
Continuations in Natural Language

[Extended Abstract]

Chris Barker
University of California, San Diego

9500 Gillman Drive
La Jolla, CA, USA

barker@ucsd.edu

ABSTRACT
Computer scientists, logicians and functional programmers
have studied continuations in laboratory settings for years.
As a result of that work, continuations are now accepted
as an indispensable tool for reasoning about control, order
of evaluation, classical versus intuitionistic proof, and more.
But all of the applications just mentioned concern artifi-
cial languages; what about natural languages, the languages
spoken by humans in their daily life? Do natural languages
get by without any of the marvelous control operators pro-
vided by continuations, or can we find continuations in the
wild? This paper argues yes: that an adequate and com-
plete analysis of natural language must recognize and rely
on continuations. In support of this claim, I identify four
independent linguistic phenomena for which a simple CPS-
based description provides an insightful analysis.

1. INTRODUCTION
The applications of continuations to date are remarkably
diverse. As representative examples, I will mention three
strands of research here: first, continuations provide an order-
independent way of describing evaluation order in formal
languages. For instance, Plotkin [10] shows how various
Continuation-Passing Style (CPS) transforms can model eval-
uation disciplines such as call-by-name or call-by-value. Sec-
ond, Griffin [5], Murthy [9] and others show that continu-
ations are intimately involved in characterizing the compu-
tational content of classical (as opposed to intuitionistic)
proofs. Third, continuations provide a useful tool for pro-
grammers who want to use powerful control operators such
as call/cc in Scheme (and its analogs in other functional
programming languages); conversely, Queinnec [11] shows
how to use continuations in order to write in a direct style
and still be assured that programs will behave in a reason-
able way when it is the program’s users who have access to
powerful control operators (such as the ‘back’ button on a
web browser).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fourth ACM-SIGPLAN Continuation Workshop ’04 Venice, Italy
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

As diverse as these applications are, they all involve the
design and analysis of artificial languages (i.e., programming
languages and logical languages), as opposed to natural lan-
guages (the sort of languages that humans characteristically
use when communicating with each other). We might won-
der, then, whether continuations are relevant for the study
of natural languages. This is the master question addressed
by this paper:

• [Relevance] Are there phenomena in natural language
that can profitably be analyzed using continuations?

Obviously, I believe that the answer is “yes”! I will try
to persuade you to believe likewise by presenting four case
studies, each of which has an analysis in terms of continua-
tions.

An affirmative answer to the master question of relevance
leads to a number of subquestions, including the following.

• [Universality] Even if some natural languages make
use of continuation, do all languages make use of con-
tinuations?

Languages differ in many ways. For instance, all languages
make a distinction between nouns and verbs, but not all
languages make a distinction between singular nouns and
plural nouns. I have drawn the case studies below exclu-
sively from English, since that simplifies the exposition, but
we must remain alert to the possibility that English may
be unusual or even unique in the relevant respects. In fact,
however, all of the phenomena discussed below have close
analogs in many other languages. Coordination in particu-
lar is widespread: as far as I know, every language provides
some way of saying something equivalent to John saw Mary
and Tom, where the coordinating conjunction and combines
two noun phrases (Mary and Tom) into a single complex
noun phrase Mary and Tom. If an adequate analysis of co-
ordination depends on continuations, as I argue below, that
would strongly suggest that every natural language makes
essential use of continuations.

• [Distribution] Which specific control operators do
natural languages make use of? Which control op-
erators are more ‘natural’?

A variety of control operators that make use of continuations
have been proposed over the years, some of which differ in
fairly subtle ways: call/cc versus control (C), shift and
reset versus fcontrol and run, and so on. Sometimes one

operator can be expressed in terms of another; neverthe-
less, if one or the other version is more prevalent in natural
language, that might suggest that some operators are more
‘natural’ than others. In the discussion below, I will ar-
gue that C and fcontrol/run are remarkably well-suited to
handling quantification and focus.

• [Delimitation] Does natural language prefer delim-
ited or undelimited continuations?

Historically, the first continuation operators were undelim-
ited (e.g., call/cc or J). Felleisen [4, 3] proposed delim-
ited continuations (sometimes called ‘composable’ continua-
tions) such as control (‘C’) and prompt (‘%’). Interestingly,
the natural-language phenomena discussed in this paper all
seem to require some form of delimitation.

2. PRELIMINARIES
The intrepid reader is welcome to skip directly to the case
studies, backtracking to this section only if some assumption
or technique seems puzzling.

Theoretical computer scientists think deeply about the
nature of formal languages. Many of the tools and tech-
niques that are relevant for the study and the design of for-
mal languages apply also to the study of natural language,
including lexical analysis, parsing, and denotational seman-
tics. As a result, computer scientists have highly developed
intuitions about languages and about good ways to analyze
them. These intuitions will go a long way towards under-
standing the issues and phenomena discussed below; after
all, one of my main goals in this paper is to emphasize sim-
ilarities between formal languages and natural languages.

Nevertheless, there are significant differences between com-
puter science approaches and linguistic approaches. I have
made some effort to present a discussion of natural language
in a way that makes sense to a computer scientist—but only
up to a point. To the extent that the assumptions and tech-
niques agree with standard practice in computer science,
well and good; but when there are differences, I will depend
on the reader to trust that the linguistic assumptions are co-
herent and well motivated, and to keep an open mind about
what is the “right” way to model language.

2.1 Declarative sentences denote truth values
As a starting point, it is necessary to think of natural lan-
guage utterances as expressing computations. Natural lan-
guage is clearly capable of specifying algorithms: just think
of a recipe in a cookbook. Natural language can also express
imperatives (Shut the door!), queries, and can even impinge
on the real world in a direct way that formal languages typ-
ically do not (I hereby declare you husband and wife).

In this paper, however, I will concentrate exclusively on
relatively simple and mundane declarative sentences such as
Everyone left. Declarative sentences will have a type equiv-
alent to a boolean, and their values will be either true or
false. To see how this makes sense, it may help to con-
sider the role of everyone left in the conditional sentence If
(everyone left), then shut the door.

A little thought will reveal that treating declarative sen-
tences as denoting truth values is inadequate in general. Af-
ter all, there are more than two possible meanings for sen-
tences. Even if Everyone left and The room is empty are
both true, they have different meanings. But the same ob-

jection applies for formal languages: ‘x == x’ means some-
thing very different from ‘x == 3’, yet it still makes sense to
treat them both as boolean expressions.

