \emptyset) \ , \ ■ \rangle
\]

\[
\Downarrow
\langle \lambda x. x \ | \ \emptyset \ | \ (\text{clos}((\lambda f. f \ 2), \emptyset) \ \circ) \ , \ ■ \rangle
\]

\[
\Downarrow
\langle \text{clos}(\lambda x. x, \emptyset) \ | \ \emptyset \ | \ (\text{clos}((\lambda f. f \ 2), \emptyset) \ \circ) \ , \ ■ \rangle
\]

\[
\Downarrow
\langle f \ 2 \ | \ f \mapsto \text{clos}(\lambda x. x, \emptyset) \ | \ ■ \rangle
\]

\[
\Downarrow
\langle f \ | \ f \mapsto \text{clos}(\lambda x. x, \emptyset) \ | \ (\circ \ 2 \ f \mapsto \text{clos}(\lambda x. x, \emptyset)) \ , \ ■ \rangle
\]

\[
\Downarrow
\langle \text{clos}(\lambda x. x, \emptyset) \ | \ f \mapsto \text{clos}(\lambda x. x, \emptyset) \ | \ (\circ \ 2 \ f \mapsto \text{clos}(\lambda x. x, \emptyset)) \ , \ ■ \rangle
\]

\[
\Downarrow
\langle 2 \ | \ f \mapsto \text{clos}(\lambda x. x, \emptyset) \ | \ (\text{clos}(\lambda x. x, \emptyset) \ \circ) \ , \ ■ \rangle
\]

\[
\Downarrow
\langle x \ | \ x \mapsto \ 2 \ | \ ■ \rangle
\]
Example 2: function as parameter

\((\lambda f . f \, 2) (\lambda x . x)\) evaluates to 2

\[
\langle (\lambda f . f \, 2) (\lambda x . x) \mid \emptyset \mid \Box \rangle \nabla \langle (\lambda f . f \, 2) \mid \emptyset \mid (\bigcirc (\lambda x . x) \, \emptyset), \Box \rangle \\
\n\langle \text{clos}(\lambda f . f \, 2, \emptyset) \mid \emptyset \mid (\bigcirc (\lambda x . x) \, \emptyset), \Box \rangle \\
\n\langle \lambda x . x \mid \emptyset \mid (\text{clos}(\lambda f . f \, 2, \emptyset) \, \bigcirc), \Box \rangle \\
\n\langle \text{clos}(\lambda x . x, \emptyset) \mid \emptyset \mid (\text{clos}(\lambda f . f \, 2, \emptyset) \, \bigcirc), \Box \rangle \\
\n\langle f \, 2 \mid f \mapsto \text{clos}(\lambda x . x, \emptyset) \mid \Box \rangle \\
\n\langle f \mid f \mapsto \text{clos}(\lambda x . x, \emptyset) \mid (\bigcirc 2 \, f \mapsto \text{clos}(\lambda x . x, \emptyset)), \Box \rangle \\
\n\langle \text{clos}(\lambda x . x, \emptyset) \mid f \mapsto \text{clos}(\lambda x . x, \emptyset) \mid (\bigcirc 2 \, f \mapsto \text{clos}(\lambda x . x, \emptyset)), \Box \rangle \\
\n\langle 2 \mid f \mapsto \text{clos}(\lambda x . x, \emptyset) \mid (\text{clos}(\lambda x . x, \emptyset) \, \bigcirc), \Box \rangle \\
\n\langle x \mid x \mapsto 2 \mid \Box \rangle \\
\n\langle 2 \mid x \mapsto 2 \mid \Box \rangle \smiley
\]
Example 3: machine gets stuck 😞

$5(\lambda x. x)$ is nonsense. You cannot apply a number to a function.

$$\langle 5(\lambda x. x) \mid \emptyset \mid \blacksquare \rangle$$

In ML, it would be rejected by the type checker. In Lisp/Scheme, you get a runtime error.
Example 3: machine gets stuck 😞

$5(\lambda x.x)$ is nonsense. You cannot apply a number to a function.

$$
\langle 5(\lambda x.x) \mid \emptyset \mid \square \rangle \\
\leadsto \langle 5 \mid \emptyset \mid (\circ (\lambda x.x) \emptyset), \square \rangle
$$
Example 3: machine gets stuck 😞

5(λx.x) is nonsense. You cannot apply a number to a function.

