Dynamic measurement and protected execution:
model and analysis

Shiwei Xu', Ian Batten?, and Mark Ryan?

! Wuhan Digital Engineering Institute, Wuhan, China
2 School of Computer Science, University of Birmingham, UK

Abstract. Useful security properties arise from sealing data to specific
units of code. Modern processors featuring Intel’s TXT and AMD’s SVM
achieve this by a process of measured and protected execution. Only code
which has the correct measurement can access the data, and this code
runs in an environment protected from observation and interference. We
present a modelling language with primitives for protected execution,
along with its semantics. We characterise an attacker who has access to
all the capabilities of the hardware. In order to achieve automatic analy-
sis of systems using protected execution without attempting to search an
infinite state space, we define transformations that reduce the number of
times the attacker needs to use protected execution to a pre-determined
bound. Given reasonable assumptions we prove the soundness of the
transformation: no secrecy attacks are lost by applying it. We then de-
scribe using the StatVerif extensions to ProVerif to model the bounded
invocations of protected execution. We show the analysis of realistic sys-
tems, for which we provide case studies.

1 Introduction

Modern hardware often includes security features that support the ability to seal
data to program code. This allows a data owner to impose a policy (embodied as
code) about how their data is to be processed: the hardware guarantees that the
policy will be enforced. Sealing data to code is a very powerful mechanism that
enables a wide variety of applications, in mobile computing and cloud computing
alike. For example, mobiles can store cryptographic keys for exclusive use by
certain applications, such as payment or banking applications. In the cloud,
servers can guarantee to remote users that the data they uploaded is being
processed only in accordance with their wishes.

This paper aims to analyse the specific mechanisms for sealing data to code
provided on commodity processors from AMD and Intel. These processors al-
ready ship with off-the-shelf computers and are becoming ubiquitous. They allow
code to be executed in a protected environment outside the influence of malware
or untrusted software (including the operating system) that may be present on
the host computer. Specifically, we analyse the architecture and mechanisms pro-
vided by Flicker [11]. The idea of Flicker is to define very small programs that
handle security-sensitive data, and are run in protected execution mode directly

under the control of the hardware security features. The bulk of the software
which is security-insensitive runs on top of an operating system, as usual. For
example [11], a certificate authority could be structured as a small secure base
that handles the signing key, along with a bigger untrusted part that deals with
I/0, the user interface, etc.

The hardware mechanisms which support this architecture are Intel’s trusted
execution technology (TXT), or the roughly-equivalent secure virtual machine
(SVM) technology from AMD. Both of these technologies rely on the presence
of a trusted platform module to store and use cryptographic keys. Our analysis
therefore involves cryptographic protocols; and since the TPM uses persistent
state registers called platform configuration registers (PCRs), it also involves
statefulness.

For these reasons, we wish to use StatVerif [2] for our analysis; it is an
extension of ProVerif which can deal with protocols that have persistent state.
Unfortunately, StatVerif does not reliably terminate when the state space is
infinite, such as in the case studies we are using in this paper. We therefore have
to develop appropriate abstractions. There are two sources of infinite state in
our application. The first one arises from an operation called PCR extension. We
already found a suitable abstraction in earlier work [6], and we re-use it here. The
second source of infinite state arises because an attacker can unboundedly often
reset the hardware and invoke a new session that uses the hardware primitives.
This paper is devoted to developing an abstraction to overcome this obstacle to
the analysis; the details of our analysis are available as a technical report.

1.1 Contribution

A platform with a TPM and a processor that implements TXT or SVM supports
protected execution and the ability to seal data to program code. We provide
a formal model of this protected execution so that we can prove the security
properties it offers. Specifically:

— We define TXML, a language with primitives for protected execution.

— We formalise a model for an adversary who is attacking protected execution.

— We state and prove a theorem that allows us to restrict attention to finite
attacker strategies, paving the way to automated verification.

— We briefly describe the use of StatVerif [2] (which is an extension of ProVerif)
to model some applications that use protected execution from the literature
[i1].

— We demonstrate that the applications indeed satisfy the security goals, in
the context of our attacker model.

1.2 Attacker Model

Our attacker is a powerful attacker, inspired by the capabilities against a network
protocol of a Dolev-Yao attacker. The attacker can:

— Perform arbitrary offline computation using their own resources in order to
plan their strategy.

— Execute arbitrary code on the system they are attacking, including using
supervisor, kernel or other privileged modes. This includes running either
their own or the defender’s code in a protected execution environment.

— Access the TPM as though they were the owner of the TPM, with full
knowledge of the authorisation data.

The restrictions we impose exclude low-level hardware attacks on the plat-
form, and assume that the hardware correctly implements the hardware design.
We also assume that the cryptographic primitives are sound. Our attacker there-
fore cannot:

— Extract keys or other information from the TPM other than by using the
published API. This excludes hardware attacks on the TPM, and assumes
that the TPM correctly implements the API.

— Bypass the published protections of TXT/SVM by, for example, attacking
the memory controller on the platform.

— Successfully guess cryptographic keys, perform offline decryption given only
the cipher text, find collisions in hash functions.