In some more elaborate linguistic treatments, sentences
denote functions from times and worlds to truth values, with
an analogous shift for expressions of other types. In the par-
lance of linguistics, a treatment in terms of truth values is
‘extensional’, and a system with times and worlds is ‘in-
tensional’. Shan [13] shows that intensionalization can be
rendered as a monad. Intensionality is not crucial in any of
the discussions below, and the types will be complex enough
anyway, so I will use an extensional semantics on which sen-
tences denote truth values.

2.2 Methodology: formal grammar fragments
It is standard in mainstream linguistics when analyzing a
particular type of expression to provide a formal grammar
approximating the syntax and the semantics of the expres-
sions under study, and that is the approach that I will take in
this paper. Although I intend the grammar fragment devel-
oped below to capture something genuine about the nature
of the natural language expressions, it is important to bear
in mind that any formal grammar is at best an approxima-
tion of natural language, i.e., a hypothesis, not a definition,
and the degree to which the formal treatment accurately re-
flects the behavior of the natural language expression will
always be an empirical issue.

In the fragment, each expression will be assigned mem-
bership in some syntactic category, and the name of each
syntactic category will also serve to indicate the semantic
type of the meanings of expressions in that category.

A concrete example will help make this clear. Here is a
direct-style starting point that the fragment below will build
on:

(1) Some direct-style lexical entries:

Syntactic category
Expression (= type) Semantic value

John e j
Mary e m
left e→t left
saw e→(e→t) saw

Intuitively, e is the category of expressions that denote in-
dividuals. Since the semantic job of the proper name John
is to refer to a particular individual (in this case, the in-
dividual j), the word John is a member of the category e.
Expressions in a category with a complex label of the form
A→B will denote a function from meanings of type A to
meanings of type B. Expressions in category t denote truth
values (booleans), so that an intransitive verb such as left
has type e→t and denotes a function from individuals to
truth values.

Syntactic combination in this direct grammar will always
correspond semantically to functional application.

(2) fx:B ::= x:A f :A→B

This way of specifying syntactic combination is a kind of
BNF notation enhanced in two ways: categories have been
labeled with semantic values, and the syntactic categories
contain variables over types. The idea is that (2) schema-
tizes over a set of valid BNF rules for any choice of cat-
egories A and B. For instance, (2) licenses combining the
noun phrase John with the intransitive verb phrase left (in

that order) by virtue of the following instantiations: A = e,
B = t, f = left, and x = j. This gives rise to the following
syntactic and semantic analysis for the declarative sentence
John left.

left j:t

j:e left:e→t

John left

The intended interpretation is that a use of the sentence
John left will be predicted to be true just in case the function
denoted by left maps the individual referred to by John onto
the truth value true.

Unlike most formal languages, which tend to prefer a uni-
form direction of functional application, English allows some
arguments to precede the function that applies to them, as
in the example immediately above, and some to follow. For
instance, in the sentence John saw Mary, the transitive verb
saw combines first with Mary on its right, then the verb
phrase saw Mary combines with the argument John to its
left. Thus we need a second rule for syntactic combination
to allow for arguments that appear on the right:

(3) fx:B ::= f :A→B x:A

One of the ways in which the formal grammar developed
here is unrealistic is that the syntactic categories of left and
saw as given in (1) do not specify which arguments follow
and which precede. Thus in addition to deriving John left
and John saw Mary, it also incorrectly derives the ungram-
matical sentences *Left John and *Saw John Mary (the star
indicates that the string it is prefixed to is not well-formed).

It is not difficult to build grammars that take linear or-
der into account; but since order will not play an important
role in what follows, I have opted to ignore linear order in
an effort to keep the correspondence between syntactic cate-
gory and semantic type as transparent as possible: since the
syntactic category of saw is e→(e→t), it is clear that the
semantic type of its value will be a function from individuals
to functions from individuals to truth values.

2.3 Strategy: case studies
My strategy will be to discuss a number of cases in which
a continuation-based analysis is elegant and potentially in-
sightful. I will discuss several different cases rather than
developing a single analysis in more depth for two reasons:
first, because which solutions strike a responsive cord varies
from one person to another; and second, for the sheer joy of
considering a number of different natural language phenom-
ena.

There will be four case studies: quantification, coordina-
tion, focus particles, and misplaced modifiers. (I will intro-
duce each one of these phenomena using concrete examples
below, of course.) The treatments of quantification and co-
ordination have been developed in some detail in [1], but
the proposals for focus particles and misplaced modifiers
are new to this paper. There are a few other continuation-
based analyses of natural language already in the literature:
Shan [15] proposes a continuation-based analysis of question
formation, and Shan and Barker [17] discuss a continuation
approach to the phenomena of weak crossover and superi-
ority, which unfortunately requires background discussions
that are too complex to attempt here. In addition, at this

conference, Shan will present a new continuation-based anal-
ysis of negative polarity.

3. CASE STUDY: QUANTIFICATION
The most carefully worked out natural-language applica-
tion of continuations to date concerns quantification ([2],
[1], [17]). According to the simple analysis above in sec-
tion 2, the sentence John left denotes the truth value (left
j) and does not involve quantification; a sentence like Ev-
eryone left, however, is quantificational, and means roughly
∀x.left x. (We say that the symbol ‘∀’ is a quantifier, and
likewise ‘∃’ below.)1

The main problem of interest is what I call ‘scope dis-
placement’: even when a quantificational expression such as
everyone occurs in a deeply embedded position, the quan-
tifier it contributes can take semantic scope over the entire
sentence.

(4) a. John (saw everyone).
b. ∀x.saw x j

Here, even though everyone is buried within the verb phrase
saw everyone,2 in the paraphrase in (4b), the logical quan-
tifier ∀ takes scope over the entire meaning. Continuations,
of course, are superb at allowing a deeply embedded oper-
ator to take control over a larger expression in which it is
embedded, and the analysis described here is based on that
ability.

3.1 From quantification to continuization
We proceed by deducing a type for quantificational expres-
sions like everyone, no one, or someone. Syntactically, these
quantificational expressions can be substituted in any posi-
tion occupied by a proper name. Thus since John saw Mary
is grammatical, the sentences Everyone saw Mary, John saw
everyone, Someone saw everyone, etc., will all be grammat-
ical as well. Yet it is problematic assigning everyone type e,
the same type as John or Mary, since there is no particular
individual who has all and only the properties that are true
of everyone. The inadequacy of supposing that quantifica-
tional noun phrases denote individuals is even more stark in
the case of no one: if No one left is true, which individual
has the property of leaving?

