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Abstract. The logic S5 is widely used as the logic of knowledge for ideal a-
gents in a multi-agent system. Some extensions qf I88/e been proposed for
expressing knowledge sharing between the agents, but tensgtic exploration
of the possibilities has taken place. In this paper we ptesepectrum of de-
grees of knowledge sharing by examining and classifyingrasi expressing the
sharing. We present completeness results and a diagraninghthe relations be-
tween some of the principal extensions of, 3hd discuss their usefulness. The
paper considers the case of a group of two agents of knowledge

1 Introduction

The modal logic Sp (see for example [18, 17]), whose mono-modal fragment S5 was
first proposed in [7] to represent knowledge, has been usedottel knowledge in
multi-agent systems (MAS) for some years now [4]. The lodig 8 a classical modal
logic containingr modalities];, wherei is in a setd of agents, expressing the private
knowledge of agent Results that extend the logic S8 model group properties such
as common knowledge and distributed knowledge within agadagents are also well
known ([4, 17]).

The logic S5 models arideal set of agents, in particular agents enjoy positive and
negative introspection and their knowledge is closed uirdplication; in other words
they areperfect reasoners

A peculiarity of the logic S5, is that there is n@ priori relationship between the
knowledge of the various agents. In some applications, iewvthis might not be what
is desired. For example, a central processing girif a collective map making ([3])
robotic MAS should be told of any knowledge acquired by areotgent. Therefore
the agenyj should know everything that is known by any agent. In the franguage
of modal logic, under the usual assumptions of ideality Htienario can be represented
by S5, enriched by the axiom:

O;p = O;p, forall ¢ € A.

Another example of knowledge sharing between agents cosaeeMAS whose agents
(databases in this example) have computation capabithiescan be ordered. If the



agents are executing the same program on the same data ihesaisonable to model
the MAS by enriching the logic Sbby:

Lip=Ujpri < j

where < expresses the order in the computational power at dispésheamgents. In
these two cases, some information is being shared amongémtsaof the group.
A third example of sharing in the literature is the axiom

Qilljp = 0;0ipr i # j

[2] which says thatif agenti considers possible that agephknowsp then ageng must
know that agent considers possible thatis the case

It is easy to imagine other meaningful axioms that expiatractionsbetween
the agents in the system; clearly there ispactrumof possible degrees of knowledge
sharing. At one end of the spectrum is,S®vith no sharing at all. At the other end,
there is S§ together with

Oip & O;p; foralli,j € A,

saying that the agents have precisely the same knowledts ¢twaring). The three
examples mentioned above exist somewhere in the (parialgred) spectrum between
these two extremes.

Some instances of such systems have already been identifi@di, 15] and in
other papers. Our aim in this paper is to explore the specsystematically. We restrict
our attention to the case of two agents (i.e. to extensior&5gf, and explore axiom
schemas of the forms

Llp = Llp
Llp=[LLp
ClMp=Clp
Cdp=H0p

where each occurrence @fis in the sef{ ¢y, Oy, 02, 0a }.

Technically we will prove correspondence properties anthgleteness for exten-
sions of S5 with axioms of these forms. Naturally, this will not give tkemplete
picture: there may be interesting axioms of other forms thase listed above. Howev-
er, analysis of the literature certainly suggests that ragistms studied for this purpose
are of one of these forms. They are sufficient for expressowg knowledge and facts
considered possible are related to each other up to a levedsiing of two, which is
already significant for human intuition. Note also that tikaraples above are included
in the axiom patterns.

The rest of this paper is organised as follows. In SectionwleIfix the notation
and recall two known results that we will extensively usehia following. In Section 2
we analyse and discuss the interaction axiom schema thelfipres: [p. We will then
move to Section 3 where we discuss the case of the conseqmpbsed by two modal
operators. In Section 4 we will analyse the interaction mdaesulting from two nested
modalities both in the antecedent and in the consequeratllfrin Section 5 we present
the spectrum of interaction axioms that is generated.



1.1 Preliminaries

Our syntax is the standard bi-modal languagelefined from a seP of propositional
variables:

¢ u=pl |1 Ad2|Tig

wherep € P,i € {1,2}.