1.3 Related work

There have been previous formal analyses of TPM and dynamic measurement.
Lin [I0] uses the theorem prover Otter and the model finder Alloy to analyse
the security of the TPM when presented with invalid sequences of API calls.
Lin considered modelling PCR state, but was unable to do this with Otter.
Gurgens et al [9] describe an analysis of the TPM API using a finite state
automata, but the model fragment given does not appear to consider PCR state
and the analysis in the paper is predominantly informal. Coker et al [3] focus
on the analysis of TPM APIs for remote attestation, but their SAL model is not
yet publicly available. Delaune et al [5] analyse a fragment of the TPM, using
the applied pi calculus as a modelling language and using the ProVerif tool to
automate their verification, but they too do not consider PCR state.

Much of the previous formal work on dynamic measurement is abstract.
Millen [I2] uses LTL to model the roles and trust relationships in a dynamic
measurement system; Datta [4] proposes a logic for reasoning about secure sys-
tems built on dynamic measurement; Fournet and Planul [7] reason in the cryp-
tographic model about the security of sealed data. Our methods complement
those of [4l[7], because they are automatic and scalable. We demonstrate this
with our case studies.

Arapinis et al [2] extend the process language of ProVerif to allow the mod-
elling of global state. Their work allows the description of the TPM and dynamic
measurement in a process language with state, and the automatic generation of
Horn clauses from this model. However, ProVerif will not terminate on these
clauses. To assist termination, Delaune et al [6] show a first-order model based

on Horn clauses. This model focuses on PCR state and related API commands.
They place an upper bound on the number of times a PCR needs to be extended
between two resets. They show that if there is an attack using an unlimited num-
ber of extensions, then there is also an attack which requires a bounded number
of PCR extensions. They also show that this upper bound is small enough to
be tractable using ProVerif. Their model solves the non-termination problem
caused by PCR extension; however, in some applications further termination
problems are caused by multiple PCR resets as the result of multiple invoca-
tions of dynamic measurement. Bounding the number of PCR extensions does
not solve the problem caused by multiple PCR resets, which we characterise and
solve in this paper.

2 Background to Trusted Computing

Hardware primitives A TPM can provide evidence that a system is running
in a particular configuration through the use of platform configuration registers
(PCRs). The TPM only allows the PCRs to be reset to initial values by privileged
instructions or at system reset. They can however be extended at any time.
Extension involves hashing the current value of the PCR with another value; a
PCR containing value p is extended with = by concatenating p with x, hashing
the result and making this the new value of the PCR.

When a software module is loaded, its measurement, conventionally consist-
ing of a secure hash of the code, can be extended into a PCR. A sequence of
such extensions will result in a PCR value that is unique to the set of modules so
measured, and the order in which they were measured, starting from an initial
measure of trusted code loaded at boot-time.

Secret information can be sealed against a set of PCR values. The TPM
encrypts the information using a key that the TPM controls, and the TPM will
perform the matching decryption if and only if the PCRs are in the state against
which the data has been sealed.

Only the loading of a unique sequence of modules will produce a particular
PCR. Any change to any one of the modules will produce a different value. In
practice, this limits the measurement of the whole configuration; the process of
booting a general purpose operating system from initial power-on to user login
has too many variable elements, and changes too frequently. Additionally, be-
cause code is measured at the point of loading, an attacker who can access mem-
ory (which is usually a reasonable assumption) can overwrite already-measured
code without altering the PCR, value.

To address these issues, version 1.2 of the TPM specification introduced the
concept of a dynamic root of trust. Rather than tracing execution back to power-
on, a privileged instruction can be used to reset PCRs in a new bank (17-22),
which were initialised at power-on to all-ones (uy), directly to all-zeroes (up).
These resetable PCRs are then available to be extended with measurements
from the reset onwards, rather than from power-on. This functionality is the

basis for dynamic measurement technology, such as Intel’s Trusted Ezecution
Technology (TXT) [8] and AMD’s Secure Virtual Machine (SVM) [I].

As the Intel and AMD technologies operate in a similar fashion, for simplicity
we only consider the AMD SVM technology; the differences do not affect our
argument in any material way. SVM provides a privileged command SKINIT,
which creates a protected environment in which code can execute free from
external influences. The unit of code to be executed with this protection is
called a Secure Loader Block (SLB). When the SKINIT instruction is executed,
interrupts and DMA are disabled to prevent access to the SLB and the resetable
PCRs are reset. The SLB is sent to the TPM for measurement (using a hash
function) and the result is extended into PCR17. The SLB is then executed.

Flicker architecture Flicker [II] provides a mechanism for executing pieces of
code with specific guarantees of privacy and integrity by making use of dynamic
measurement. It uses Intel TXT or AMD SVM technology to measure and pro-
tect an SLB, which consists of initialisation and clean-up (SLB Core) and appli-
cation functionality (Pieces of Application Logic, PAL); the measurement allows
the SLB to unseal private data, while the protection prevents interference or
observation with manipulation of the private data. Appropriate kernel services
are made available to enable execution.

Although their use is not mandatory, the standard SLB template provides
some additional features. Firstly, it provides a standard mechanism for passing
arguments in to the PAL and passing out results. Secondly, after execution of
the PAL has completed, but before the SLB exits, the SLB measures the inputs
and the outputs of the PAL and extends their value into PCR17, and then
extends a fixed public constant into PCR17. One effect of this is to leave the
PCRs in a state which is of no use to an attacker who is attempting to unseal
confidential data; the extension with the fixed public constant leaves a value
against which no data will have been sealed. It also provides a verifiable chain
to prove the execution: PCR17 is left as the result of successively extending an
initial ug with the measurements of the SLB, any inputs, any outputs and finally
the fixed public constant. A later TPM_Quote operation on PCR17 provides an
attestation as a verifiable link between the inputs, the outputs and the SLB for
a verifier.