We can solve this dilemma by considering the parallelism
in the following two syntactic analyses:

1I use expressions in the first-order predicate calculus to
specify what I have in mind for the meaning. At one level,
this suggests that natural language can be translated into
some suitable logical language, and this is in fact a per-
fectly legitimate technique. At a deeper level of analysis,
however, I am assuming for the purposes of this paper that
words are logical constants denoting some specific individ-
ual, truth value, or function, and that the denotations of
complex phrases are composed from the denotations of their
constituent words entirely through functional application
as governed by the various syntactic combination rules as
given. In Montague’s [8] terms, the intermediate logical de-
scription language is non-essential, and could be dispensed
with entirely if desired.
2The parentheses in (4a) indicate what I take to be a con-
stituent. There is abundant evidence that the transitive
verb saw forms a constituent with its direct object every-
one to the exclusion of the subject John. To give just one
argument, note that verb phrases can be coordinated (see
section 5): John (saw everyone) and (called home).

(5) t

e e→t

John left

t

?? e→t

everyone left

If John has a type that combines with the type of left to
form a complex expression of type t, then presumably ev-
eryone must also have a type that combines with the type
of left to produce an expression of type t. Since we want
to avoid giving everyone the type e, the next simplest type
that will serve is (e→t)→t. This is in fact the main in-
sight proposed by Montague [8]: that noun phrases such as
everyone and no one can have the type (e→t)→t, which
he called a generalized quantifier (for reasons I won’t discuss
here). Intuitively, what this analysis says is that everyone
is a function mapping a verb phrase to a truth value.

(6) t

(e→t)→t e→t

everyone left

t

e e→t

John
e→(e→t) ??

saw everyone

This naive solution works out fine for the example Everyone
left (although it has the rather disturbing effect of reversing
the direction of functional application, a point I’ll return
to shortly). But if we attempt to place a quantificational
expression in some other position where a proper name can
occur (i.e., instead of John saw Mary we have John saw
everyone, as in the diagram on the right of (6)), the solution
breaks down: the generalized quantifier type (e→t)→t does
not suffice, and we seem to need a yet higher type.

This is the point at which continuations enter the picture.
Consider again the diagrams in (5) from the point of view
of continuations. What is the continuation of the expression
John relative to the sentence John left? It will be a func-
tion mapping individuals into truth values, i.e., a function
of type e→t. Not coincidentally, this happens to also be the
type of the verb phrase left. From this perspective, the pro-
posed generalized quantifier type for everyone, (e→t)→t,
is a function from its continuation (type e→t) to a truth
value.

Now we can understand better how to deal with the situ-
ation depicted in (6). What is the continuation of everyone
in the sentence John saw everyone? Well, once again it will
be a function mapping individuals to truth values. More
specifically, it will be the function mapping each individual
x to true just in case John saw x. If only we had a way of
providing the denotation of everyone with access to its con-
tinuation, a single type would serve in all of the examples
considered so far.

In operational terms, we need the control operator C:

(7) E[CM] . M(λx.E[x])

What (7) says is that when CM occurs in an evaluation
context E, evaluation proceeds by packaging the context
as a continuation (i.e., λx.E[x]), then replacing the entire
computation with M applied to the continuation.

Then if everyone denotes C(λP.∀x.Px), John saw every-
one will denote (λP.∀x.Px)(λx.saw x j), which is equivalent
via β-reduction to ∀x.saw x j, as desired.

My denotational implementation of this analysis will be
based on the following CPS transform:

(8) a. α = λκ.κα (for any constant α)
b. MN = λκ.M (λm.N(λn.κ(mn)))

I prove a simulation result for this transform in [1].
Note that the transform does not provide a rule for ex-

pressions of the form λx.M . It is possible to omit such a rule
here because the natural language constructions considered
in this paper involve only functional application, and never
lambda abstraction.3

As a consequence, the type of the CPS transform of an
expression of any direct type X will be (X→σ)→σ, where
σ is some answer type. In particular, the type of the CPS
transform of a direct expression of type A→B will simply be
((A→B)→σ)→σ, rather than the more traditional (e.g., [7])
type A′→((B′→σ)→σ), where X′ is the type of the trans-
form of an expression of type X. This difference in types
accounts for the expression ‘κ(mn)’ in (8b) rather than the
traditional ‘mnκ’. I find this typing much simpler; however,
it seems to be wrenching for people used to the standard
transform, so this is one of the places where I must ask the
reader to keep an open mind about the right way to do
things.

The CPS transform of the lexical items in (1) all depend
on the rule governing constants in (8a):

(9) CPS transforms of the lexical entries in (1):

John (e→A)→A λκ.κ j
Mary (e→A)→A λκ.κ m
left ((e→t)→A)→A λκ.κ left
saw ((e→(e→t))→A)→A λκ.κ saw

Thus for the purposes of the transform, left counts as a con-
stant, even though its direct denotation left is a function of
type e→t.

Here A is a variable over syntactic categories (in effect,
over types). For the sake of quantification alone, we could
replace the type variables here with t. The more general
rules will be needed, however, when we extend the fragment
to handle focus in the next section.

The syntactic combination rules for the CPS grammar will
be as follows:

(10) λκ.M(λm.N(λn.κ(mn))):(B→E)→D

::= M:((A→B)→C)→D N:(A→E)→C

(11) λκ.N(λn.M(λm.κ(mn))):(B→C)→E

::= N:(A→D)→E M:((A→B)→C)→D

These syntactic combination rules just make explicit how
to syntactically and semantically combine expressions that
have already undergone the CPS transform. Thus (10) is
the CPS analog of (3), and (11) is the analog of (2).

Some of the complexity in (10) and (11) could be reduced
if we chose C = D = E. This would suffice for present pur-
poses except for the treatment of focus in the next section,
which depends on allowing a control operator to return an
answer that is not of type t.

3It is an interesting question whether this abstraction-free
approach can be maintained in a more complete analysis
of natural language. One strategy is to use continuations
instead of lambda abstraction whenever natural language
seems to require lambda abstraction; see, e.g., [17] for a
continuation-based treatment of relative clause formation.

((A→B)→C)→D

(A→E)→C

B→E
1

A→B
2

A
3

B
E

E
E

A→E
I, 3

C
E

(A→B)→C
I, 2

D
E

(B→E)→D
I, 1

Figure 1: Derivation of (10): a natural-deduction
proof using only → Elimination and → Introduction
that ((A→B)→C)→D, (A→E)→C ` (B→E)→D.