As standard, we use bi-modal Kripke framEs= (W, Ry, Ry) and models\/ =
(W, Ry, Rz, ) ([13]) to interpret the languagé. Interpretation, satisfaction and valid-
ity are defined as standard (see for example [10]).

The paper is devoted to extensions of Skhich is defined by the following Hilbert
style axioms and inference rules.

Taut kg5, t, Wheret is any propositional tautology
K Fss, Dilp = q) = (Cip = Uig)

T Fs52 sz =P

4 Fs52 sz = Dzsz

5 Fss, Qip = 0;0:p

us If |_S52 ¢, them_s52 ¢[¢1/p1, . wn/pn]

MP  If kg5, ¢ andFss, ¢ = ¥, thenkgs, ¢

Nec |Iftgs, ¢, thenkgs, O ¢

In the above the indekis in {1, 2}.

The symbol- means provability in that logic, or in the extension undensidera-
tion. By S52 + {¢} we denote the extension 88 in which the formulap is added to
the axioms.

The following is also widely known.

Theorem 1. The logic S5 is sound and complete with respect to equivalence frames
F = (W,~1,~2).

We will always be working in the clasgg of equivalence frames.
We also recall a standard lemma that we will use in this paper.

Lemma l. For any ¢ € L, we have- [0,¢ & ;00,0 < O;00;¢0 and+- O;¢ <
0;0:0 < 0:0:¢0 Wherei € A.

2 Interaction axioms of the form [Op = [Clp

We start with extensions of $5vith respect to interaction axioms that can be expressed
as:

Clp = Fg, wherel € {0y, 0a, O1, 02} (1)

There are 16 axioms of this form; factoring 1-2 symmetrietuces this number to 8,
of which 4 are already consequences of 88d therefore do not generate proper exten-
siong. The remaining 4 are proper extensions of 8fd give rise to correspondence
properties as described in Fig. 1.

! The four arddip = Thip, Oip = O1p, Oip = O2p, andOip = O1p.



Interaction Axioms Completeness
Oip = Oap ~oCry
C1p = Ohip ~1= idw
O1p = Oap ~y=ro= idw
Q1p = O2p ~1Cn~2

Fig. 1. Proper extensions of $5enerated by axioms of the form¢ = [H¢. Formulas not
included in the table but which are instances of this scheiva @mpleteness with respect to
equivalence frames.

Theorem 2. An equivalence framé' validates one of the axioms in Figure 1 if and
only if F' has the corresponding property.

Theorem 3. All the logics S5+ {¢}, whereg is a conjunction of formulas expressible
from axiom schema 1 are sound and complete with respect tmtibisection of the
respective class of frames reported in Fig. 1.

The results of Theorem 3 are quite well known. The most ingrdrtogic is prob-
ably the one that forces the knowledge of an agent to be a sobsiee knowledge
of another. In Section 1 we have discussed two scenarios ichvthis can be proven
useful. Stronger logics can be defined by assuming that tliahummponent for one
of the agents collapses onto the propositional calculuseMthis happens we are in
a situation in which “being possible according to one agéntéquivalent to “being
known” and this in turn is equivalent to “being true”. It isedr that this is indeed a very
strong constraint which limits the expressivity of our laiage. Still these logics can be
proven to be consistent.

The strongest consistent logic is Trithat can be defined from $By adding the
axiom{p = [yp to S5 or equivalently by adding both;p = Cyp andQq.p = Clap.

In this logic the two agents have equal knowledge that isvadgt to the truth on the
world of evaluation.

3 Interaction axioms of the form[p = G p

There are 64 axioms of the shape
¢ = [ ¢ whereld € {1,003, 01, 02} (2)

Factoring 1-2 symmetries reduces this number to 32. Agaamynof these (14 in num-
ber) do not generate proper extensions of*SEor the remaining 18, the completeness
results for the extension they generate are more compticatn the ones in the previ-
ous section. We present one result in detail (the readefasreel to [14] for the other
proofs): it concerns the axiom

Oyp = 0102p.