3 A Model of Protected Execution

In this section, we model the functionality of dynamic measurement and the
TPM. We introduce a modelling language, TXML, along with its semantics.
We describe a theorem that allows us to bound the length of traces such that
models can be verified with available tools. To illustrate our model, we introduce
a simple Flicker-based decryption oracle. We then formally define our model.

3.1 Simplifications and abstractions

We simplify both Flicker and the TPM, but in ways which grant additional
powers to the attacker. If the attacker cannot compromise our simplified system,
he also cannot compromise the full system.

— We omit TPM authdata, normally required to authenticate access to the
TPM. Permitting access to the TPM without authdata is equivalent to as-
suming that the attacker can obtain the authdata from the running machine;
this is in keeping with our attacker model.

— We assume that all keys used in the model have been created and are per-
manently loaded in the TPM. This does not alter the power of the attacker
but simplifies the model substantially.

— For simplicity, we consider a TPM with only PCR17, as it is sufficient to
model the facilities we are using.

— Finally, as we are analysing the secrecy properties of the system rather than
the correctness of attestations, we omit the SLB’s extension of its input and
output into PCR17. This allows the attacker to replay previous executions
as though they were fresh.

3.2 An introductory example

Our introductory example is a decryption oracle implemented as an SLB. Any
object supplied to the SLB is decrypted using symKey and returned to the user.
The intent is that symKey is never revealed outside the oracle. In order to prevent
the oracle being used to decrypt arbitrary ciphertexts, a check is made for the
presence of a pre-arranged tag. Our concern is the privacy of the decryption key
in the face of a powerful attacker, so the tag is made available to the attacker.

We represent the oracle SLB as sIbD which receives as input the sealed symKey
and an object which is to be treated as ciphertext. slbD attempts to unseal
symKey. If that succeeds it uses symKey to decrypt the cipher-text. If that suc-
ceeds, and the tag is found in the plaintext, the plaintext is output. Finally, the
public fixed constant fpc is extended into PCR17 to revoke access to the secrets.

Assuming the correctness of the TPM unsealing function, symKey can only
be unsealed when PCR17 value is h(ug, slbD). Due to the operation of dynamic
measurement, PCR17 can be set to h(ug,slbD) only by the execution of slbD
with an SKINIT instruction. sIbD itself uses, but does not output, symKey. Con-
sequently, symKey is not exposed outside the decryption oracle.

3.3 Trusted Execution Modelling Language

We present a formal model of protected execution. This models a machine
equipped with a simplified TPM which offers sealing, unsealing, resetting, read-
ing and extension of the PCR. The machine also allows users to execute programs
in the protected execution environment provided by dynamic measurement.

We introduce the syntax and semantics of a language, TXMIE This lan-
guage describes actions that can be taken either by the attacker, as part of a
strategy to attack the security properties of the defender’s system, or by the
defender, in order to implement protected execution. We model the decryption
oracle example to show its use in describing a defender’s SLB. We then define
transformations from one strategy, which is used to model a list of commands
in TXML, to another strategy. We show that the result of this transformation
is both equivalent to the original and tractable for analysis.

TXML is not a complete language. It lacks any looping constructs, and has
only rudimentary conditionals. The attacker would not design an attack strategy
using TXML. However, any sequence of actions the attacker carries out can be
retrospectively expressed in TXML. Any sequence of operations that involves
loops or conditionals can be expressed, once the number of iterations in each
loop and the outcome of each conditional has been determined, by a simpler
sequence of operations that does not involve loops and conditionals, starting
from the same initial state. The attacker is given the ability to perform arbitrary
offline computation; this allows him to construct one or more sequences of TXML
commands to perform their attack.

Syntax Suppose sets N of names including 0, 1, sksk (the storage root key
of the TPM), tpmPf (the TPM Proof inserted into a seal so that the TPM
can confirm that it was sealed on this TPM), ...; V of variables with typi-
cal elements z, y, z, The letters u, v, w, ... range over V U N. Typical
constructor function symbols, including at least h/2, senc/2, aenc/3, pk/1 and
measure/1, are represented as f. These represent respectively the SHA1 hash
function, symmetric and asymmetric encryption, the derivation of a public key
from a private key, and the measurement with SHA1 of a fragment of program
text. Typical destructor function symbols, including at least sdec/2 and adec/2,
are represented as g. These represent respectively symmetric and asymmetric de-
cryption. We define terms t,to,... over VUN in the usual way. The rewrite rules
t1 — to where t1,ts are over variables include at least sdec(x,senc(x,y)) — y
and adec(z, aenc(pk(x),y, z)) — z, linking associated encryption and decryption
operations.
The syntax of TXML is shown in Figure [[] and described as follows:

-z := f(uy,...,u,) and = := g(us,...,u,) are applications of constructors
and destructors.

— 2 :=seal(u,v), z := unseal(u), extend(u) and reset are the actions of sealing
and unsealing data, extending a PCR and resetting the TPM.

— check u = v confirms the equality of two terms.

— skip is the null action.

— x := SKINIT {list (statement); rtn u} is a list of statements that are executed
protected by SKINIT, which return .