The proof in figure 1 may help untangle the types. The
semantic values in (10) (and hence the application rule in
the CPS transform given in (8b)) are just the Curry-Howard
labelling of the proof in figure 1. An analogous derivation is
available for (11), but is not included here.

These rules give us the following derivation:

(t→t)→t

(e→t)→t ((e→t)→t)→t

John left

[[John left]] = λκ.[λκ.κleft](λf.[λκ.κj](λx.κ(fx)))
; κ.κ(left j)

which, after application to the trivial continuation λx.x,
yields the same denotation provided by the direct grammar,
namely, left j.

At this point we can add lexical entries for some quantifi-
cational noun phrases that have no direct counterpart.

(12) everyone (e→t)→t λκ.∀x.κx

someone (e→t)→t λκ.∃x.κx

Since everyone has the same type as the CPS transform of
John, we now have

[[Everyone left]] = λκ.[λκ.κleft](λf.[λκ.∀x.κx](λx.κ(fx)))
; λκ.∀x.κ(left x),

as well as

[[John saw everyone]] ; λκ.∀x.κ(saw x j)

which yield ∀x.left x and ∀x.saw x j after application to the
trivial continuation, as desired.

Note that continuization has restored the natural direc-
tion of functional application (which had been reversed by
the first strategy depicted in (6)). That is, not only is the
direction of (the CPS analog of) functional application in
John left right-to-left, the direction of application in the con-
tinuized grammar for handling Everyone left is also right-to-
left.

3.2 Quantificational ambiguity
The transform as specified in (8b) imposes a left-to-right
evaluation discipline. But we might just as well have used
instead

(13) MN = λκ.N(λn.M (λm.κ(mn)))

in which the right-hand component, N, is evaluated first. For
sentences containing only one quantificational noun phrase,
order of evaluation makes no difference. But for sentences
containing two or more quantificational noun phrases, a dif-

ference in order of evaluation corresponds to a difference in
the predicted meaning:

(14) a. Someone saw everyone.
b. ∃x∀y.saw x y

c. ∀y∃x.saw x y

Given the availability of both evaluation orders, the sentence
in (14a) containing two quantificational noun phrases will
have meanings that (after application to the trivial contin-
uation) reduce to either (14b) (for left-to-right evaluation)
or (14c) (for right-to-left evaluation).

The consensus in the field is that sentences like (14a) are
in fact ambiguous in exactly the way considered here. The
interpretation in (14b) corresponds to a situation in which
there is some particular person who has the property of see-
ing everyone, and the interpretation in (14c) corresponds to
a situation in which there is a potentially different see-er
who saw each person.

Quantifier scope ambiguity has been studied in consid-
erable detail. For more discussion of the predictions of
continuation-based analyses with respect to this type of am-
biguity, see [1], [2] and [17].

4. CASE STUDY: FOCUS
In this section I propose that a phenomenon called ‘focus’,
along with so-called focus particles such as only, behave like
Sitaram’s [18, 19] run and fcontrol. One point of interest
is that these control operators rely on delimited continua-
tions. Delimited continuations have received a considerable
amount of attention recently, and in fact are the topic of
at least three papers at the workshop. I believe that they
play an important role in natural language as well. In fact,
I would be (mildly) surprised to find a natural language op-
erator that behaved exclusively in an undelimited manner.

4.1 fcontrol and run

There are many control operators that rely on delimited
continuations, including Felleisen’s control and prompt, shift
and reset, and others. I will discuss Sitaram’s fcontrol and
run here for the simple reason that they provide exactly the
functionality required for describing the behavior of focus
particles such as only.

Roughly, fcontrol provides a way to throw a signal, and
run catches and handles signals thrown by fcontrol.

The fcontrol operator takes one argument, and throws
two values: the argument to fcontrol and the prefix of the
continuation of the fcontrol expression up to the closest
enclosing run.

The run operator takes two arguments: an expression pos-
sibly containing an occurrence of fcontrol, and a “han-
dler” function that processes the two arguments thrown by
fcontrol.

For instance, in

(+ 1 (run (* 2 (+ (fcontrol 3) 4))

(lambda (x k) (k (k x)))))

The invocation of fcontrol throws the two values 3 and a
(truncated) continuation κ. Since κ is the continuation of
the expression “(fcontrol 3)” relative to the larger expres-
sion only up to the closest occurrence of run, κ will be the
function λy.(∗ 2 (+ y 4)). The handler procedure will bind
x to 3 and k to κ, and the result of the entire computation
will be 37.

The continuation caught by the fcontrol is delimited, in
the sense that it does not contain any material outside the
scope of the enclosing run; in particular, the function corre-
sponding to the continuation does not contain the increment
operation (there is no “+ 1” inside of κ). In this example,
since the continuation is just a function, it can be called sev-
eral times without replacing the current evaluation context.
This allows expressions like (k (k x)) as in the example at
hand, in which one occurrence of a continuation takes an
expression involving another occurrence of the same contin-
uation as an argument. This is the sense in which delimited
continuations are ‘composable’.

Before we can make use of run and fcontrol, we must
consider the meaning of sentences containing focus marking
and focus particles.

4.2 Focus
Most (probably all) languages provide some way of marking
some constituent in a sentence as having extra prominence.
In spoken English, this is typically accomplished in part by
a local maximum in the fundamental frequency (the low-
est frequency at which the vocal folds are vibrating). By
convention, the location of such a ‘pitch accent’ is indicated
typographically by setting the most affected word in capital
letters:
(15) a. JOHN saw Mary.

b. John SAW Mary.
c. John saw MARY.

There is a distinct but elusive difference in meaning among
these sentences that depends on the location of the pitch
accent. In each case, it remains true that John saw Mary,
but which piece of information is being emphasized differs.
In traditional terms, the constituent containing the pitch
accents is said to be ‘in focus’, which means (very roughly)
that it carries the new information provided by the sentence.

These observations can be sharpened by noting that the
location of the pitch accent correlates with the precise piece
of information requested by a question.

(16) a. Who saw Mary?
b. What did John do to Mary?
c. Who did John see?

Thus (15a) can be a suitable answer only to the question in
(16a), and not to either (16b) or (16c), and similarly for the
other answer/question pairs.