2 Triv, is the logic obtained from S5y addingd: p < p andfap < p.

8 ip = O10up, Oip = 01010, Hip = O102p, Oip = Uilhp, ip = O0:01p, Tip =
1 02p, Oip = O201p, Oip = O201p, Oip = O202p, Oip = Oalap, G2p = 0102p,
Qap = 0201p, O2p = 0202p, andQap = O202p.



Lemma 2. Let F' be an equivalence framé& = Oyp = ¢10qp if and only if F is
such thatvw3w’ € [w]., : [w']~, C [w]~,.

([w]~, is the~;-equivalence class af.)

Proof. From right to left; consider any modél/ and a pointw in it such thatM =,
O, p. So, for every pointv’ such thatw ~; w’ we haveM =, p. But, by assumption,
there exists a point’ € [w]., such thajw’].., C [w]~,. So,p holds at any point of
the equivalence clags’]..,, and soM =, Oap. ThereforeM |=,, ¢0102p.

For the converse, suppose the relational property above woehold. Then there
exists a frameF' and a pointw in F such that for anyw’ € [w]., we havejw']., <
[w]~,, i.e. we have the existence of a point € [w']., such thatw” ¢ [w].,. Con-
sider a valuatiorr such thatr(p) = {w' | w ~; w'}. We have(F, r) =, Oip and
(F,m) FEwr p. SO(F,m) W Oap. SO we have F, ) £, O10:p which is absurd.

Lemma 3. The logic S5+ {";p = O10sp} is sound and complete with respect to
equivalence frames satisfying the propéfty3w’ € [w]., : [w']~, C [w].,.

Proof. Soundness was proven in first part of Lemma 2.

For completeness we prove that the logie 85{0C;p = ¢10,p} is canonical. In
order to do that, suppose, by contradiction, that the frafrteedocanonical model does
not satisfy the relational property above. Then, it musthsg there exists a poinb
such that:

n

V' € [w]., Fw" : w' ~9 w" andw £ w”.

Call wi,...,w,,... the points injw].,, andw; the point in[w}].., such thatw %,
wf; i =1,...,n,.... Recall (for example see [10], page 118) that~; w’ on the
canonical model is defined &8 € £ (0;a € w impliesa € w'); w #; w' is de-
fined asda € £L(Oja € w and—-«a € w'). So we can find some formulas;, €

L;i = 1,...,n,... such thath«a; € w,o; € wj,—a; € w/;i = 1,...,m,...
Calla = A?_;a;; we havell;o; € wyi = 1,...,n,.... So0;a € w. But-a €
wl,i=1,...,n,.... S002a € w} for everyiin {1,...,n,...}. So0;027a € w,

i.e. =010y € w. But;a € w and- Oja = 105, Sow would be inconsistent.
Therefore the canonical frame must satisfy the propertyalaod the logic is complete
with respect to equivalence frames satisfying the propeétyw’ € [w]., : [w']~, C
[w]~,

Similar results hold for the other 17 axioms of the form 2, &m&lsituation is sum-
marised in Fig. 2. See [14] for full details.

Theorem 4. All the logics S5+ {¢}, whereg is a conjunction of formulas expressible
from axiom schema 2 are sound and complete with respect tmtiiesection of the
respective class of frames reported in Fig. 2.

Among all these axioms, the most intuitive ones in terms afledge are probably
(yp = Oo0yp and its “dual’fyp = [0 0,p, in which one agent knows that the other
knows something every time this happens to be the casenliigisting to see that this
is equivalent to one agent knowing everything known by theoagent.



