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Abstract. Evolutionary algorithms have been shown to be very success-
ful for a wide range of NP-hard combinatorial optimization problems. We
investigate the NP-hard problem of computing a spanning tree that has
a maximal number of leaves by evolutionary algorithms in the context of
fixed parameter tractability (FPT) where the maximum number of leaves
is the parameter under consideration. Our results show that simple evo-
lutionary algorithms working with an edge-set encoding are confronted
with local optima whose size of the inferior neighborhood grows with the
value of an optimal solution. Investigating two common mutation oper-
ators, we show that an operator related to spanning tree problems leads
to an FPT running time in contrast to a general mutation operator that
does not have this property.

1 Introduction

Evolutionary Algorithms (EAs) are a large class of stochastic search algorithms
that are widely used to solve combinatorial optimization problems. They have
found many applications for different kinds of NP-hard spanning tree problems
(see e. g. [10, 5]). Our aim is to contribute to the theoretical understanding of
evolutionary algorithms for such kind of problems. Rigorous runtime analyses
have been widely used to provide theoretical insights into the optimization pro-
cess of evolutionary algorithms and we follow this line of research throughout
this paper. The first runtime analyses of EAs were performed on artificially cre-
ated pseudo-Boolean functions to understand what characteristics of a problem
make its optimisation easy or hard for an EA (see e. g. [2]). These first efforts led
to the development of a range of mathematical techniques used for the analyses.
Building up on these results it has been possible to analyse the performance of
EAs on classical combinatorial optimisation problems (see [9] for an overview).

Recently, the notion of fixed parameter tractability has been introduced into
the theoretical analysis of evolutionary algorithms [6]. A parameterized analysis



allows a more detailed inspection on which instances of an NP-hard combina-
torial optimization problem are hard to solve. Such an analysis depends on a
parameter k which measures the difficulty of the problem under consideration.
In parameterized complexity, a problem with parameter k is fixed parameter
tractable (FPT) if there exists an algorithm that decides it in time O(f(k) · nc)
[1]. Hence, the runtime of the FPT algorithm is O(nc) for every fixed value of k.
For many real-world instances of NP-hard problems, the parameter k in ques-
tion is bounded, and not too large. Hence, these problem instances can solved by
FPT-algorithms in polynomial time, despite the general problem being NP-hard.
We point out that problems considered in parameterized complexity often have
straightforward O(nf

′(k)) time algorithms; however, while also polynomial for
every fixed k, the degree of the polynomial does depend on k. Fixed-parameter
evolutionary algorithms are evolutionary algorithms that compute an optimal
solution in expected time O(f(k) · nc). In [6], it has been shown that there are
fixed parameter evolutionary algorithms for the vertex cover problem.

We put forward the parameterized analysis of evolutionary algorithms and
investigate this kind of algorithms for the computation of a maximum leaf span-
ning tree. There are different approximation algorithms based on local search
for this problem that give a constant approximation ratio [8, 7]. On the other
hand, it is known that the problem is APX-complete [4]. We consider exact opti-
mization and investigate two evolutionary algorithms working with an edge-set
encoding [10] which is very popular when solving spanning tree problems. Our
algorithms differ from each other by the chosen mutation operator. The more
general mutation operator is motivated by standard bit-mutation and does not
necessarily create a tree whereas the second (more problem-specific) operator
makes sure that each created offspring is a tree. We present instances contain-
ing a local optima that is hard to leave if the value of an optimal solution is
large. Based on the structure of these instances, we prove lower bounds on the
expected optimization time for both algorithms which grow with the value of
an optimal solution. Later on, we show that the more problem specific mutation
operator leads to fixed parameter evolutionary algorithms for the maximum leaf
spanning tree problem, while the more general mutation operator does not have
this property according to our proven lower bounds.

After having motivated our work, we introduce the problem and algorithms
in Section 2. We present an instance with a local optimum and a large inferior
neighborhood in Section 3. In Section 4, we show that a suitable mutation op-
erator leads to fixed parameter evolutionary algorithms for the maximum leaf
spanning tree problem. Finally, we finish with some concluding remarks.