3 Trusted eXecution Modelling Language

statement ::= command ::=

x:=f(ui,...,un) | statement |

z:=gur,...,un) | z := SKINIT{list(statement); rtn u} |
x := seal(u, v) | z := SUBR{list(statement); rtn u}

x := unseal(u) | program ::=

extend(u) | reset | list(command)

check u = v | skip

Fig. 1. Syntax of TXML

— z := SUBR({list(statement); rtn u} is analogous to x := SKINIT{...;rtnu}.
However, it does not modify the PCR value. SUBR is not available to the
programmer or the attacker, and cannot appear in the definition of an SLB;
it is present in TXML as a technical convenience that we use during trans-
formation.

Semantics We will be using TXML as the basis for our proof that we can
bound the number of SKINIT's used by the attacker. We therefore need to define
its semantics. We consider configurations (K, p), where the attacker’s knowledge
base K : V — ground terms is a partial function and p is a ground term. We
assume K is extended to VUN, as the identity function on N. The initial configu-
ration is (Kjni, 1). Transitions between configurations are labelled by programs.
We assume side conditions that K(x) is defined and r is non-deterministically
chosen whenever we write K(z) and r. We also assume an injective function
measure : TXML* — N taking a sequence of TXML commands and returning a
name.

(K,p) <, (K’,p’) means that when the knowledge base is K and the PCR
value is p, and the attacker performs command C|, his new knowledge base

will be K’, and the new PCR value will be p’. The relations Q), which relates

to individual commands, and :S>, which relates to sequences of commands, are
defined in Figure[2] A PCR value of L represents a PCR value against which no
blob is sealed.

Figure [2] shows the semantics of each command in TXML. We clarify some
of the more complex rules:

— A sealed blob consists of the encryption of (tpmPf, p, t), where tpmPf is
a constant known only to the TPM, p is the PCR state which must be
current for an unsealing operation to succeed, and t is the data which has
been sealed. The encryption is done with a public key, whose private part
is available only within the TPM. The rules for unseal add the secret t to
the attacker’s knowledge base if the required PCR value in the sealed blob
matches the current PCR value.

— In the rule for SKINIT{L;rtnu}, we first compute the effect of L when run
from knowledge base K and a PCR value reflecting the measurement of L.

) =2 (K, p)

) ZE) e f(K (), - K(un))],)

,p) —————5 (K[z — t],p) if g(t1,...,tn) = tny1 is a reduc and

ul) = ti(f and t = tn+10'

,p) 2= (K — aenc(pk(sksi), T, (tpmPF, K(w), K(0)))], p) if K(u) # L

x:=unseal(u)

,p) ————= (K[z = t],p) if p# L and K(u) = aenc(pk(sksw), r, (tpmPf, p, t))
) 2, (K, h(p, K(u)) if p # L

(K, 1)

) reset (K 1)

S (K, p) if K(u) = K(0)

ZESNTL wh e K (w)],) if (K, h(0, measure(L))) = (K',p)

(K[z — K'(u)], p) if (K, h(0, measure(L))) = (K',p’)

2

4

extend(u)
—_—

8

OGRS
\

= = =

SUBR{L;rtnu}

Fig. 2. This defines the relation 5. Let S be a TXML program. The relation 2
is deﬁned as (K,p) = ! = (K, p) in the case that S is the null program. In other cases,

(K,p) <3 (K, p') if (K,p) <> (K”,p") and (K”,p") S (K',p').

— SUBR is similar to SKINIT, except that the final PCR value is p rather than
p’. As mentioned, SUBR is not used in source TXML programs; we use it in
our transformation.

Modelling the introductory example Two objects are supplied to the de-
cryption oracle: a sealed blob containing the symmetric key pre-sealed against
PCR17 with the value of ug extended with the measurement of the decryption
oracle’s program, and some atomic message encrypted with the symmetric key.
Therefore, the initial knowledge base is:

Kinit.Do = {Zsdata = aenc(pk(skswk), r, (tpmPf, h(0, measure(sIbD)), symKey)),
X EneBlob = senc(symKey, message)}

where slbD is the program:

result := SKINIT {
xSymKey := unseal(xSData);
xMessage := sdec(xSymKey, xEncBlob);
extend (fpc) ;
rtn xMessage;

T

The security property we are checking is the secrecy of the symmetric key
symKey. To attempt to obtain the key, the attacker can adopt any strategy, as

described in §1.2] The desired security property is therefore that there is no

TXML program S, knowledge base K’, PCR values p, p’ and variable x such
that (Kinit_po,p) L4 (K',p) and K'(z) = symKey.

Transformations of strategies The security property above requires reason-
ing over all possible TXML programs S. We show that it is sufficient to consider
only programs involving a bounded number of SKINITs and resets. To achieve
this, we transform any strategy S into a new strategy S’ that is equivalent to
S and has a number of SKINITs and resets which is bounded by a value deriv-
able from the initial knowledge base. This allows us to use automatic tools to
search for strategies that achieve a certain goal and model at most this number
of SKINITs and resets; if none are found, we may conclude that there are no
longer strategies that achieve the goal.

The transformation performs two changes. First, unseal operations that are
not necessary are replaced by an equivalent assignment. An unseal operation is
not necessary if there is another variable in the knowledge base that has the
value of the unsealed item. Second, operations that reset the PCR, namely, reset
and SKINIT, are removed if there is no necessary unseal operation between the
current point and the next reset or SKINIT. This reflects the fact that PCR values
are required to be correct only in order for unseals to work. The transformation
uses configurations (K, p) as before, but with the extension that p may take the
special value | which signifies that any value will do; the PCR value is not
needed. The transformation is such that p = L if and only if there is no unseal
between the current position in the program and the next reset or SKINIT.