Interaction Axioms Completeness
Oip = O100ap [VwIw' € [w]e, : [w]~, C [w]~,
Oip = Oelhip ~gCrvy
Oip = Ox000p ~oCrvg
Cip = O201p ~oCry
Oip = Oilep ~gCrvy
Oip = O2000p ~oCrp
O1p = O1l0ip ~1=idw
O1p = O1002p ~a= idw
O1p = 0O10Ohp ~1=idw
O1p = 01 0ap ~1=ro= idw
O1p = 0102p ~1Crog
O1p = O20ip ~1=idw
O1p = O2l2p ~1=rva= tdw
O1p = 0202p ~1Crg
O1p = Ox0ip ~p=r~1= tdw
O1p = Oalop ~1=rva= tdw
O1p = O201p ~oCrvy
O1p = O202p ~1Crg

Fig. 2. Proper extensions of $§enerated by axioms of the forfi¢ = & ¢. Formulas not
included in the table but which are instances of the schewm gmpleteness with respect to
equivalence frames.

A more subtle, independent axiom expressed by axiom schesé formul4:
Dlp = 01D2p7

which reads “If agent 1 knows, then he considers possible that agent 2 also kndws
The above is an axiom that regulates a natural kind of “pradéassumption of agent
1 in terms of what knowledge agent 2 may have. This is meaningMAS in which
agents have similar characteristics. In these scenarien\sh agent knows a fact, it
may be appropriate to assume that the other agent, by augtive same information
from the environment and by following her same reasoningycdave reached the
same conclusion. Note that very often humans act as if tHeyfed this axiom.

We leave it to the reader to explore other interactions froetable above.

Note that by taking the contrapositive of axiom schema 2 wessgress axioms of
the formp = [p. So all those axioms are also covered in this section. Fqolgiity
we do not report the case of antecedents indexed as 2, butphyirapsymmetry it is
straightforward to generate the corresponding axioms.

4 The technical details of this formula have been discuss¢éimma 2 and Lemma 3.



4 Interaction axioms of the formH Hp = E1 G p

We now discuss the most complex class of axioms we will seleisngiaper, i.e. exten-
sions of S5 with interaction axioms expressible as:

C ¢ = ¢, whereld € {001, 0s, 01, 02 }- 3)

Of the 256 such axioms, we lose half by 1-2 symmetry; of theaiaing 128, 64 of
them begin withl;[; with ¢ = j, which, by well known S5 equivalences (Lemma 1)
collapse to a case of the previous section. The remainingié#ns divide into 26 which
do not induce proper extensions of;3and 38 axioms which do. Figure 3 summarises
the result for the proper extensions.

Some results for axioms of the form of axiom schema 3 are @jrasailable in the
literature:

Lemma4 ([2]). The logic S5 + {010sp = aO1p} is sound and complete with
respect to frames satisfying the property: for allw,, wy € W such thatw ~; wy,
w ~q wo there exists a point such thatw; ~; w, wy ~; .

Figure 3 shows that many of the extensions are equivalemrn®dogic examined
in the previous sections. For example, we have the following

Lemma 5. The logic S5+ {0102p = 0;0,p} is sound and complete with respect to
equivalence frames such thag C~;.

Proof. We show that the logic S5+ {¢10.p = O;0sp} is equivalent to the logic
S5, + {Tsp = O1p}. In order to see this, we prove that:

F$55-4+{010ap=0y0zp) U2p = Uip and Fgs, 4 (0, p=0, ) O102p = Oi0ap,

where S5, is the logic (closed under uniform substitution) obtainealri S5 by
adding the formula.

From left to right. Suppos®sp = U;0ap. We have®p = O102p by T.
But since, by contraposition of the hypothesis, we h@yé.p = [;2p, we obtain
O1p = 01 Oap, Which in turn implies®i1p = Oop.

From right to left. Supposép = O2p and substituté€l,p for p in it. We obtain
¢10ap = O200sp, Which is equivalent ta);ap = Tap. Now, by necessitating by
[J; and distributing the box by using axiom K, we obtaind, Jop = [y Hap, which,
given Lemma 1 gives us to the res@itop = O Ogp.

Since each of the two formulas above can be proven from ther etlthin S5, we
have that any proof of a formula in one logic can be repeatdterother. Now, since
S5 +{01p = QO2p} is complete (see Figure 1) with respect to equivalence fsssueh
that~; C~s, then also S5+ {O10ap = 01 0op} is sound and complete with respect
to the same class of frames.