The semantic effect of the location of pitch accent becomes
even more tangible in the presence of a focus particle such
as only, also, or too.

(17) a. John only drinks PERrier.
b. John only DRINKS Perrier.

We say that only ‘associates’ with whatever element is in
focus. With a pitch accent on the first syllable of Perrier,
then, Perrier will be in focus, and (17a) conveys at least the
information paraphrased in (18):

(18) a. John drinks Perrier.
b. There is nothing else that John drinks

other than Perrier.

The particle only, then, picks out some element in the situa-
tion and contrasts it with other possible alternative choices:
John doesn’t drink whiskey, he doesn’t drink milk, he only
drinks Perrier.

With a pitch accent on the verb drinks in (17b), however,
the appropriate paraphrases differ:

(19) a. John drinks Perrier.
b. There is nothing else that John does with Perrier

other than drink it.

It remains true that John drinks Perrier, but now the ele-
ment of the situation that only puts into contrast with other
alternatives is the activity of drinking. According to (17b),
all John does with Perrier is drink it: he doesn’t sell it, he
doesn’t photograph it, he doesn’t bathe in it.

Note that the conditions under which (17a) and (17b) will
be true are mutually distinct: (17a) can be true even if John
sometimes bathes in Perrier, and (17b) can be true even if
John sometimes drinks whiskey. Thus in the presence of
only, the location of the pitch accent can determine whether
a sentence is true or false.

I will treat pitch accent in a sentence as if it were an
operator F immediately preceding the constituent that is in
focus (i.e., that bears the pitch accent). I will continue to
use capitals to help guide pronunciation.

(20) a. John only drinks F(PERrier).
b. John only F(DRINKS) Perrier.

Now we’re ready to attempt an analysis in terms of run and
fcontrol. The key is to ask the following question: given
pitch accent on Perrier, what precisely is the relation that
holds between John and Perrier and nothing else?

(21) a. John only drinks F(PERrier).
b. λxy.drink x y

The answer is the relation that holds between John and some
object x if John drinks x. In other words, (21b) is a contin-
uation, namely, the continuation of the focussed expression
delimited by the enclosing only.

Considering next the contrasting example with pitch in-
stead on drinks, what is the relation that holds between John
and the activity of drinking and nothing else?

(22) a. John only F(DRINKS) Perrier.
b. λxy.x Perrier y

The answer this time is the relation that holds between John
and some activity x if John does x to Perrier. Once again,
the desired relation is the continuation of the focussed word
up to but not including only.

Based on these examples, we can now guess that the se-
mantic effect of pitch accent on a constituent is exactly
fcontrol.4 So where I wrote ‘F’ in (22), the meaning is
fcontrol. (In a happy coincidence, in this application we
can construe the ‘f’ of fcontrol as mnemonic for ‘focus’.)
Similarly, the meaning of only will invoke run. It remains
only to specify the handler routine that unpacks the infor-
mation provided by the use of fcontrol:

[[only P]] = runPλxκy.(and (κxy)
(∀z(or(equal x z)(not(κzy)))))

This denotation gives rise to the following analyses:

(23) John only drinks F(PERrier).
(and (drinks Perrier j)

(∀ z (or (equal Perrier z)
(not (drinks z j)))))

(24) John only F(DRINKS) Perrier.
(and (drinks Perrier j)

(∀ z (or (equal drinks z)
(not (z Perrier j)))))

4Chung-chieh Shan first noticed the similarity between my
analysis of focus and Sitaram’s operators.

These meanings are equivalent to the paraphrases we started
with in (18) and (19).

Now, it only makes sense to bother building continua-
tions if the meaning captured by the continuation can be
arbitrarily complex. The examples we have discussed so far
have been as simple as possible, so it is worth considering
examples in which the delimited continuation is more com-
plicated.

(25) Mary only tried to dance with F(JOHN).
(and (tried-to-dance-with j m)

(∀ z (or (equal j z)
(not (tried-to-dance-with z m)))))

(26) Mary only tried to F(DANCE) with John.
(and (tried-to-dance-with j m)

(∀ z (or (equal dance z)
(not (tried-to-z-with j m)))))

The simple denotational fragment in section 8 does not at-
tempt to reconstruct the full power of run and fcontrol,
but it does handle the examples discussed here.5

5. CASE STUDY: COORDINATION
One of the distinctive features of natural language is the
pervasive use of polymorphic coordination.

(27) a. [John left] and [Mary left]. t

b. John [left] and [slept]. e→t

c. John [saw] and [remembered] Mary. e→(e→t)

d. [John] and [Mary] left. e

The types in the right column of (27) correspond to the
(direct, pre-CPS) type of the bracketed expressions coordi-
nated by and. In (27a), two clauses (type t) coordinate to
form a complex sentence; in (27b), two verb phrases (type
e→t) coordinate to form a complex verb phrase; and so on.

What about quantificational noun phrases? They also can
coordinate:
(28) a. Someone or everyone left.

b. John or everyone left.

Even more interesting, they can more or less freely coordi-
nate with proper names as in (28b), providing confirmation
that proper names and quantificational noun phrases are
syntactically interchangeable, as predicted by the analysis
in section 3.

We can arrive at a continuation-based analysis of coor-
dination if we consider that (27d) means the same thing
as John left and Mary left.6 The continuation of the co-
ordinated phrase is λx.left x; what the conjunction does is

5There is an important dependence on the context of utter-
ance that goes unrecognized in this analysis. If John only
DRANK Perrier quantified over absolutely everything that
John might have done with Perrier, then it would entail that
he didn’t buy Perrier, that he didn’t swallow Perrier, that
he didn’t taste Perrier, that he didn’t raise Perrier to his
lips, that he didn’t do all kinds of things to Perrier that
he must have done. The standard assumption is that the
quantification over alternatives must be context-dependent,
so that what a use of only really means is that there is
no other contextually-relevant thing that John did to Per-
rier. How precisely to calculate what ought to count as a
contextually-relevant activity is a problem for AI, and not
for linguistics.
6There are other kinds of coordination not treated here. For
instance, John and Mary are a happy couple cannot be para-
phrased as *John is a happy couple and Mary is a happy
couple. Interestingly, unlike conjunction, disjunction dis-

take this continuation and distribute it across each of the
conjuncts. The resulting analysis of conjunction involves
adding two new rules for syntactic combination:

(29) λκ.and(Lκ)(Rκ):A ::= L:A “and” R:A

(30) λκ.or(Lκ)(Rκ):A ::= L:A “or” R:A

These rules differ from one another only in substitution of
or for and.