The result of this transformation does not weaken the attacker. The attacker
can perform computation with the defender SLB using any number of inputs.
The attacker can run arbitrary code with the PCR in the state left by the
execution of the defender SLB. The attacker can attempt to unseal data sealed
by the defender. The attacker already knows the contents of sealed data sealed
by the attacker. If the attacker wishes to obtain more results from the defender
SLB, these are available to him from the transformed strategy.

The transformations we use are shown in Figure In the definition of %,

the truth or falsity of p = 1 enforces a global constraint on the way the trans-
formation works, and makes the transformation deterministic. The two rules for
each of SKINIT and reset appear to be non-deterministic, but in fact only one
of them may be chosen; which one is chosen depends on whether there is an
unseal before the next SKINIT or reset, as expressed by the rule for unseal which
requires p # L. The apparent free choice of whether ¢ = p or ¢ = L in the
rule for unseal is similarly constrained by the remainder of the program S being
transformed.

SUBR is introduced into S’ by the second rule for SKINIT, which is invoked
if and only if there is no unseal between now and the next SKINIT or reset, as
indicated by the L value on the right hand side.

The relation (K, p) % (K’, p') indicates that when in configuration (K, p) the execution

of command C' yields the new configuration (K’,p’) and adds the command C’ to the
transformed strategy.

ski
(Kip) == (K, p)
f(u e Un)
(K, >‘:i77?“wﬁﬂﬂm%~an»m
(K,p) M (Klz — t],p) if g(t1,...,tn) = tnt1is a reduc and
Tri=gluy, Un,

(i) =tioc and t = tp410
p) ==, (K[— aenc(pk(skse), 1, (tpmPF, K(u), K(v)))], p)

z:=seal(u,v)

(K,p) =0 (Kl — K(y),) if K(u) = aenc(pk(skss), . (tpmP¥, ', K(y))

(K,p) I:unsea:zu; (K[z — t], q) otherwise, if K(u) = aenc(pk(sksw), r, (tpmPf, p, t))
andp# L and (g=porg=1)

(K,p) S5 (K, h(p, K(w))) if p # L

extend (u)
extend(u)

K, L (K, L)
extend(u)

K, J_) reset (K,l)

K, L

reset

)reset (K L)

skip

p) ST (K p) i K (u) = K ()

(
(
(
(check u=v
Suppose (K, h(0, measure(P))) % (K',p') .
If P is a defender SLB: Suppose P is an attacker SLB:

z:=SKINIT{P;rtn u}

(K, L) (Klz — K'(w)],p)
z:=SKINIT{P;rtn u} z:=SKINIT{P;rtn u} f
(K, 1) 2:=SKINIT{P;rtn u} (K — K ()], 1) (K,p) ppTy—— (Klz — K'(w)], L)

x:=SUBR{P;rtn u}

Fig. 3. Given a knowledge base Kinit, a strategy S is transformed to S’ if (Kinit, 1) ?S?

(K, L) for some K, where the relation =S> (S and S’ are strategies) is defined from i)
above as follows: (K, p) (K,p) where 0 is the empty strategy; (K, p) o (K”,p) if

there exists (K’, p’) such that (K, p) F) (K',p') and (K’,p) > (K7, ”)

Bounding the number of SKINITs and resets The ability to seal data
against arbitrary PCR values is very flexible, and can lead to situations more
complex than the simple sealing of one piece of data against one set of PCR
values. A piece of data sealed against one set of PCR values can contain another
piece of data sealed against another set of values. A piece of data may be sealed
against an SLB which will only release the decrypted version once some other
conditions are met. To reach a state where these conditions are true might include
the decrementing of a counter, or transition through some state machine.

We define data as boundedly sealed if there is a finite bound to the number
of SKINITSs required to extract it.

Definition 1. 1. A piece of sealed data B is sealed against program P if
B = aenc(pk(sksk), r, (tpmPf, p, t))
and
p = h(...h(h(0, measure(P)),t2),...tn).
2. A knowledge base K produces K’ using P if

K'= KU {B | on inputs from K, P can output B}

3. We then define

K= U K.

K produces* K’

where produces™ is the reflexive transitive closure of produces.
K has only bounded seals if the number of sealed blobs in K is finite.

Theorem [1f Suppose knowledge base K has only bounded seals. Let m be the
number of sealed blobs in K, as in the definition |I} Let S be any strategy, and

suppose that (K, L) ?S? (K’, L). We have the following properties:

1. (K, 1) 2 (K, p) implies 35 .(K, L) % (K, 1).

S’ simulates S; that is, (K, L) ?S? (K’, L) implies J3¢.(K, 1) R (K, q).
S’ uses only the data present in S that is, every name in S’ is in S.
. The number of SKINITs plus the number of resets in S’ is at most m.

o

=

The proof of the theorem is given in Appendix [A]

This theorem enables us to undertake practical verification of systems that
use protected execution. Without the theorem, we would need to consider at-
tacker strategies of unbounded length, or accept weak results based on a sig-
nificantly weakened attacker who can only use strategies of a fixed length. Our
theorem removes these restrictions.