5 :00p = O101p, Oi0ep = O102p, Oi0ep = 0101p, Oilep = O102p, Oiep =
O:10hp, Oi02p = Oi0op, Ci0ep = O101p, Oilep = O102p, O10op = O201p,
O102p = G20ap, O0102p = 0201p, Oilap = O202p, iep = Oalap, O010ap =
O201p, Oh02p = O202p, O102p = O102p, O102p = 0101, O1l2p = O0102p,
O10ap = O101p, O1002p = 0201p, 01020 = C102p, U1 02p = O102p, H102p =
O102p, 102p = 0201p, d102p = O202p andd: G2p = O202p.



Interaction Axiom

5 Completeness

01020 = O101p

!

!
Ywaw' € [w]~, @ [Ww']~y W~y

1020 = 01010

C
! !
Vwaw' € [w]~; @ [w' ]~y C [w]~,

O102p = O100a2p

?YwIw' € [w]~, : [w']~, = {w'}

01020 = O2lip ~1=idw
O102p = OiChp ~1Crog
O100p = O101p ~1Crg
O102p = O Cap ~1Cr~2
O102p = 01 Qap ~1Crog
O102p = Oalip ~1Crog
O102p = Oe0ap ~1Cnp
Q102p = OaQap ~1Crog
O10:2p = G2lip ~1Crg
O102p = G2l2p ~1Cn~o
Q1002p = Q202p ~1Crvg
0102p = 01 Qap ~1Cn~s
0102p = HaQap ~1Cn~
01020 = 0202p ~1Crp

0102p = OhlOhip

~—roo— idy

0102p = Oi10ap

~=roo= idw

01020 = Oalip

~]=rvg= ldW

0102p = Oallap

~—roo— idy

0102p = O10hip

~1=r~o= idw

0102p = Qallap

~]=rvg= ldW

O:102p = Ohlhp ~ao= idw
O:10ap = O10hip ~o= idw
102p = a01p ~oCry
01020 = 01 01p ~aC~p
01020 = O201p ~oCrvp
01020 = 0101p ~oCrg
O:102p = i Oap ~a= idw
O10ap = Talip ~o= idw
01 02p = Oalap ~o= idw
O:102p = Q2lap ~a= idw
01020 = O102p ~ao= idw

D1|:|2p = Dlep

wwl’wl,wwz’u&:}3m:
w1~ W, W ~1 W

01020 = 0201p

W~ W, W~y wy = W
W1 ~o W, Wz ~1 W

O10ap = O O1p

wwlwl,wwsziamz
w1 ~o W, W2 ~1 W

O:102p = O2lip

? Either~1= idw or ~o= idw

Fig. 3. Proper extensions of $§enerated by axioms of the form [ ¢ = [ [ ¢. For axioms
listed with “?” correspondence is proved but completensssly conjectured.




Axioms of shape 3 are intrinsically much harder (from a metieloretic point of
view) to examine with the basic tools than any other examseethr because they can
express antecedents of the fof ¢2. These axioms represent knowledge of agent 1
about facts considered possible by agent 2. Technicakbgetfiormulas reminds us of
the the McKinsey axiom of mono-modal logic, which has repnésd a challenging
problem for logicians for many years and has been solvediedbing ago by Goldblatt
[5].

Consider axionid; 0op = ¢109p. With this axiom we rule out situations in which
agent 1 knows that is considered possible by agent 2 and agent 1 also knows-that
is considered possible by agent 2.

Definition 1. A pointw € W is called ani-dead-end if for allw’ € W we have
w ~; w' impliesw = w'.

Lemma 6. Given a frameF' = (W, ~1, ~3) and a pointw on it, w is ani-dead-end if
any only if for any valuationr, we have(F, ) =, p = O;p.

We can then prove the results for this axiom.

Lemma 7. F =, 02p = ¢10opif and only if F' is such that every point is related
by relation 1 to a 2-dead-end; i.e. for all € W there exists a’ € W, w ~; w’ such
that [w']., = {w'}.