⟨5(λx.x) | ∅ | ■⟩

⇝ ⟨5 | ∅ | (○(λx.x)∅), ■⟩

⇝ ⟨(λx.x) | ∅ | (5○), ■⟩

Does not match the rule, as 5 is not a closure.

⟨W | E₁ | (clos(λx.M), E₂)○⟩

⇝ ⟨M | E₂[x↦→W] | K⟩

In ML, it would be rejected by the type checker. In Lisp/Scheme, you get a runtime error.
Example 3: machine gets stuck 😞

5 \((\lambda x.x)\) is nonsense. You cannot apply a number to a function.

\[
\langle 5 (\lambda x.x) \mid \emptyset \mid \Box \rangle \\
\leadsto \langle 5 \mid \emptyset \mid (\Box (\lambda x.x) \emptyset), \Box \rangle \\
\leadsto \langle (\lambda x.x) \mid \emptyset \mid (5 \Box), \Box \rangle \\
\leadsto \langle \text{clos}((\lambda x.x), \emptyset) \mid \emptyset \mid (5 \Box), \Box \rangle 😞
\]

Does not match the rule, as 5 is not a closure.

\[
\langle W \mid E_1 \mid (\text{clos}(\lambda x.M, E_2) \Box), K \rangle \leadsto \langle M \mid E_2[x \mapsto W] \mid K \rangle
\]

In ML, it would be rejected by the type checker. In Lisp/Scheme, you get a runtime error.
Example 4: machine gets stuck 😞

A free variable that does not occur in the environment makes the machine get stuck.

\[\langle x \mid \emptyset \mid \square \rangle \]

In ML, this would be a compile-time error and in Lisp/Scheme a run-time error. The type system of ML prevents all such run-time errors; Milner’s slogan for ML, ”Well-typed programs do not go wrong.” 😊
Examples as above in OCaml

(fun x -> fun y -> x) 1 2;;
- : int = 1

(fun f -> f 2) (fun x -> x);;
- : int = 2

5 (fun x -> x);;
Error: This expression is not a function; it cannot be applied

x;;
Error: Unbound value x
Exercise

Suppose we do not build closures at all, and we just pass around terms like $\lambda x. M$ instead. How would that affect the semantics of the language?
Exercise

Explain what sequence of steps the CEK machine performs starting from the following configuration:

$$ \langle (\lambda x.xx)(\lambda x.xx) \mid \emptyset \mid \blacksquare \rangle $$

In particular, does one get a W at the end?
Stretch exercise

Implement the CEK machine in your favourite programming language. C, OCaml, Haskell, and Agda are very suitable.
Advanced programming language features

exceptions: C++ adapted them from ML, now mainstream
garbage collection: first in Lisp, then other functional languages,
became mainstream in Java
closures: C++11 and Java
We extend the programming language with two control operators:

\[M ::= \ldots \]
\[| \quad \text{go } n \]
\[| \quad \text{here } M \]

Intuitively, go jumps to the nearest enclosing here. This is an idealized version of exceptions in Ocaml, C++, Java, \ldots.
The control we have added to the CEK machine is like a single exception of integer type in OCaml, such that all exception handlers are the identity.

```ocaml
exception E of int;;

(go n)  =  raise (E n)
(here M) =  try M with E x -> x
```
Stack frames extended for control

To give meaning to the control operators, we add a new kind of frame. It just marks a position on the stack:

\[F ::= \ldots \mid \triangleright \triangleright \]

The CEK+go machine with control has these additional transition steps:

\[
\langle \text{here } M \mid E \mid K \rangle \leadsto \langle M \mid E \mid \triangleright \triangleright , K \rangle \quad (1)
\]

\[
\langle \text{go } n \mid E \mid K_1 , \triangleright \triangleright , K_2 \rangle \leadsto \langle n \mid E \mid K_2 \rangle \quad (2)
\]

\[
\langle W \mid E \mid \triangleright \triangleright , K \rangle \leadsto \langle W \mid E \mid K \rangle \quad (3)
\]

Here \(K_1 \) does not contain \(\triangleright \triangleright \), that is, \(K_1 \neq K_3 , \triangleright \triangleright , K_4 \) for any \(K_3 \) and \(K_4 \).
The here and go rules explained