2 Problem and Algorithms

We investigate the following NP-hard spanning tree problem. Given an undi-
rected connected graph G = (V,E), the goal is to find a spanning tree T ∗ of G
such that the number of leaves is maximal.



We consider two simple evolutionary algorithms which differ by the choice of
the mutation operator. Both algorithms start with an arbitrary spanning tree T
of G. We denote by m the number of edges in G, and `(T ) the number of leaves
of the spanning tree T . A new solution is only accepted if it is a spanning tree
whose number of leaves is at least as high as the number of leaves in the current
solution. The first algorithm can be described as follows.

Algorithm 1 (Generic (1+1) EA)

1. Choose a spanning tree of T uniformly at random.

2. Produce T ′ by swapping each edge of T independently with probability 1/m.

3. If T ′ is a tree and `(T ′) ≥ `(T ), set T := T ′.

4. Go to 2.

Swapping an edge in step 2. of Algorithm 1 means that if an edge is present in
T then it is not contained in T ′ with probability 1/m. On the other hand, if an
edge is not present in T then it is contained in T ′ with probability 1/m. An edge
does not change from T to T ′ with probability 1−1/m in each mutation step in-
dependently of the other edges. Note, that the mutation operator of Algorithm 1
does not necessarily create an offspring that is a tree. If the offspring is not a
tree then this individual is discarded as it represents an infeasible solution.

Often it is assumed that choosing a mutation operator that is more tailored to
the problem gives a significant speed up. The second algorithm uses a problem-
specific mutation operator that ensures valid solutions, i. e. spanning trees.

Algorithm 2 (Tree-Based (1+1) EA)

1. Choose an arbitrary spanning tree T of G.

2. Choose S according to a Poisson distribution with parameter λ = 1 and per-
form sequentially S random edge-exchange operations to obtain a spanning
tree T ′. A random exchange operation applied to a spanning tree T̃ chooses
an edge e ∈ E \ T̃ uniformly at random. The edge e is inserted and one
randomly chosen edge of the cycle in T̃ ∪ {e} is deleted.

3. If `(T ′) ≥ `(T ), set T := T ′.

4. Go to 2.

Our goal is to point out the differences between the two algorithms. To do this,
we compare the expected number of iterations that our algorithms need to com-
pute an optimal solution. The expected number of iterations needed to obtain an
optimal solution is called the expected optimization time, and is the commonly
used performance measure in the rigorous runtime analysis of evolutionary algo-
rithms. We will show that choosing the more problem-specific mutation operator
of Algorithm 2 makes the difference between a fixed-parameter evolutionary algo-
rithm and an evolutionary algorithm that does not compute an optimal solution
within expected FPT-time.
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Fig. 1. Local optimum shown with dashed edges, global optimum with dotted edges,
shared edges are drawn solid.

3 Local Optima and Lower Bounds

The aim of this section is to point out structures of the problem that make it hard
for our algorithms to achieve an improvement. We discuss the presence of local
optima and present a graph that consists of a local optimum which has a large
distance (in terms of the number of edge exchanges) from the global optimum.
Using this observation, we show lower bounds on the expected optimization time
for the two algorithms under consideration.

Our graph called Gloc (see Figure 1) contains two components consisting of r
vertices each. In component i, 1 ≤ i ≤ 2, two vertices ui and vi are connected to
all the other vertices in that component. The vertex ui is connected to vertex x
which lies outside the component. Similarly vertex vi is connected to vertex y. In
addition, x and y share an edge. The graph is completed by attaching a path of
n−2r−2 vertices to the vertex x. A tree has to contain all the edges of the path
attached to x. For a given component, the maximal number of possible leaves
is at most r − 1. This can be obtained by attaching all nodes of the component
either to ui or vi.

The graph contains a local optimum Tlopt which consists of all edges attached
to the vertices vi, 1 ≤ i ≤ 2, the edge {x, y} and all path edges. The global
optimum Topt consists of all edges attached to the vertices ui, 1 ≤ i ≤ 2, the
edge {x, y} and all path edges. Compared to Tlopt, Topt has an extra leaf, namely
the vertex y. However, Tlopt and Topt differ by 4(r−1) edges which make it hard
for the algorithms under consideration to obtain Topt if Tlopt has been produced
before.

