Martin Escardo 31st December 2021

Type-class for notation for strict orders.

\begin{code}

{-# OPTIONS --safe --without-K #-}

module Notation.Order where

open import MLTT.Spartan

record Strict-Order {𝓤} {𝓥} {𝓦} (X : 𝓤 ̇ ) (Y : 𝓥 ̇ ) : (𝓤  𝓥  𝓦) ̇ where
 field
   _<_ : X  Y  𝓦  ̇

 _≮_ : X  Y  𝓦 ̇
 _>_ _≯_ : Y  X  𝓦 ̇

 x  y = ¬(x < y)
 y > x = x < y
 y  x = ¬ (y > x)

 infix 30 _<_
 infix 30 _>_
 infix 30 _≮_
 infix 30 _≯_

open Strict-Order {{...}} public

record Order {𝓤} {𝓥} {𝓦} (X : 𝓤 ̇ ) (Y : 𝓥 ̇ ) : (𝓤  𝓥  𝓦) ̇ where
 field
   _≤_ : X  Y  𝓦  ̇

 _≰_ : X  Y  𝓦 ̇
 _≥_ _≱_ : Y  X  𝓦 ̇

 x  y = ¬(x  y)
 y  x = x  y
 y  x = ¬(y  x)

 infix 30 _≤_
 infix 30 _≥_
 infix 30 _≰_
 infix 30 _≱_


open Order {{...}} public

record Strict-Square-Order {𝓤} {𝓥} {𝓦} (X : 𝓤 ̇ ) (Y : 𝓥 ̇ ) : (𝓤  𝓥  𝓦) ̇ where
 field
   _⊏_ : X  Y  𝓦  ̇

 _⊐_ : Y  X  𝓦 ̇
 x  y = y  x

 infix 30 _⊏_
 infix 30 _⊐_

open Strict-Square-Order {{...}} public

record Square-Order {𝓤} {𝓥} {𝓦} (X : 𝓤 ̇ ) (Y : 𝓥 ̇ ) : (𝓤  𝓥  𝓦) ̇ where
 field
   _⊑_ : X  Y  𝓦  ̇

 _⊒_ : Y  X  𝓦 ̇
 x  y = y  x

 infix 30 _⊑_
 infix 30 _⊒_

open Square-Order {{...}} public

record Strict-Curly-Order {𝓤} {𝓥} {𝓦} (X : 𝓤 ̇ ) (Y : 𝓥 ̇ ) : (𝓤  𝓥  𝓦) ̇ where
 field
   _≺_ : X  Y  𝓦  ̇

 _≻_ : Y  X  𝓦 ̇
 x  y = y  x

 infix 30 _≺_
 infix 30 _≻_

open Strict-Curly-Order {{...}} public

record Curly-Order {𝓤} {𝓥} {𝓦} (X : 𝓤 ̇ ) (Y : 𝓥 ̇ ) : (𝓤  𝓥  𝓦) ̇ where
 field
   _≼_ : X  Y  𝓦  ̇

 _≽_ : Y  X  𝓦 ̇
 x  y = y  x

 infix 30 _≼_
 infix 30 _≽_

open Curly-Order {{...}} public

record Strict-Order-Chain {𝓤} {𝓥} {𝓦} {𝓣} {𝓧 : Universe}
 (X : 𝓤 ̇) (Y : 𝓥 ̇) (Z : 𝓦 ̇)
 (_<₁_ : X  Y  𝓣 ̇)
 (_<₂_ : Y  Z  𝓧 ̇) :  (𝓤  𝓥  𝓦  𝓣  𝓧) ̇ where
 field
  _<_<_ : X  Y  Z  𝓣  𝓧 ̇

 infix 30 _<_<_

open Strict-Order-Chain {{...}} public

record Order-Chain {𝓤} {𝓥} {𝓦} {𝓣} {𝓧 : Universe}
 (X : 𝓤 ̇) (Y : 𝓥 ̇) (Z : 𝓦 ̇)
 (_≤₁_ : X  Y  𝓣 ̇)
 (_≤₂_ : Y  Z  𝓧 ̇) :  (𝓤  𝓥  𝓦  𝓣  𝓧) ̇ where
 field
  _≤_≤_ : X  Y  Z  𝓣  𝓧 ̇

 infix 30 _≤_≤_

open Order-Chain {{...}} public

\end{code}

Lane Biocini, 10 October 2023

Define a general notation for reasoning chains

\begin{code}
record Reflexive-Order {𝓤} (X : 𝓤 ̇ )
 (_R_ : X  X  𝓤 ̇ ) : 𝓤 ̇ where
 field
  _▨ : (x : X)  x R x

 infix 1 _▨

open Reflexive-Order {{...}} public

record Reasoning-Chain {𝓤} {𝓥} {𝓦} {𝓣} {𝓧 : Universe}
 (X : 𝓤 ̇ ) (Y : 𝓥 ̇ ) (Z : 𝓦 ̇ )
 (_R₁_ : X  Y  𝓦 ̇ )
 (_R₂_ : Y  Z  𝓣 ̇ )
 (_R₃_ : X  Z  𝓧 ̇ ) : (𝓤  𝓥  𝓦  𝓣  𝓧) ̇ where
 field
  _⸴_⊢_ : (x : X) {y : Y} {z : Z}  x R₁ y  y R₂ z  x R₃ z

 infixr 0 _⸴_⊢_

open Reasoning-Chain {{...}} public

\end{code}