Martin Escardo, 4th April 2022 See the 2018 file OrdinalNotationInterpretation1 for discussion. We interpret Brouwer ordinal codes as ordinals in four ways and relate them. \begin{code} {-# OPTIONS --safe --without-K --lossy-unification #-} open import UF.Univalence open import UF.PropTrunc module Ordinals.NotationInterpretation0 (ua : Univalence) (pt : propositional-truncations-exist) where open import UF.FunExt open import UF.Subsingletons open import UF.UA-FunExt private fe : FunExt fe = Univalence-gives-FunExt ua fe' : Fun-Ext fe' {𝓤} {𝓥} = fe 𝓤 𝓥 pe : Prop-Ext pe = Univalence-gives-Prop-Ext ua open PropositionalTruncation pt open import CoNaturals.Type open import MLTT.Spartan open import Notation.CanonicalMap open import Ordinals.Arithmetic fe open import Ordinals.AdditionProperties ua open import Ordinals.Brouwer open import Ordinals.Injectivity open import Ordinals.Maps open import Ordinals.OrdinalOfOrdinals ua open import Ordinals.OrdinalOfOrdinalsSuprema ua open import Ordinals.ToppedArithmetic fe open import Ordinals.ToppedType fe open import Ordinals.TrichotomousArithmetic fe open import Ordinals.TrichotomousType fe open import Ordinals.Type open import Ordinals.Underlying open import TypeTopology.CompactTypes open import TypeTopology.SquashedSum fe open import UF.Size open ordinals-injectivity fe module _ (sr : Set-Replacement pt) where open suprema pt sr private extension : (ℕ → Ordinal 𝓤₀) → (ℕ∞ → Ordinal 𝓤₀) extension α = α ↗ (embedding-ℕ-to-ℕ∞ fe') \end{code} We now define our four interpretations of Brouwer ordinal trees as ordinals. The first interpretation is the intended one. \begin{code} ⟦_⟧₀ : B → Ordinal 𝓤₀ ⟦ Z ⟧₀ = 𝟘ₒ ⟦ S b ⟧₀ = ⟦ b ⟧₀ +ₒ 𝟙ₒ ⟦ L b ⟧₀ = sup (λ i → ⟦ b i ⟧₀) \end{code} The second interpretation is into topped ordinals. It enlarges, in some sense, the first interpretation, so that we get bigger, and, importantly for our purposes, compact ordinals. \begin{code} ⟦_⟧₁ : B → Ordinalᵀ 𝓤₀ ⟦ Z ⟧₁ = 𝟙ᵒ ⟦ S b ⟧₁ = ⟦ b ⟧₁ +ᵒ 𝟙ᵒ ⟦ L b ⟧₁ = ∑¹ (λ i → ⟦ b i ⟧₁) \end{code} The third interpretation enlarges the first one in a different way. \begin{code} ⟦_⟧₂ : B → Ordinal 𝓤₀ ⟦ Z ⟧₂ = 𝟙ₒ ⟦ S b ⟧₂ = ⟦ b ⟧₂ +ₒ 𝟙ₒ ⟦ L b ⟧₂ = sup (extension (λ i → ⟦ b i ⟧₂)) \end{code} And the fourth and last interpretation is into trichomotomous ordinals, where Ordinal₃ 𝓤 is the type of