Proof. From right to left; consider any modadll such that every point sees via 1 a 2-
dead-end. Suppos¥ =, [;0q2p; so for every pointw’ such thatw ~; w' we have
that there must be " such thatw’ ~, w” andM =, p. But by assumption one
of thew’ is a 2-dead-end, so we have the existence of a poiat[w]., such that (by
Lemma 6)M |= Oap. ThenM =, O102p.

For the converse, consider any equivalence frdmesuch thatr' = O;02p =
¢102p and suppose by contradiction that the property above doelsald. Consider
the setX = [w]~,, the equivalence relatior = ~; N ~5 and the quotient seX/ ..
Consider now the sét’” constructed by taking one and only one representatifer
each clas$w].. in X/.. Consider a valuatiort(p) = Y and consider the modéll =
(W, ~1, ~9, ). By construction we havé! =,, O;02p. Then by our assumption we
also haveM =, ¢1009p. So there must be a poimt’ such thatw ~; w’ such that
M =, Oyp. But sincew’ by assumption is not a 2-dead-end, the equivalence class
[w']~, must contain more thaw’ itself and by constructiop is true only at one point
in that class and false for evegy¢ X. So we haveVf |4, Oqp for everyw' € [w].,
and soM =, ¢10ap, which is absurd. So for every point € W there must be a
2-dead-end accessible from it.

Completeness for the above remains an open problem.

Conjecture 1.The logic S5+ {{J; 02p = ¢102p} is sound and complete with respect
to equivalence frames such that every point is related [atic#l 1 to a 2-dead-end; i.e.
for all w € W there exists a’ € W, w ~; w’ such thafw']., = {w'}.

The same happens for the axidm Q2p = O200;p. This axiom represents the
situation in which it cannot be that agent 1 knows that ageotrisiders possiblg
while agent 2 knows that agent 1 considers possilple



Lemma8. F E O;:02p = O2004p if and only F is such that if in every connected
sub-frame either = idy Or ~o= idyy .

Proof. From left to right. This part of the proof is structured addals:

1. We prove that" |= [0;09p = O20;p implies that any pointv € W either sees
via 1 a 2-dead-end, or the poiatsees via 2 a 1-dead-end.

2. We prove that if on a framé such thatF' E 0:02:p = ¢201p and there is
point w which is ani-dead-end, ther.;= idy, on the whole connected sub-frame
generated by; wherei € {1,2}.

3. The two facts above together prove thaFif= [;02p = O21p, then in every
connected sub-frame eithef = idy Or ~o= idy .

1) By contradiction, consider any connected equivalerae&F, in which aw € W
does not see viaany j-dead end, i.&vw’ € [w]~,, [w']~, # {w'},i # j,i,5 € {1,2}
we prove thaf" [~ O, Qqp = 0201 p. To see this, consider the sEt= [w]., U[w]~,\
{w}, the equivalence relation = ~; N~4 and the quotient set /... Consider now the
setY defined by taking one representatiyéor every equivalence clagg|. € X/.:
the setY is such thatvy;,y» € ¥ we have[y]. N o]~ = 0 andU,cy[y]~ =
X. Consider now the model/ = (F,n), by taking the valuationr(p) = Y. By
construction, in the modeV for anyx € X, there is a point accessible framvia ~5
which satisfiep, and since by hypothesis is neither a 1-dead-end nor a 2-dead-end
(as otherwise it would see itself as dead-end) we l@dvie-,, [; Oop. So by the validity
of the axiom we also hav&! =,, (,[0;p, i.e. there must be @' € [w].,, such that
M k=, O;pp, but this is impossible because by hypothdsi§., # {w’}, and by
constructiorp is true at just one point ifw'], N[w'].,, and false at every point not in
X. See Figure 4.

2) Consider now a connected franfe such thatF = O;0.p = 020;p and
suppose for example that is a 1-dead-end, we want to prove thai= idy on the
connected sub-frame generated; If w is also a 2-dead-end, thew =~s= idy
on the generated frame which gives us the result. If not, espphat~;# idy ; SO
there must be two points’, w'"’ € W;w' # w"”, such thatw’ ~; w”. So, since the
frame is connected, without loss of generality assume» w’. Consider now valu-
ationw(p) = {z | ¢ € [w].,,z # w'} U {w"} and the modeM = (F,) built
on F from 7. So, we have\l |=,, C»,¢01p, and so, by validity of the axiom, we also
haveM E, ¢100sp. So we must hav@/ =,, Cyp, which is a contradiction because
M ‘:w’ -p.