Our goal is to study the expected optimization time of the algorithms intro-
duced in the previous section in dependence of the number of leaves which, in
turn, depends on r. To do this, we first consider the number of different spanning
trees of Gloc in dependence of r.

Lemma 1. The number of spanning trees of Gloc is at most 24r.



Proof. A spanning tree has to contain all edges of the path attached to x. The
path attached to x consists of n−2r−2 edges. A spanning tree contains exactly
n′ = n− 1− (n− 2r − 2) = 2r + 1 non-path edges.

We count the total number of non-path edges in Gloc. Consider a component
consisting of r edges. The number of edges within such a component is 2r − 3
as ui and vi are connected to all other vertices and share an edge. In addition
there are two edges connecting each component to the outer part. Hence, the
total number of edges connected to vertices of a single component is 2r − 1. In
addition, there is the edge connecting x and y.

Summing up, the graph consists of m′ = 2(2r − 1) + 1 = 4r − 1 non-path
edges. The number of different spanning trees is therefore at most(

m′

n′

)
=

(
4r − 1

2r + 1

)
≤ 24r.

ut

Using the previous lemma, we show the following lower bound on the ex-
pected optimization time of Generic (1+1) EA on Gloc.

Theorem 1. The expected optimization time of Generic (1+1) EA on Gloc is

lower bounded by
(
m
c

)2(r−2)
where c is an appropriate constant.

Proof. The number of spanning trees of Gloc is at most 24r. Therefore, the initial
spanning tree is Tlopt with probability at least 2−4r. This spanning tree is a local
optimum with 2(r−1)+2 leaves. In order to obtain a different spanning tree with
at least as many leaves, r − 1 leaves have to be achieved in each component, or
at least r− 1 leaves have to be obtained in one component and y has to become
a leaf. Hence, in order to achieve an accepted solution that is different from Tlopt
all (r − 2) nodes of at least one component i have to be assigned to ui instead
of vi. This implies that at least 2(r− 2) edges for a fixed component have to be
swapped to escape from the local optimum. There are two components where
this can happen which implies that the probability for such a step is at most

2
(

1
m

)2(r−2)
. The expected waiting time for such a step is at least 1

2 ·m
2(r−2).

Altogether the expected optimization time is lower bounded by

2−4r · 1

2
·m2(r−2) ≥

(m
c

)2(r−2)
,

where c is an appropriate constant. ut

Using the previous ideas, we can also lower bound the expected optimization
time of Tree-Based (1+1) EA on Gloc.

Theorem 2. The expected optimization time of Tree-Based (1+1) EA on Gloc

is lower bounded by ( r−2
c )r−2 where c is an appropriate constant.



Proof. We follow the ideas of the previous theorem. With probability at least
2−4r, Tlopt is chosen as the initial spanning tree. In order to produce from Tlopt
the optimal solution Topt, (r − 2) exchange operations have to be carried out in
a single mutation step. According to the Poisson distribution with λ = 1, the
probability that this happens in the next step is

1

e(r − 2)!
≤ 1√

2π(r − 2)
er−3(r − 2)−(r−2) ≤ er−3(r − 2)−(r−2).

Altogether the expected optimization time is lower bounded by

2−4r · e−r+3(r − 2)(r−2) ≥
(
r − 2

c

)r−2

,

where c is an appropriate constant. ut

To show that both algorithms need not only in expectation that many steps,
but also with a high probability the graph can be modified such that it consists
of more than two components attached to x and y. Then a typical run can be
investigated to show that at least two components end up in the local optimum.

4 FPT of Edge Exchanges

In this section we prove that Algorithm 2 is an FPT algorithm for the maximum
leaf spanning tree problem with respect to the maximal number of leaves k.
Given that the maximal-leaf spanning tree has k leaves, in the following lemma
we derive upper bounds in dependence of k on the number of edges and on the
number of nodes of degree at least three that the graph may contain. These
bounds will allow us to prove the main result of this section presented in Theo-
rem 3.

The lemma is proven using an approach similar (but greatly simplified) to the
one used in [3]; our focus here is on giving a self-contained presentation sufficient
for obtaining the claimed expected runtime. Note also, that kernelization results,
such as [3], almost always require a modification of the problem instance while
we are interested in bounding the original instance.