The theorem allows us to bound the number of SKINIT operations that need
to be considered to give the attacker access to the full range of PCR states.

However, a typical SLB will perform some unsealing, and will leave the PCR
in some new state, but it performs these operations in order to enable some
calculation which returns a result. If we bound the attacker’s ability to perform
these calculations, then we substantially reduce their capability.

We therefore introduce the SUBR operation. Although it does not modify
the PCR state (because we have shown that we can bound the number of such
modifications we need to consider) it returns the same result as the corresponding
SKINIT. So in the typical case where data is simply sealed so that we need only
consider one SKINIT, the attacker can nonetheless make unlimited use of the
SUBR to get results from the defender’s SLB. Our theorem shows that it is sound
to transform a strategy that uses an arbitrary number of SKINIT operations into
a strategy which performs some bounded number of SKINIT operations, together
with an arbitrary number of uses of the SUBR.

We are now in a position to verify the security properties of our decryption
oracle. We have one piece of sealed data in our knowledge base, and by defini-
tion [1] it is boundedly sealed: no sealed blobs are added to the knowledge base
by the operation of the SLB. K;,;;+_ po therefore contains only one seal, x44tq-
We apply theorem [1] to K;nir po, with m = 1.

A StatVerif model was constructed, which includes:

— A process modelling a TPM, complete with PCR state and seal, unseal, reset
and extend operations;

— A process modelling the use of the SLB via SKINIT, which leave the PCR
values in a deterministic state;

— A process modelling the use of the SLB via SUBR, which leave the PCR
values in an indeterminate state.

This model is then bounded appropriately and run to test the secrecy prop-
erty of the symmetric key. The property is confirmed.

4 Case Study: Password Authentication for SSH

Description An additional authentication mechanism for OpenSSH is proposed
by McCune et al [11]. The goal is to prevent any malicious code on the server
from learning the user’s password, even if the server is compromised. The pre-
vents an attacker from making use of the password to pose as the legitimate
user.

A keypair is shared between the authentication SLB and the client. The
private part of the keypair (skgp) is sealed against PCR17 with the value ug
extended with the measurement slbA. The public part is conveyed to the user in
a way which allows him to confirm the key generation was done correctly (see
[11] §6.3.1 for details).

An authentication proceeds as follows. A nonce is generated by the server
and sent to the client. The client encrypts this nonce and their password (pwd)
using the public key that they hold and sends it to the server. The server sends

the nonce and the cipher text to the SLB, together with the sealed key and the
salt (salt) extracted from the password file.

The server invokes the SLB using SKINIT. The SLB unseals the private part
of the keypair, and uses that to decrypt the message from the client. The nonce
contained in that message is compared with the nonce supplied by the server to
confirm freshness. The password extracted from the message is hashed together
with the salt provided by the server to form a value that the server can compare
with the copy of the hash from the password file. The plaintext of the password
is not available outside the SLB; the hash is available more widely.

As with the decryption oracle, we can see that no sealed data is output.
Although the output is not plaintext (it is the hash of a password together with
some salt) it will does not contain the TPM proof and is not encrypted.

Modelling We model the SSH password authentication application in TXML.
As well as the salt and the public part of all keys, we assume that the attacker
has the private part of skgy, sealed against ug extended with the measurement
of sIbA.

Kinit_ssa = {Tsan = salt,
Lpksrk = pk(SkSrk>7
Tpksib = PK(sksib),
Tsdata = aenc(pk(sksk), r, (tpmPf, h(0, measure(slbA)), sksp)) }

where sIbA is the program:

result := SKINIT {
xsk_S1b := unseal(xSdata);
xTemp := adec(xsk_Slb, xCipher);
xPwd := fst2(xTemp);
xNonce’ := snd2(xTemp);
check xNonce = xNonce’;
hash := md5(xSalt,xPwd);
extend (fpc);
rtn hash;

Result of our analysis Because sIbA does not output any seals (it only out-
puts an MD5 hash), K;,;:_ssy contains only one seal (g4, from the initial
knowledge). Therefore, we can apply theorem (1| to K ssr with m = 1.

We wrote a StatVerif model based on the above description. As previously
stated, the SLB cannot output a sealed blob, as its only output is a hash of the
password. We can bound the number bof extensions with the results in [6], and
our theorem allows us to bound the number of resets and SKINITs. The complete
StatVerif code for these examples, along with some supporting scripts to simplify
the running of ProVerif and StatVerif, a description of the methodology used and
some further background information, is available for download. The location is
given in the bibliography.

5 Case Study: A Certification Authority

Description This certification authority example is also taken from [I1]. Tt
consists of two SLBs, one to perform key generation, the other to perform key
signing.

The key generation SLB constructs a keypair (sksignkey) suitable for use in
signing other keys, and the private part of sksignkey is sealed against ug extended
with the measurement of the second SLB.

For the signing SLB (sIbC), the client forms a certificate signing request
(CSR) containing a public key along with details of the client’s identity. The
client submits this to the key signing SLB, which has access to the sealed form
of its own private key. The SLB checks the signing policy, then unseals its private
part of the keypair in order to sign the CSR. The result is returned to the client.

Modelling We model the CA application in TXML, after making some ab-
stractions. Firstly, we check that the signing SLB maintains the secrecy of any
signing key with which it is used. This allows us to leave the key-generation
SLB unmodelled and use a simple process that produces sealed keys instead.
Secondly, as the required security property is the secrecy of the CA’s signing
key rather than the authenticity of the CSRs, the signing policy is not modelled.