1. A term here M is evaluated by pushing the marker onto the stack and continuing with evaluating M.

2. A term go M is evaluated by erasing the stack up to the nearest marker, and then proceeding with evaluating M.

3. When a value W is produced by the evaluation, any marker on the top of the stack is popped off and ignored.
CEK machine with control operators here and go

\[
\begin{align*}
&\langle x \mid E \mid K \rangle \rightsquigarrow \langle \text{lookup } x \text{ in } E \mid E \mid K \rangle \\
&\langle M_1 M_2 \mid E \mid K \rangle \rightsquigarrow \langle M_1 \mid E \mid (\text{\(\bigcirc\) } M_2 E), K \rangle \\
&\langle \lambda x. M \mid E \mid K \rangle \rightsquigarrow \langle \text{clos}(\lambda x. M, E) \mid E \mid K \rangle \\
&\langle W \mid E_1 \mid (\text{\(\bigcirc\) } M E_2), K \rangle \rightsquigarrow \langle M \mid E_2 \mid (W \text{\(\bigcirc\) }), K \rangle \\
&\langle W \mid E_1 \mid (\text{clos}(\lambda x. M, E_2) \text{\(\bigcirc\) }), K \rangle \rightsquigarrow \langle M \mid E_2[x \mapsto W] \mid K \rangle \\
&\langle \text{here } M \mid E \mid K \rangle \rightsquigarrow \langle M \mid E \mid \text{\(\gg\gg\) }, K \rangle \\
&\langle \text{go } n \mid E \mid K_1, \text{\(\gg\gg\) }, K_2 \rangle \rightsquigarrow \langle n \mid E \mid K_2 \rangle \\
&\langle W \mid E \mid \text{\(\gg\gg\) }, K \rangle \rightsquigarrow \langle W \mid E \mid K \rangle
\end{align*}
\]
Example 1 of jumping with here and go

\[\langle \text{here } (\lambda x.2) (\text{go } 5) \mid \emptyset \mid \blacksquare \rangle \]
Example 1 of jumping with here and go

\[\langle \text{here} ((\lambda x.2)(\text{go } 5)) \mid \emptyset \mid \boxempty \rangle \]

\[\rightsquigarrow \langle (\lambda x.2)(\text{go } 5) \mid \emptyset \mid \rightarrow\rightarrow, \boxempty \rangle \]
Example 1 of jumping with here and go

\[\langle \text{here}((\lambda x.2)\ (\text{go}\ 5))\ |\ \emptyset\ |\ ■ \rangle \]
\[\rightsquigarrow \langle (\lambda x.2)\ (\text{go}\ 5)\ |\ \emptyset\ |\ ▶▶ ,\ ■ \rangle \]
\[\rightsquigarrow \langle (\lambda x.2)\ |\ \emptyset\ |\ (\circ\ (\text{go}\ 5)\ \emptyset)\ ,\ ▶▶ ,\ ■ \rangle \]
Example 1 of jumping with here and go

\[\langle \text{here}((\lambda x.2)(\text{go 5})) \mid \emptyset \mid \square \rangle \]

\[\leadsto \langle (\lambda x.2)(\text{go 5}) \mid \emptyset \mid
\quad \mathbf{\gg\gg}, \square \rangle \]

\[\leadsto \langle (\lambda x.2) \mid \emptyset \mid (\bigcirc (\text{go 5}) \emptyset) \mid \mathbf{\gg\gg}, \square \rangle \]

\[\leadsto \langle \text{clos}(\lambda x.2, \emptyset) \mid \emptyset \mid (\bigcirc (\text{go 5}) \emptyset) \mid \mathbf{\gg\gg}, \square \rangle \]
Example 1 of jumping with here and go

\[\langle \text{here}((\lambda x.2)(\text{go} \ 5)) \mid \emptyset \mid \square \rangle \]

\[\leadsto \langle (\lambda x.2)(\text{go} \ 5) \mid \emptyset \mid \blacktriangleright\blacktriangleright \rangle \]

\[\leadsto \langle (\lambda x.2) \mid \emptyset \mid (\bigcirc (\text{go} \ 5) \emptyset), \blacktriangleright\blacktriangleright \rangle \]