Lemma 2. Any connected graph G on n nodes and with a maximum number
of k leaves in any spanning tree has at most n+5k2−7k edges and at most 10k−14
nodes of degree at least three.

Proof. Let G be a graph on n nodes and let T be a spanning tree of G with (the
maximum number of) k leaves. We let P0 denote the set of all leaves and all
nodes of degree at least three in T . (We denote the degree of node x within the
tree T by degT (x).) Furthermore, let P ⊇ P0 denote the set of all nodes that are
within distance of at most two of any node of P0 (distance and degree w.r.t. T ).
We let Q denote the set of remaining nodes.



In the following we show that all nodes of Q have degree two in G (clearly
they have degree at least two in G since they have degree two in T ). We assume
for contradiction that there is a node v ∈ Q which has degree at least three
in G. Therefore, v has a neighbor u in G to which it is not adjacent in T . We
distinguish two cases:

If u is at distance two from v (w.r.t. T ) then it is neither a leaf nor does it
have degree greater than two. Let w be the node that is adjacent to both u and v
in T . Observe that adding the edge {u, v} to T and removing {v, w} creates a
spanning tree with an additional leaf, namely w (note that the graph does not
disconnect since we remove an edge of a cycle). This contradicts our choice of T .

If u is at distance greater than two from v (w.r.t. T ) then we observe the
following: Adding the edge {u, v} to T creates a cycle C = {. . . , u, v, w, x, . . .}
on at least four nodes (else u would be too close to v). Since v ∈ Q both nodes w
and x (to which v is at distance at most two in T ) have degree two in T . Thus
adding the edge {u, v} to T and removing {w, x} would give two additional
leaves w and x while possibly losing the leaf u (again, removing an edge from a
cycle must give a connected graph). This contradicts our choice of T .

Thus all nodes in Q have degree two in G. We now bound the size of P . To
this end, we make the following observations: T has k leaves and thus it has at
most k− 2 nodes of degree at least three. Also, the number of leaves in any tree
is equal to 2 plus deg(v)− 2 for every node v of degree at least three, so∑

v:degT (v)≥3

(degT (v)− 2) = k − 2.

The number of elements in P0 are the k leaves, plus the at most k− 2 nodes
of degree at least 3. Let P1 be the set of nodes at distance 1 from P0, and P2

the set of nodes at distance 2 from P0. The number of nodes in P1 that are
connected to a leaf node in P0 is at most k. The number of nodes in P1 that are
connected to a node of degree at least 3 in P0 is at most

∑
v:degT (v)≥3

degT (v) =
∑

v:degT (v)≥3

(degT (v)− 2 + 2)

≤ 2(k − 2) +
∑

v:degT (v)≥3

(degT (v)− 2) ≤ 3k − 6.

In total, there are no more than 4k − 6 = k + (3k − 6) nodes in P1. Finally,
each node in P1 has degree two and is adjacent to at least one node of P0.
Furthermore, each node of P2 is adjacent to at least one node of P1. Therefore
|P2| ≤ |P1|. In total, there are no more than |P0|+ |P1|+ |P2| ≤ 10k − 14 nodes
in P . Clearly, 10k− 14 is also an upper bound on the number of nodes of degree
at least three in G since they cannot be contained in Q.

To bound the number of edges we observe that no node of G can have degree
greater than k: Starting a tree from a node of degree greater than k + 1 and
adding the remaining nodes to this tree would give a spanning tree with more



than k leaves. Thus we get the claimed upper bound on the number m of edges:

m ≤ 1

2
(k|P |+ 2|Q|) =

k

2
|P |+ |Q| ≤ 5k2 − 7k + n.

This completes the proof. ut

Now we are ready to prove the main result. Since a spanning tree always has
n−1 edges, from Lemma 2 there are at most 5k2 edges to choose from at each step
and at most all of them need to be replaced to reach the optimal spanning tree.
The proof of the following theorem first shows that the probability of increasing
the number of leaves by one in the current (non-optimal) spanning tree only
decreases with the fixed parameter k. The proof is concluded by showing that
the probability of exchanging all the 5k2 edges in one mutation step also depends
only on k leading to the claimed runtime.