The syntactic parts of these rules simply say that any-
where that an expression of type A can occur, an expression
of the form “A1 and A2” or “A1 or A2” can also occur, as
long as A1 and A2 are themselves expressions of category A.

What the semantic parts of the rules say is: whatever
you were planning on doing to the value provided by the
expression in this position, first do it to the value of the
left conjunct, then do it to the value of the right conjunct,
and conjoin the two results. This schema guarantees the
following example paraphrases:

(31) a. John left and slept. John left and John slept.
b. John and Mary left. John left and Mary left.
c. John or everyone left. John left or everyone left.

One sign of the utility of coordination is that in Wall Street
Journal text, and is the second most commonly used word
(first place goes to the). If suitably constrained with syn-
tactic marking (such as parentheses) overtly marking the
syntactic strings involved, coordination as a control opera-
tor could provide a rather appealing programming device.
Imagine being able to write if (x == (2 or 3)) then ...

and have it mean if ((x == 2) or (x == 3)) then7

6. CASE STUDY: MISPLACED MODIFIERS
As a final example of a natural language construction that
might profit from a continuation-based analysis, consider the
following data:

(32) a. An occasional sailor walked by.
b. John drank a quiet cup of tea.

The modifier occasional is misplaced:8 there is no specific
sailor (nor even any set of sailors) that has the property of
being occasional; rather, it is the event of a sailor walking
by that happens occasionally compared with other relevant
events. Similarly, in (32b), it is not the cup of tea that is
quiet in the relevant sense, but the activity of drinking the
tea.

Once again, we have an embedded element that needs to
take semantic force at a higher level, and once again we
can allow that expression to take control by providing it
with access to its continuation. (Chris Potts (personal com-
munication) first suggested using continuations to analyze
misplaced modifiers, though he shouldn’t be held respon-
sible for the shortcomings of my treatment here.) Assum-
ing we know what the adverb occasionally means, we can
give the misplaced adjective occasional the following deno-
tation: Cλκ.occasionally(κλx .x), and similarly for quietly

plays only the kind of behavior characterized by the rule
given in (30).
7Hayo Thielecke points out that J, an APL-like language
whose web site (http://www.jsoftware.com) claims that it
uses “constructs and syntax which closely mirror those of
natural language”, has a construction that is a special case
of the operator imagined here. More specifically, under cer-
tain circumstances x (f g h) y evaluates as (x f y) g (x
h y), which is isomorphic to example (27c).
8If you prefer fancy terminology, this is a type of hypallage.

and quiet. The idea is to replace the misplaced adjective
with the trivial adjective meaning λx.x, and then let its ad-
verbial counterpart take scope over the complete sentence.

This analysis gives the following equivalences:

(33) a. An occasional sailor walked by.
Occasionally, a sailor walked by.

b. John drank a quiet cup of tea.
Quietly, John drank a cup of tea.

Additional details (such as the type of adjectives and nouns)
are given in the cumulative fragment below in section 8.

7. HISTORICAL NOTES
If natural language is rife with phenomena that beg for
a continuation-based analysis, why hasn’t anyone noticed
before? The answer, of course, is that some people have
noticed. In fact, I would suggest that in addition to the
many independent discoveries of continuations described by
Reynolds [12], Richard Montague [8] also invented a tech-
nique that relies in a limited way on continuations.

Montague was a logician at UCLA who was one of the ma-
jor figures in the early days of establishing formal approaches
to natural language semantics. In 1970 he constructed the
first popular formal analysis of quantification [8]. He did this
by suggesting that quantificational noun phrases such as ev-
eryone differ from non-quantificational noun phrases such
as John in just the way I proposed in section 3: quantifi-
cational noun phrases are in effect control operators whose
meanings are properly expressed as functions on their own
continuations.

The main limitation of Montague’s approach is that noun
phrases were the only type of expression that had access to
their continuations; nevertheless, with hindsight, anyone fa-
miliar with continuation-passing style programming will im-
mediately recognize a primitive form of continuation passing
in Montague’s formal grammars. Joe Goguen, my colleague
at UCSD, was a colleague of Montague’s at UCLA during
the 70’s, and he tells me that the connection between Mon-
tague’s techniques and continuations was noticed long ago,
at least in the folklore, if not in the literature.

It has only been recently, however, that people have ex-
plored this connection systematically, providing a more gen-
eral mechanism for accessing continuations in natural lan-
guage analyses. In particular, Herman Hendriks’ 1993 dis-
sertation [6] proposes a type-shifting system that in effect
produces CPS transforms as needed (and may deserve to be
counted as yet another independent invention of a continuation-
based system). Philippe de Groote [2] provides an analysis of
simple quantification based on the λµ-calculus, and a paper
by me [1] explores a continuation-based approach to quan-
tification in considerable detail. Since then, Chung-chieh
Shan has proposed a number of continuation-based analyses
of natural language phenomena ([14], [15], [16]), including
his paper at this conference.

Incidentally, if natural languages do make abundant use
of continuations, then Reynolds was doubly right to speak
of the ‘discovery’ of continuations rather than their ‘inven-
tion’. It is intriguing to consider the possibility that that
the presence of continuation-based control operators in the
native language of the various discoverers may even have
inspired their proposals at some subconscious level.

8. CUMULATIVE FRAGMENT WITH RE-
SET

Figure 2 gives a CPS grammar describing a fragment of En-
glish with a context-free syntax and a denotational seman-
tics. The fragment includes versions of the four analyses
discussed above for quantification, focus, coordination, and
misplaced modifiers.

In addition, the fragment provides a reset operator, asso-
ciated here with the complementizer that (as discussed im-
mediately below). This section will argue for all of the four
phenomena that the relevant continuations must at least
sometimes be delimited.

The meanings listed in the examples below are guaranteed
to be equivalent to the denotations provided by the fragment
up to β-reduction and application to the trivial continuation
λx.x.

For instance, here are some simple examples involving
zero, one, and two quantificational noun phrases:

(34) a. John left. left j
b. Everyone left. ∀x.left x

c. John saw Mary. saw m j
d. John saw everyone. ∀x.saw x j
e. Someone saw everyone. ∃x.∀y.saw y x

Since the fragment does not include extra combination rules
for right-to-left evaluation, there is only one interpretation
for Someone saw everyone (see section 3.2 for discussion).

I now introduce embedded clauses and a reset operator.