\[\leadsto \langle \text{clos(} \lambda x.2, \emptyset \rangle \mid \emptyset \mid (\bigcirc (\text{go} \ 5) \emptyset), \blacktriangleright\blacktriangleright \rangle \]

\[\leadsto \langle (\text{go} \ 5) \mid \emptyset \mid (\text{clos(} \lambda x.2, \emptyset \rangle) \bigcirc), \blacktriangleright\blacktriangleright \rangle \]
Example 1 of jumping with here and go

\[\langle \text{here}((\lambda x.2)(\text{go } 5)) \mid \emptyset \mid \blacksquare \rangle \]

\[\leadsto \langle (\lambda x.2)(\text{go } 5) \mid \emptyset \mid \text{▶▶}, \blacksquare \rangle \]

\[\leadsto \langle (\lambda x.2) \mid \emptyset \mid (\bigcirc (\text{go } 5) \emptyset), \text{▶▶}, \blacksquare \rangle \]

\[\leadsto \langle \text{clos}(\lambda x.2, \emptyset) \mid \emptyset \mid (\bigcirc (\text{go } 5) \emptyset), \text{▶▶}, \blacksquare \rangle \]

\[\leadsto \langle (\text{go } 5) \mid \emptyset \mid (\text{clos}(\lambda x.2, \emptyset) \bigcirc), \text{▶▶}, \blacksquare \rangle \]

\[\leadsto \langle 5 \mid \emptyset \mid \blacksquare \rangle \]

The go 5 has deleted the \((\lambda x.2)\).
Example 2 of jumping with here and go

\langle \text{here} \left((\text{go } 2) \text{ (go } 5) \right) \mid \emptyset \mid \square \rangle
Example 2 of jumping with here and go

\[\langle \text{here}((\text{go } 2)\ (\text{go } 5))\ |\ \emptyset\ |\ ■\rangle \]

\[\sim \langle (\text{go } 2)\ (\text{go } 5)\ |\ \emptyset\ |\ ■\rangle\]

The \text{go } 2 happens first and deletes the \text{go } 5 due to left to right evaluation.
Example 2 of jumping with \textit{here} and \textit{go}

\[
\langle \text{here} ((\text{go } 2) (\text{go } 5)) \mid \emptyset \mid ■ \rangle
\]

\[
\leadsto \langle (\text{go } 2) (\text{go } 5) \mid \emptyset \mid ⬤, ■ \rangle
\]

\[
\leadsto \langle (\text{go } 2) \mid \emptyset \mid (\bigcirc (\text{go } 5) \emptyset) , ⬤, ■ \rangle
\]
Example 2 of jumping with here and go

\[\langle \text{here} ((\text{go } 2) (\text{go } 5)) \mid \emptyset \mid ■ \rangle \]

\[\rightsquigarrow \langle (\text{go } 2) (\text{go } 5) \mid \emptyset \mid ▶▶ , ■ \rangle \]

\[\rightsquigarrow \langle (\text{go } 2) \mid \emptyset \mid (\bigcirc (\text{go } 5) \emptyset) , ▶▶ , ■ \rangle \]

\[\rightsquigarrow \langle 2 \mid \emptyset \mid ■ \rangle \]

The go 2 happens first and deletes the go 5 due to left to right evaluation.
Example 3 of jumping with here and go

A go without a surrounding here is stuck.

\(\langle (\text{go} \; n) \mid E \mid K \rangle \)

This corresponds to an uncaught exception in ML. The type system does not prevent this. In Java, throws clauses try to minimize uncaught checked exceptions at compile time.
Exercise

Evaluate the following term in the CEK machine

$$(\lambda f. \text{here}((\lambda x.1)(f\ 2)))(\text{here}(\lambda y.\text{go}\ y))$$

You should pay particular attention to which of the two occurrences of here is jumped to. The one on the left is dynamically enclosing (when the go is evaluated), whereas the one on the right is statically enclosing (where the go is defined).
Exercise

Define a version of the CEK machine that evaluates from left to right, so that in

\[M_1 \ M_2 \]

the argument \(M_2 \) is evaluated before \(M_1 \). Use here and \(\text{go} \) examples to observe the evaluation order.
Compare exceptions in OCaml