Theorem 3. If the maximal number of leaf nodes in any spanning tree of G is
k, then Algorithm 2 finds an optimal solution in expected time O(215k

2 log k).

Proof. Let n≥3 be the number of nodes with degree at least three. We call an edge
distinguished if it is incident on a node of degree at least 3, and non-distinguished
otherwise. By applying Lemma 2, the number of distinguished edges on any cycle
is at most 2n≥3 ≤ 20k− 28, since there are at most n≥3 nodes of degree at least
3 on the cycle, and each node is incident with at most two edges of the cycle.

We first bound the probability of reducing the distance to an optimal span-
ning tree by 1. Let E∗ ⊆ E be the optimal spanning tree that is closest to the
current spanning tree, and let e be any edge in E∗ that is not yet in the current
spanning tree. By Lemma 2, the number of edges in the graph is m ≤ n+5k2−7k.
So the probability that edge e is introduced in an edge exchange operation is
at least 1/(m − (n − 1)) ≥ 1/5k2. Introducing edge e creates a cycle. Consider
first the case when the cycle consists only of distinguished edges. The length of
such a cycle is no more than 20k − 28, and the probability of removing one of
the edges that is not in the optimal spanning tree is at least 1/20k. In the case
where the cycle contains non-distinguished edges, we claim that it suffices to
remove any non-distinguished edge e′ from the cycle. The claim obviously holds
when the chosen edge e′ is not in the optimal spanning tree, so assume that
edge e′ is in the optimal spanning tree. A bridge edge in a connected graph is
any edge e such that the subgraph on the edges E \ {e} is disconnected. Edge
e′ connects two components T1 and T2 in E∗, and cannot be a bridge edge be-
cause then the edge could not have been part of a cycle. Since edge e connects
T1 and T2, the cycle must contain at least one other edge e′′ that connects T1
and T2, and this edge is not part of the optimal spanning tree E∗. However, the
spanning tree (E∗ \ {e′}) ∪ {e′′} must also be optimal, because adding edge e′′

decreases the number of leaf nodes by at most 2, and removing edge e′ increases
the number of leaf nodes by exactly 2. Hence, adding edge e and removing edge
e′ reduces the distance to an optimal spanning tree by 1. Let ` be the number
of non-distinguished edges on the cycle. No cycle contains more than 20k − 28
distinguished edges, so the probability of removing a non-distinguished edge is



at least `/(20k − 28 + `) ≥ 1/20k. The probability of reducing the distance to a
global optimum by 1 is therefore at least 1/(20k · 5k2).

The number of edges r that must be inserted in the spanning tree is no more
than m− (n−1) ≤ 5k2. The edges can be inserted in any order. The probability
that in Step 2 of the algorithm, we choose to do S = r operations is 1/er!. So,
the probability that in one step, we decide to do r edge exchange operations in
any of the r! orders, and each of the edge exchanges decreases the Hamming
distance to an optimal spanning tree is at least

r! · 1

er!
·
(

1

5k2
· 1

20k

)r

≥ 1

e

(
1

100k3

)5k2

≥ 1

e

(
1

100

)5k2 (
1

k

)3·5k2

,

which implies that the expected number of steps to find an optimal spanning
tree is at most O(215k

2 log k). ut

Conclusions

The parameterized complexity analysis of evolutionary algorithms is a promising
research direction that is likely to become an important part in the theoretical
analysis of evolutionary computation during the next years. An advantage in
comparison to classical worst-case considerations is that this kind of analysis
gives characterizations of what difficult instances for a specific algorithm look
like in relation to some parameter of the problem. Evolutionary algorithms have
produced very good results for different kind of NP-hard spanning tree problems.
In this paper, we have studied evolutionary algorithms for the NP-hard maxi-
mum leaf spanning tree problem in the context of parameterized complexity. In
our case the parameter is the size of the global optimum. Our investigations show
that there may be local optima where the size of an inferior neighborhood grows
with the number of leaves in optimal solutions. Investigations of two common
mutation operators point out that a more problem-specific operator makes the
difference between a fixed parameter evolutionary algorithm for the maximum
leaf problem and an algorithm that does not have this property.
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