So we have that if the axiom is valid, then in every connectedmonent one of the
two relations is the identity.

From right to left. Consider any equivalence modél whose underlying frame
satisfies the property above and suppose Miat,, [J; Oap.

Supposev;= idw andM =, [;02p, so there is a’ € [w].,, such that\f =,
p. But since~= idw on the connected part, we also havel=,,, Cy1p. SOM |,
Q201 p. Suppose now-o= idy andM =, O;0qp. So for everyw’ € [w]., we have
M =, p. Butthen we also hav&! |=,, ¢20;p.

51f wis a 2-dead-end then the argument is symmetric.



Fig. 4. A model not satisfying the property of Lemma 8. Note that., # {w} and[w]~, #
{w}.

Again we can only conjecture completeness with respect ¢oatove class of
frames.

Conjecture 2.The logic S5+ {0; 02p = 02001 p} is sound and complete with respect
to equivalence frames such that either= idy or ~o= idy on every connected sub-
frame.

5 Conclusions

We have identified a number of non-trivial single-axiom esiens of S5 which spec-
ify a mode of interaction between two agents, and provedespondence, soundness
and completeness with respect to the appropriate clas$emués. The main contribu-
tion of this paper lies in the identification of a spectrumrgkractions above $5

Figure 5 represents graphically all the logics discussddismgether with the cor-
responding semantic classes (the ones for which we onlyectnied completeness are
not included). In the figure, the logics are ordered strenwgte. So, the strongest logic
is of course Triy (represented as 85 {O1p = Uap}), the weakest simply S51In
between we have a few logic systems, the weakest of whichateecl's logic, and the
two axioms that we examined in Theorem 2 and Theorem 3. Natdhbse three logics
are independent. Stronger extensions include logics iclnthie knowledge of an agent
is included in the knowledge of the other and combinatiorhete.



S5 + {O1p = Oap}

555 + {01p = Oip} 853 + {O2p = Oap}

S5y + {O1p & Oap}

S52 + {01p = O2p} S5 + {O2p = O1p}

S5 + {0102p = O201p}

S59 4+ {ap = 02010} S59 4+ {O1p = O102p}

S5,

Fig. 5. The independent extensions of:35at can be obtained by adding axioms of the shapes
H¢ = ¢ andl¢ = [ [ ¢ and the corresponding classes of frames. Formulas notdedlu

in the table but obtainable from the schema above give caempdss with respect to equivalence
frames. The logics for which results are only conjecturedraot included in the figure.



The fairly exhaustive analysis carried out in this papenpts the Al-user with an
interaction axiom in mind to refer to the above tables to tigrihe class of Kripke
frames that gives completeness. For most of the logics atbeeielability also follows
because most of them have the finite model property.

We have given conjectures about the two McKinsey axioms jg&ture 1, Con-
jecture 2). In private correspondence Van der Hoek [9] hasroanicated a proof of
Conjecture 1, but the other axiom is still an open problemhat $tage. Solving this
issue is part of our future work.

The results presented in this paper conceptually belongfaomély of works in
which the relation between different modalities in a sirgle multi-agent setting is
explored. Among the many in the literature that deal withititeraction between dif-
ferent internal mental states, we would like to cite [8] inigthvan der Hoek, building
upon a previous work [12] by Kraus and Lehmann, extensiveplages the relation
between knowledge and belief. Turning to the relation betwagent and environment,
in this proceedings Wooldridge and Lomuscio capture thatimt between visibility,
perception, and knowledge by means of formal tools verylainid ones presented in
these pages [19]. Although the logics presented in thos&svaim at capturing stat-
ic properties, an interesting line of research concerngdesy algorithms defined on
Kripke structures that model the evolution of internal na¢states [6, 16, 11].
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