The control we have added to the CEK machine is like a single exception of integer type in OCaml, such that all exception handlers are the identity.

```
exception E of int;;

(go n) = raise (E n)

(here M) = try M with E x -> x
```
Exceptions in OCaml and evaluation order

We can observe that OCaml does right-to-left evaluation:

```
exception E of int;;

(raise (E 1)) (raise (E 2));;
```

Or, since uncaught exceptions are grungy, we could add a handler:
```
try (raise (E 1)) (raise (E 2)) with E x -> x;;
```

This gives
```
- : int = 2
```
exception E;;

let f =
 try
 fun x -> raise E
 with E -> fun y -> "static"
 in
 try
 f 0
 with E -> "dynamic"
 ;;

Exercise: calculate this example in the CEK machine.
Exercise: translate this example using lambda into C++ or Java.
Let’s revisit optimizations in the light of what we have learned about lambda and CEK.

The CEK machine gives us a formal model in which we can prove that optimizations are correct.

Formally: optimizations preserve contextual equivalence.

Constant propagation is like a beta reduction.

Function inlining is like two beta reductions.

On the other hand, the CEK machine is too high-level to do tail call optimization.

Current (2010–) research: verify optimizations in LLVM; C++ optimizations are not valid due to concurrency.
Encoding let as lambda

Naming intermediate values with let is useful for optimizations. Recall that a local let binding

\[\text{let } x = M_1 \text{ in } M_2 \]

is encoded as

\[(\lambda x. M_2) \ M_1 \]

Idea: evaluate \(M_1 \), bind the result to \(x \) and then evaluate \(M_2 \).
Optimization example 1: constant propagation

let $x = V$ in \ldots \ x \ldots$

can be optimized to

let $x = V$ in \ldots \ V \ldots$

This is easier in functional than imperative languages.

```plaintext
int x = 42; x = x + 2; y = x
```
Optimization example 2: function inlining

\[
\text{let } f = \lambda x. M \text{ in } \ldots f \, V \ldots
\]

can be optimized to

\[
\text{let } f = \lambda x. M \text{ in } \ldots M[x \mapsto V] \ldots
\]

where \(M[x \mapsto V] \) is the substitution of the actual parameter \(V \) for the formal parameter \(x \) on the body \(M \) of the function \(f \).
long s(long x)
{
 return x * x;
}

long f(long y)
{
 return s(y + 1);
}
long s(long x) {
 return x * x;
}

long f(long y) {
 return s(y + 1);
}

let s = \(x \mapsto x \ast x \)
in
let f = \(y \mapsto s(y + 1) \)
in
\(M \)
Function inlining from Clang lectures revisited

```c
long s(long x)
{
    return x * x;
}

long f(long y)
{
    return s(y + 1);
}
```

```lambda
let s = \(\lambda x.x \times x\) in
let f = \(\lambda y.s(y + 1)\) in
M
```

```lambda
let s = \(\lambda x.x \times x\) in let f = \(\lambda y.s(y + 1)\) in M
```
Function inlining from Clang lectures revisited

```c
long s(long x)
{
    return x * x;
}

long f(long y)
{
    return s(y + 1);
}
```

```latex
\begin{align*}
\text{let } s &= \lambda x.x \ast x \text{ in} \\
\text{let } f &= \lambda y.s(y + 1) \text{ in} \\
M &= \text{let } s = \lambda x.x \ast x \text{ in let } f = \lambda y.s(y + 1) \text{ in } M \\
&= (\lambda s.(\lambda f.M)(\lambda y.s(y + 1))) (\lambda x.x \ast x)
\end{align*}
```
Function inlining from Clang lectures revisited

```c
long s(long x)
{
    return x * x;
}

long f(long y)
{
    return s(y + 1);
}
```

```lambda
let s = \x.x * x in
let f = \y.s(y + 1) in
M

let s = \x.x * x in let f = \y.s(y + 1) in M
= (\s.(\f.M) (\y.s(y + 1))) (\x.x * x)
→_β (\f.M) (\y.(\x.x * x) (y + 1)))
```
Function inlining from Clang lectures revisited

```c
long s(long x)
{
    return x * x;
}

long f(long y)
{
    return s(y + 1);
}
```

```
let s = \(x \cdot x\) in
let f = \(y \cdot s(y + 1)\) in
M
```

```
let s = \(x \cdot x\) in let f = \(y \cdot s(y + 1)\) in M
= (\(s \cdot (\lambda f \cdot M) \cdot (\lambda y \cdot s(y + 1))\)) (\(x \cdot x\))
→\(\beta\) (\(\lambda f \cdot M\) (\(\lambda y \cdot (x \cdot x \cdot x)(y + 1)\))
→\(\beta\) (\(\lambda f \cdot M\) (\(\lambda y \cdot (y + 1) \cdot (y + 1)\)))
```
long s(long x)
{
 return x * x;
}