We assume that the attacker has the public parts of the storage root key and
the signing key sksignkey- We also assume that the attacker has the private part
of sksignkey sealed against ug extended with the measurement of sIbC.

As in the previous example, we are able to determine that m = 1, as the
application does not output any new sealed objects.

Kinit,C’A = {
Tpksrk = pk(SkSrk)7
TpkSignKey = pk(SkSignKey)a
Tsdata = aenc(pk(sks), 1,
(tpmPf, h(0, measure(sIbC)), sksignkey))

}

where sIbC is the program:

result := SKINIT {
xskSignKey := unseal(xSdata);
xCert := sign(xskSignKey,xCSR);
extend(fpc);
rtn xCert;

Result of our analysis The security property we are checking is the secrecy
of the CA signing key sksignkey- As a partial check that the model is correct we

also check for the existence of certificates signed by sksignkey- The queries are
written in the StatVerif calculus as follows:

query att(u, sksignkey) (F5)
query att(u, sign(sksignkey, Zcsr)) (Fo)

We bound the number of PCR extensions as in §4] ProVerif then terminates
with Fg reachable, which shows that the model does in fact produce signed
certificates, and Fj unreachable, which shows that there are no short attacks
on the secrecy of the CA signing key sksignkey. Based on Kinie ca and sIbC, the
model conforms to the conditions of Theorem [Il Therefore there is no attack on
the secrecy of sksignkey-

6 Conclusion

Protected execution on x86 platforms involves a stateful model with a state
space that in unbounded in two ways. First, a PCR value may be extended with
arbitrary data an arbitrary number of times. Second, the PCR value is reset
each time a protected execution session is begun, and this too can happen an
arbitrary number of times. We proved that it is nonetheless sound to consider
only attacker strategies that are bounded in both these senses. This allows us
to use StatVerif to analyse protected execution, which we have done for some
examples.

Hardware-based security mechanisms, such as TPM, TXT, virtualisation and
Hardware Security Modules are an important part of defending computing plat-
forms. Formal analyses of their often complicated APIs are therefore timely.
Developing abstractions of the kind described in this paper is a step in extend-
ing the ProVerif methodology to hardware-based security mechanisms. In future
work, we intend to explore some more of these mechanisms.

References

1. Advanced Micro Devices: Secure Virtual Machine Architecture Reference Man-
ual. Advanced Micro Devices (2005)

2. Arapinis, M., Ritter, E., Ryan, M.D.: Statverif: Verification of stateful processes.
In: Proc. of the 24th IEEE Computer Security Foundations Symposium. pp. 33—
47. IEEE Computer Society Press (2011)

3. Coker, G., Guttman, J., Loscocco, P., Herzog, A., Millen, J., O’Hanlon, B.,
Ramsdell, J., Segall, A., Sheehy, J., Sniffen, B.: Principles of remote attestation.
International Journal of Information Security 10(2), 63-81 (2011)

4. Datta, A., Franklin, J., Garg, D., Kaynar, D.: A logic of secure systems and its
application to trusted computing. In: Proc. of the 30th IEEE Symposium on
Security and Privacy. pp. 221-236. IEEE Computer Society Press (2009)

5. Delaune, S., Kremer, S., Ryan, M., Steel, G.: A formal analysis of authentication
in the TPM. Formal Aspects of Security and Trust pp. 111-125 (2011)

10.
11.

12.

. Delaune, S., Kremer, S., Ryan, M., Steel, G.: Formal analysis of protocols based

on TPM state registers. In: Proc. of the 24th IEEE Computer Security Founda-
tions Symposium. IEEE Computer Society Press (2011)

. Fournet, C., Planul, J.: Compiling information-flow security to minimal trusted

computing bases. Programming Languages and Systems pp. 216-235 (2011)

. Grawrock, D.: Dynamics of a Trusted Platform: A Building Block Approach.

Intel Press (2009)

. Giirgens, S., Rudolph, C., Scheuermann, D., Atts, M., Plaga, R.: Security evalu-

ation of scenarios based on the TCG’s TPM specification. In: Biskup, J., Lopez,
J. (eds.) ESORICS 2007, pp. 438-453. Springer, Berlin / Heidelberg (2007)

Lin, A.: Automated analysis of security APIs. Ph.D. thesis, MIT (2005)
McCune, J., Parno, B., Perrig, A., Reiter, M., Isozaki, H.: Flicker: An execution
infrastructure for TCB minimization. In: ACM SIGOPS Operating Systems Re-
view. vol. 42(4), pp. 315-328. ACM (2008)

Millen, J., Guttman, J., Ramsdell, J., Sheehy, J., Sniffen, B.: Analysis of a mea-
sured launch. http://www.mitre.org/work/tech_papers/tech_papers_07/07_
0843/07_0843.pdf, Accessed 7 December 2011 (2007)

The StatVerif files corresponding to our experiments are available for down-

load at:

http://markryan.eu/research/projects/ProtectedExecution/

http://www.mitre.org/work/tech_papers/tech_papers_07/07_0843/07_0843.pdf
http://www.mitre.org/work/tech_papers/tech_papers_07/07_0843/07_0843.pdf
http://markryan.eu/research/projects/ProtectedExecution/

A Proof of Theorem [1

Suppose K contains By, Bs, ..., By,. Let m be the number of sealed blobs in K,
as in definition [} Let S be a strategy such that (K, 1) S (K’,p). Then:

35" such that (K, 1) = (K', 1)

B S’ simulates S; that is 3¢ such that (K, L) N (K',q).
[S uses only data present in S, i.e. names(S’) C names(S).

|Z| The number of SKINITs plus the number of resets in S’ is at most m.
We first prove a number of lemmas.