(35) a. John claimed [Mary left]. claim (left m) j
b. John claimed [everyone left]. ∀x.claimed (left x) j
c. John claimed that [everyone left]. claimed (∀x.left x) j

Unlike saw, which denotes a relation between two individ-
uals, claimed relates an individual and a proposition. Syn-
tactically, claimed takes a clause as its first argument. Thus
the bracketed strings in (35) are all complete clauses in their
own right.

The interpretation in (35b) says that John made several
different claims, one for each person. The interpretation in
(35c) says that he made one single claim, a claim about
everybody. Both interpretations seem to be valid.

In continuation terms, we need to be able to delimit the
continuation for everyone so as to extend only as far as the
material in the embedded clause. In order to experiment
with delimitation, I will adopt the following expository strat-
egy: as shown by comparing (35b) with (35c), claimed op-
tionally allows its argument clause to be introduced by the
complementizer that. By giving that the semantics of a reset
operator, we can add or subtract delimitation at will and see
what happens. As shown in (35c), for instance, the presence
of the that delimits the embedded clause and produces the
second legitimate interpretation.

The following set of sentences illustrates the analysis of
focus.

left ((e→t)→A)→A λκ.κ left
saw ((e→(e→t))→A)→A λκ.κ saw
claimed ((t→(e→t))→A)→A λκ.κ claimed

John (e→t)→t λκ.κ j
Mary (e→t)→t λκ.κ m

everyone (e→t)→t λκ.∀x.κx

someone (e→t)→t λκ.∃x.κx

a (((e→t)→e)→t)→t λκ.κ a
sailor ((e→t)→t)→t λκ.κ sailor
tall (((e→t)→(e→t))→t)→t λκ.κ tall
occasional (((e→t)→(e→t))→t)→t λκ.occasionally(κ(λx.x))

λκ.M(λm.N(λn.κ(mn))):(B→E)→D ::= M:((A→B)→C)→D N:(A→E)→C

λκ.N(λn.M(λm.κ(mn))):(B→C)→E ::= N:(A→D)→E M:((A→B)→C)→D

λκ.and(Lκ)(Rκ):A ::= L:A “and” R:A

λκ.or(Lκ)(Rκ):A ::= L:A “or” R:A

λκ.〈X, κ〉:A→((A→t) × A) ::= “F” X:A→t

λXκ.only(Xκ):A→t ::= “only” X:A→((B→t) × B)

λκ.κ(X(λx.x)):A ::= “that” X:A

Figure 2: A grammar in continuation passing style covering most of the examples discussed in the text.

(36) a. John only saw F (MARY).
only〈λκ(κm), λx.saw x j〉

b. John only F (SAW) Mary.
only〈λκ.κ saw, λx.x m j〉

c. John only F (SAW MARY).
only〈λκ.κ(saw m), λx.xj〉

d. John only claimed F (MARY LEFT).
only〈λκ.κ(left m), λx.claimed x j〉

e. John claimed Mary only saw F (TOM).
*only〈κ.κt, λx.claimed (saw x m) j〉

f. John claimed that Mary only saw F (TOM).
claimed (only〈κ.κt, λx.saw x m〉) j

Here only is a function taking an ordered pair 〈X, κ〉 and
returning true just in case Xκ is true and there is no other
(contextually relevant) meaning Y of the same type as X
such that Yκ is true. Thus the interpretation for John only
saw MARY given (36a) entails that John saw Mary and that
there is no other individual that John saw.

Examples (36a) and (36b) show that the pitch accent
marker F can take arguments of different type (here, a tran-
sitive verb saw rather than a noun phrase Mary).

Examples (36b), (36c), and (36d) show that the focus
marker can take either a single word (e.g., SAW), a com-
plex phrase (SAW MARY), or even an entire clause (MARY
LEFT) as its argument. (In the last case, the only thing
that John claimed was the Mary left; he did not claim that
Tom left, he did not claim that Mary called, etc.)

Comparing (36e) with (36f), we see that once again em-
bedded clauses must be delimited in order to arrive at the
correct interpretation: (36e) does not mean that Tom was
the only person that John claimed Mary saw; rather, it
means that John claimed that Tom was the only person
Mary saw. Thus the presence of the reset operator provided
by that in (36f) is crucial to correctly delimiting the scope
of only.

The next pair of examples shows the interaction of focus

with quantificational noun phrases.

(37) a. John only F(SAW) someone.
only〈λκ.κ saw, λy.∃x.y x j〉

b. John only F (SAW SOMEONE).
only〈λκ.∃x.κ(saw x), λx.x j〉

c. John only saw F (SOMEone).
only〈λκ.∃x.κ x, λx.saw x j〉

Because the focus marker F takes a continuized meaning as
its argument, it is able to handle quantificational foci with
no trouble.

The next examples demonstrate the analysis of coordina-
tion.

(38) a. John left and Mary left. and(left j)(left m)

b. John and Mary left. and(left j)(left m)

c. John saw Mary and left. and(saw m j)(left j)

d. John saw Mary or everyone. or(saw m j)(∀x.saw x j)

Note that (38d) involves coordinating a proper name with a
quantificational noun phrase, which works fine.

(39) a. John claimed Mary or Tom left.
or(claimed (left m) j)(claimed (left t) j)

b. John claimed that Mary or Tom left.
claimed(or(left m)(left t)) j

Examples (39a) and (39b) show the behavior of coordina-
tion with and without a reset at the level of the embedded
clause. In (39a), John either claims Mary left or claims Tom
left; in (39b), John makes a single indeterminate claim that
either Mary or Tom left. Since the interpretation in (39b)
is certainly possible for this sentence, it provides additional
evidence that a reset for delimiting embedded clauses must
be available.

Finally, we have misplaced modifiers:

(40) a. John saw a tall sailor.
saw (a(tall sailor)) j

b. John saw an occasional sailor.
occasionally (saw (a sailor) j)

c. John claimed that an occasional sailor left.
claimed (occasionally (left (a sailor))) j

The adjective tall is a normal adjective and has no special
control properties. The adjective occasional, however, takes
scope over an entire clause. In (40c), in order for the leav-
ing to be occasional rather than the claiming activity to
be occasional, it is once again necessary to provide a reset
delimiting the scope of the misplaced modifier within the
embedded clause.

The examples above show that quantification, focus, co-
ordination, and misplaced modifiers all require some form of
delimitation at least some of the time in order to generate
appropriate interpretations.