long f(long y)
{
 return s(y + 1);
}

let s = \lambda x. x \ast x in
let f = \lambda y. s(y + 1) in
M

let s = \lambda x. x \ast x in let f = \lambda y. s(y + 1) in M
= (\lambda s. (\lambda f. M) (\lambda y. s(y + 1))) (\lambda x. x \ast x)
\rightarrow_\beta (\lambda f. M) (\lambda y. (\lambda x. x \ast x) (y + 1)))
\rightarrow_\beta (\lambda f. M) (\lambda y. (y + 1) \ast (y + 1))
= let f = \lambda y. (y + 1) \ast (y + 1) in M
Beta reduction as an optimization

Models of Computation: Church Rosser and confluence: you can beta reduce a lambda anywhere inside an expression, without changing the result.

In call-by-value with effects (like assignment or control), we need to be more careful. Unrestricted beta reduction is not a sound optimization in the CEK machine!

We cannot optimize

\[(\lambda x.5)((\lambda x.x)(\lambda x.x))\]

or

\[(\lambda x.5)(\text{go 2})\]

into

5

Need to be careful about effects and use beta-value instead.
Verifying compiler optimizations

If the compiler optimizes M_1 into M_2, then they should be contextually equivalent, so the user never sees any difference between the optimized and unoptimized program. Example: beta value

$$(\lambda x. M_3) (\lambda y. M_4) \rightarrow M_3[x \mapsto \lambda y. M_4]$$

This may seem obvious, but is not so easy to prove (simulation proof). Verifying compiler optimizations, including LLVM, is an active research area.
Contextual equivalence as correctness of optimizations

For the CEK machine, we write $M \Downarrow n$ if

$$\langle M \mid \emptyset \mid [] \rangle \rightsquigarrow \cdots \rightsquigarrow \langle n \mid E \mid [] \rangle$$

A context C is a “term with a hole”:

$$C ::= \mathbb{O} \\
| \quad M C \\
| \quad C M \\
| \quad \lambda x. C$$

We write $C[M]$ for the term that we get by plugging M into the hole position \mathbb{O} in C.

M_1 and M_2 are contextually equivalent if for all contexts C, and integers n

$$C[M_1] \Downarrow n \text{ if and only if } C[M_2] \Downarrow n$$
Intermediate languages

- Intermediate languages are used for optimizations
- All intermediate values are named.
- All control flow is made explicit with jumps and labels.
- This format is good for optimizations and code generation:
 - named values \mapsto registers
 - labels \mapsto code location
- Both SSA and CPS do this.
- SSA = static single assignment, used in LLVM
- CPS = continuation passing style, used in functional languages
Some current research in compilers

- There is lots of research, but here are some areas that I am aware of.
- Semantics of intermediate languages, like LLVM IR using abstract machines.
- Verification of optimizations.
- SSA = static single assignment, used in LLVM
- CPS = continuation passing style, used in functional languages
- If you are interested in a PhD on compilers, feel free to ask me.
Further reading

[ABDM03] gives an overview of abstract machines and simple compilers derived from them
[Ken07] gives an overview of modern CPS compilation

Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard.

From interpreter to compiler and virtual machine: a functional derivation.
BRICS, Department of Computer Science, University of Aarhus, 2003.

Andrew Kennedy.

Compiling with continuations, continued.
Structure of the module

Parsing ✓
- Progression from: Language + Logic, Models of Computation
- abstract machines, formal, “mathy”

Compiling C with Clang ✓
- Progression from: Computer Systems + Architecture, C/C++
- not so formal, by example, x86 machine code

Implementing functional languages ✓
- Progression from: functional programming
- builds on abstract machines and C stack
- the most research-led section, goes beyond Dragon Book