Lemma 1. (K, 1) £ (K',p") implies VpIp" (K, p) A (K, p").
Proof. We show this by induction on S.

Base case S = (. The proof is obvious, setting p”’ = p.
Inductive case S = C;Sy. We have (K, 1) <, (K',p) 2 (K", p""). Take any p.
Taking each case of C

skip,z := f(),z = g(),x := seal(u,v),check u = v We have p’ = 1, and
(K,p) =N (K',p). Apply IH with p to obtain p”, and we have (K, p) =N (K, p) I\

(K",p"), i.e. (K,p) Y (K", p").
unseal(v) This situation is impossible.

extend(v) We have p’ = 1 and (K, p) <, (K’, h(p,v)). Apply IH with h(p,v) to
obtain p”, and we then have (K, p) <, (K’ h(p,v)) 2 (K", p") ie. (K,p) 2
(K.

reset, SKINIT{P;rtnu} We have p’ = 1 and (K,p) <, (K',1), and (K,p) <,
(K',1) 2 (K", p""), i.e. set p” = p”" and we have (K, p) 2 (K, p").

Lemma 2. (K,p) <, (K',p") implies 3C".(K,p) % (K',p).
Proof. Consider each case of C' in turn.

Lemma 3. (K,p) <, (K',p") implies 3C".(K,p) % (K', 1) or (K,1) %

(K', 1).

Proof. Consider each case of C' in turn. For unseal, we prove the left disjunct.
For all other cases, we prove the right disjunct.

’

Lemma 4. Ifp # L then (K, p) % (K',p") implies (K, p) <, (K',p).

Proof. Consider each case of C' in turn.

’

Lemma 5. (K, p) > (K', L) impliesp # L, (K, p) <, (K',p) or 3 .(K,p) <,
(K',p).

Proof. Consider each case of C' in turn. For unseal, we prove the left disjunct.
For all other cases, we prove the right disjunct.

Part |I| of Theorem [I]
(K,1)= (K’,p) implies 35".(K, J_) (K’ 1).
Proof. We prove something more general

(K,p) = (K’,p) implies 35".(K, p) (K’ L)or (K,L1) % (K, 1).

Base case S = () is obvious.

Inductive case S = C S
Suppose (K, p) = (K’,p”) RTP 35".(K, p) (K’ L)or (K, J_) (K’ 1).

Expanding: (K, p) <, (K',p") 2 (K", p"). By inductive hypothe51s, 35].

— either (K, p') :1> (K', 1). From (K, p) <, (K’,p’),byLemma aC’.(K,p) %

1
(K',p"). So set S" = C";S]. Then (K p) > (K',L).

—or(K,1) % (K,) From (K,p) (K ,p'), by Lemma either (K,)
(K', 1), so (K,p) = (K, 1), or (K, 1) <> (K, 1), s0 (K, 1) = (K',o
where again, S’ = C" ;57

Part 2] of Theorem [1l
(K, L) = (K', 1) implies 3p'.(K, L) = (K, p).

Proof. We prove something stronger:
(K, p) > (K', 1) implies 3p'.(K,p) = (K',/).

We prove this using induction on S.

Base case S = () is obvious.

Inductive case S = C;S7. Inductive hypothesis: (K, 1) %} (K’, 1) implies

(K, 1) 2 (K, p).
We want to prove (K, p) (K’ 1)ie. (K,p) % (K',p") :]> (K", 1).

1
— Either p’ = L
e cither p = L: (K, 1) i/) (K', 1) % (K", 1), so by Lemmaand IH
1

(K, 1) S (K’ 1) 2 (K",p"), e (K, 1) 2 (K", p").
eorp# L: (K ,p) > (K', 1) % (K",J_). by Lemmaand IH Ip”.

1

* either (K, p) <, (K’,p) (K, J_) (K” "), Then by Lemma
Elp/// (K p) (K/’p) 5 (K///7p///) (K p) (K/// Hl).

* or Jp}.(K, p) (K’,p’l),(K/ 1) iy (K",p"). Then by Lemma
W (K, p) S (K'vp) = (K, p"), e (Kp) S (K", p").
— or p’ # L then (K, p) (K',p") by Lemma and so by IH Ip”.(K,p’) il>
(K", p"), ie. (K,p) = (K", p").

Part [3] of Theorem [1

S’ uses only the data present in S that is, every name in S’ is in S.
Part [3] of the theorem is readily proved by inspection of the transformation.

Part [of Theorem [1]

The number of SKINITs plus the number of resets in S’ is at most m.
Part [follows from the facts that:

— at most m plaintext-distinct sealed blobs can be produced from the initial
data;

— the transformed strategy S’ runs at most one SKINIT for each blob sealed
to a PCR value rooted in 0 (other invocations are run as SUBRs);

— the transformed strategy S’ runs at most one reset for each sealed blob
rooted in 1 (other resets are transformed into skips).

	Dynamic measurement and protected execution:model and analysis