A word of warning: each of the analyses in this brief
survey has grave inadequacies in the simple form presented
here. In addition, many of the interactions among the phe-
nomena behave badly in the cumulative fragment (consider,
for instance, that is not possible to generate an analysis for
pitch accent on just one conjunct, even thought this is some-
thing that native speakers have no trouble interpreting, as
for John only claimed that Mary or TOM left). This is the
normal state of affairs when dealing with natural language,
of course; as Sapir put it, “all grammars leak”. The de-
light comes from figuring out an equally simple grammar
that performs better. In any case, I am not aware of any
potential problem that could not be dealt with by a suitably-
developed continuation-based analysis along the lines of the
approximations offered here; in other words, I believe each
of these proposals to be a viable approach.

9. CONCLUSIONS
I have suggested that continuations provide an appealing
analysis of a variety of natural language phenomena. It is
possible for a skeptic to claim that natural language seman-
tics has gotten by well enough without continuations so far.
To be sure, each of the phenomena discussed above have
well-established treatments in the linguistic literature that
do not mention continuations. In the same way, computer
scientists were perfectly able to deal meaningfully with the
difference between call-by-value versus call-by-name before
Plotkin’s CPS analysis [10]. Yet I take it that these days
everyone recognizes that a full understanding of evaluation
disciplines requires continuations (or else something very like
continuations). It is my hope, then, that the examples in
this paper, or other analyses yet to be discovered, either
individually or cumulatively, will someday make continua-
tions seem as indispensable for the description of natural
language as they currently are for the theory of computa-
tion and logic.

In closing, I would like to add one more subquestion to
the list of questions discussed in the introductory section.

• [Innovation] Are there uses for continuations in natu-
ral language that computer scientists haven’t thought
up yet?

Besides whatever intrinsic interest there might be in find-
ing continuations in a natural setting, it is conceivable that

once we look more closely, natural language will do interest-
ing things with continuations that have not yet been dreamt
up by theoretical computer scientists. I doubt that any of
the natural language constructions treated above will seem
breathtakingly new to an experienced continuation hacker;
but then, I have chosen these examples precisely in order to
maximize the degree to which they seem like garden-variety
control operators. In the same spirit that pharmaceutical
companies survey compounds harvested from tropical rain
forests in hopes of finding medically useful substances un-
known to laboratory scientists, we should consider that there
are a lot of poorly understood languages out there—who
knows what amazing control operators lurk in languages
spoken in the forests of New Guinea?

10. ACKNOWLEDGMENTS
Thanks to Harry Mairson, Hayo Thielecke and Chung-chieh
Shan.

11. REFERENCES
[1] C. Barker. Continuations and the nature of

quantification. Natural Language Semantics,
10:211–242, 2002.

[2] P. de Groote. Type raising, continuations, and
classical logic. In van Rooy and Stokhof [20], pages
97–101.

[3] M. Felleisen. The Calculi of λv-CS Conversion: A
Syntactic Theory of Control and State in Imperative
Higher-Order Programming Languages. PhD thesis,
Indiana University, Aug. 1987. Also as Tech. Rep. 226,
Department of Computer Science, Indiana University.

[4] M. Felleisen. The theory and practice of first-class
prompts. In POPL ’88: Conference Record of the
Annual ACM Symposium on Principles of
Programming Languages, pages 180–190, New York,
1988. ACM Press.

[5] T. G. Griffin. A formulae-as-types notion of control.
In POPL ’90: Conference Record of the Annual ACM
Symposium on Principles of Programming Languages,
pages 47–58, New York, 1990. ACM Press.

[6] H. Hendriks. Studied Flexibility: Categories and Types
in Syntax and Semantics. PhD thesis, Institute for
Logic, Language and Computation, Universiteit van
Amsterdam, 1993.

[7] A. R. Meyer and M. Wand. Continuation semantics in
typed lambda-calculi (summary). In R. Parikh, editor,
Logics of Programs, number 193 in Lecture Notes in
Computer Science, pages 219–224, Berlin, 1985.
Springer-Verlag.

[8] R. Montague. The proper treatment of quantification
in ordinary English. In R. Thomason, editor, Formal
Philosophy: Selected Papers of Richard Montague,
pages 247–270. Yale University Press, New Haven,
1974.

[9] C. R. Murthy. Extracting Constructive Content from
Classical Proofs. PhD thesis, Department of Computer
Science, Cornell University, Aug. 1990. Also as Tech.
Rep. TR90-1151.

[10] G. D. Plotkin. Call-by-name, call-by-value and the
λ-calculus. Theoretical Computer Science,
1(2):125–159, 1975.

[11] C. Queinnec. Inverting back the inversion of control
or, continuations versus page-centric programming.
Rapport de Recherche LIP6 2001/007, Laboratoire
d’Informatique de Paris 6, 2001.

[12] J. C. Reynolds. The discoveries of continuations. Lisp
and Symbolic Computation, 6(3–4):233–247, 1993.

[13] C.-c. Shan. Monads for natural language semantics. In
K. Striegnitz, editor, Proceedings of the ESSLLI-2001
Student Session, pages 285–298, Helsinki, 2001. 13th
European Summer School in Logic, Language and
Information.

[14] C.-c. Shan. A variable-free dynamic semantics. In van
Rooy and Stokhof [20], pages 204–209.

[15] C.-c. Shan. A continuation semantics of interrogatives
that accounts for Baker’s ambiguity. In B. Jackson,
editor, SALT XII: Semantics and Linguistic Theory,
pages 246–265, Ithaca, 2002. Cornell University Press.

[16] C.-c. Shan. Quantifier strengths predict scopal
possibilities of Mandarin Chinese wh-indefinites. Draft
manuscript, 2003.

[17] C.-c. Shan and C. Barker. Explaining crossover and
superiority as left-to-right evaluation. Draft
manuscript, 2003.

[18] D. Sitaram. Handling control. In PLDI ’93:
Proceedings of the ACM Conference on Programming
Language Design and Implementation, volume 28(6) of
ACM SIGPLAN Notices, pages 147–155, New York,
June 1993. ACM Press.

[19] D. Sitaram and M. Felleisen. Control delimiters and
their hierarchies. Lisp and Symbolic Computation,
3(1):67–99, Jan. 1990.

[20] R. van Rooy and M. Stokhof, editors. Proceedings of
the 13th Amsterdam Colloquium. Institute for Logic,
Language and Computation, Universiteit van
Amsterdam, 2001.