trichotomous ordinals in the universe 𝓤. We again take sums rather than sups. \begin{code} ⟦_⟧₃ : B → Ordinal₃ 𝓤₀ ⟦ Z ⟧₃ = 𝟘₃ ⟦ S b ⟧₃ = ⟦ b ⟧₃ +₃ 𝟙₃ ⟦ L b ⟧₃ = ∑³ ω₃ (λ i → ⟦ b i ⟧₃) \end{code} We'll prove the following inequalities, where the arrows represent the relation _⊴_ on ordinals, under the assumption of excluded middle: ⟦ b ⟧₀ → ⟦ b ⟧₃ ↓ ↓ ⟦ b ⟧₂ → ⟦ b ⟧₁ But we first show that ⟦ b ⟧₂ and ⟦ b ⟧₁ are compact and pointed. The pointedness is absolutely essential in the proofs by induction, via the indirect use of prop-tychonoff in Σ¹, because a version of prop-tychonoff without pointedness implies excluded middle. And this is why we defined the base cases to be 𝟙 rather than 𝟘. \begin{code} ⟦_⟧₂-is-compact∙ : (b : B) → is-compact∙ ⟨ ⟦ b ⟧₂ ⟩ ⟦ Z ⟧₂-is-compact∙ = 𝟙-is-compact∙ ⟦ S b ⟧₂-is-compact∙ = +-is-compact∙ ⟦ b ⟧₂-is-compact∙ (𝟙-is-compact∙) ⟦ L b ⟧₂-is-compact∙ = codomain-of-surjection-is-compact∙ pt (sum-to-sup (extension (λ i → ⟦ b i ⟧₂))) (sum-to-sup-is-surjection (extension (λ i → ⟦ b i ⟧₂))) (Σ¹-compact∙ (λ i → ⟨ ⟦ b i ⟧₂ ⟩) (λ i → ⟦ b i ⟧₂-is-compact∙ )) ⟦_⟧₁-is-compact∙ : (b : B) → is-compact∙ ⟨ ⟦ b ⟧₁ ⟩ ⟦ Z ⟧₁-is-compact∙ = 𝟙-is-compact∙ ⟦ S b ⟧₁-is-compact∙ = Σ-is-compact∙ 𝟙+𝟙-is-compact∙ (dep-cases (λ _ → ⟦ b ⟧₁-is-compact∙) (λ _ → 𝟙-is-compact∙)) ⟦ L b ⟧₁-is-compact∙ = Σ¹-compact∙ (λ i → ⟨ ⟦ b i ⟧₁ ⟩) (λ i → ⟦ b i ⟧₁-is-compact∙) \end{code} The successor function on ordinals is not necessarily monotone, but it is if excluded middle holds. \begin{code} open import UF.ClassicalLogic open import Ordinals.SupSum ua comparison₀₃ : Excluded-Middle → (b : B) → ⟦ b ⟧₀ ⊴ [ ⟦ b ⟧₃ ] comparison₀₃ em Z = ⊴-refl 𝟘ₒ comparison₀₃ em (S b) = succ-monotone em ⟦ b ⟧₀ [ ⟦ b ⟧₃ ] (comparison₀₃ em b) comparison₀₃ em (L b) = IV where I : (i : ℕ) → ⟦ b i ⟧₀ ⊴ [ ⟦ b i ⟧₃ ] I i = comparison₀₃ em (b i) II : sup (λ i → ⟦ b i ⟧₀) ⊴ sup (λ i → [ ⟦ b i ⟧₃ ]) II = sup-monotone (λ i → ⟦ b i ⟧₀) (λ i → [ ⟦ b i ⟧₃ ]) I III : sup (λ i → [ ⟦ b i ⟧₃ ]) ⊴ [ ∑³ ω₃ (λ i → ⟦ b i ⟧₃) ] III = sup-bounded-by-sum₃ em pt sr _ _ IV : sup (λ i → ⟦ b i ⟧₀) ⊴ [ ∑³ ω₃ (λ i → ⟦ b i ⟧₃) ] IV = ⊴-trans _ _ _ II III comparison₀₂ : EM 𝓤₁ → (b : B) → ⟦ b ⟧₀ ⊴ ⟦ b ⟧₂ comparison₀₂ em Z = 𝟘ₒ-least-⊴ 𝟙ₒ comparison₀₂ em (S b) = succ-monotone em ⟦ b ⟧₀ ⟦ b ⟧₂ (comparison₀₂ em b) comparison₀₂ em (L b) = VI where I : (n : ℕ) → ⟦ b n ⟧₀ ⊴ ⟦ b n ⟧₂ I n = comparison₀₂ em (b n) II : (n : ℕ) → extension (λ i → ⟦ b i ⟧₂) (ℕ-to-ℕ∞ n) = ⟦ b n ⟧₂ II n = ↗-property (ua 𝓤₀) (λ i → ⟦ b i ⟧₂) (embedding-ℕ-to-ℕ∞ fe') n III : (n : ℕ) → ⟦ b n ⟧₀ ⊴ extension (λ i → ⟦ b i ⟧₂) (ℕ-to-ℕ∞ n) III n = transport (⟦_⟧₀ (b n) ⊴_) ((II n)⁻¹) (I n) IV : sup (λ i → ⟦ b i ⟧₀) ⊴ sup (extension (λ i → ⟦ b i ⟧₂) ∘ ℕ-to-ℕ∞) IV = sup-monotone _ _ III V : sup (extension (λ i → ⟦ b i ⟧₂) ∘ ℕ-to-ℕ∞) ⊴ sup (extension (λ i → ⟦ b i ⟧₂)) V = sup-is-lower-bound-of-upper-bounds _ _ (λ n → sup-is-upper-bound _ (ℕ-to-ℕ∞ n)) VI : sup (λ i → ⟦ b i ⟧₀) ⊴ sup (extension (λ i → ⟦ b i ⟧₂)) VI = ⊴-trans _ _ _ IV V comparison₂₁ : Excluded-Middle → (b : B) → ⟦ b ⟧₂ ⊴ [ ⟦ b ⟧₁ ] comparison₂₁ em Z = ⊴-refl 𝟙ₒ comparison₂₁ em (S b) = III where I : (⟦ b ⟧₂ +ₒ 𝟙ₒ) ⊴ ([ ⟦ b ⟧₁ ] +ₒ 𝟙ₒ) I = succ-monotone em (⟦ b ⟧₂) [ ⟦ b ⟧₁ ] (comparison₂₁ em b) II : [ ⟦ b ⟧₁ +ᵒ 𝟙ᵒ ] = ([ ⟦ b ⟧₁ ] +ₒ 𝟙ₒ) II = alternative-plus (⟦ b ⟧₁) 𝟙ᵒ III : (⟦ b ⟧₂ +ₒ 𝟙ₒ) ⊴ [ ⟦ b ⟧₁ +ᵒ 𝟙ᵒ ] III = transport⁻¹ ((⟦ b ⟧₂ +ₒ 𝟙ₒ) ⊴_) II I comparison₂₁ em (L b) = V where α : ℕ∞ → Ordinal 𝓤₀ α = extension (λ i → ⟦ b i ⟧₂) β : ℕ∞ → Ordinal 𝓤₀ β = extension (λ i → [ ⟦ b i ⟧₁ ]) τ : ℕ∞ → Ordinalᵀ 𝓤₀ τ = topped-ordinals-injectivity._↗_ fe (λ i → ⟦ b i ⟧₁) (embedding-ℕ-to-ℕ∞ fe') I : (i : ℕ) → ⟦ b i ⟧₂ ⊴ [ ⟦ b i ⟧₁ ] I i = comparison₂₁ em (b i) II : (u : ℕ∞) → α u ⊴ β u II = ordinals-injectivity-order.↗-preserves-⊴ ua (embedding-ℕ-to-ℕ∞ fe') _ _ I III : sup α ⊴ sup β III = sup-monotone α β II IV : sup β ⊴ [ ∑ ℕ∞ᵒ τ ] IV = sup-bounded-by-sumᵀ em pt sr ℕ∞ᵒ τ V : sup α ⊴ [ ∑ ℕ∞ᵒ τ ] V = ⊴-trans _ _ _ III IV map₃₁ : (b : B) → ⟨ ⟦ b ⟧₃ ⟩ → ⟨ ⟦ b ⟧₁ ⟩ map₃₁ Z x = unique-from-𝟘 x map₃₁ (S b) (inl x) = inl ⋆ , map₃₁ b x map₃₁ (S b) (inr x) = inr ⋆ , ⋆ map₃₁ (L b) (i , x) = ℕ-to-ℕ∞ i , f where f : ((j , p) : fiber ℕ-to-ℕ∞ (ℕ-to-ℕ∞ i)) → ⟨ ⟦ b j ⟧₁ ⟩ f (j , p) = transport⁻¹ (λ - → ⟨ ⟦ b - ⟧₁ ⟩) (ℕ-to-ℕ∞-lc p) (map₃₁ (b i) x) map₃₁-is-order-preserving : (b : B) → is-order-preserving [ ⟦ b ⟧₃ ] [ ⟦ b ⟧₁ ] (map₃₁ b) map₃₁-is-order-preserving (S b) (inl x) (inl y) l = inr (refl , (map₃₁-is-order-preserving b x y l)) map₃₁-is-order-preserving (S b) (inl x) (inr y) ⋆ = inl ⋆ map₃₁-is-order-preserving (L b) (i , x) (j , y) (inl l) = inl (ℕ-to-ℕ∞-order-preserving i j l) map₃₁-is-order-preserving (L b) (i , x) (.i , y) (inr (refl , m)) = inr (refl , (i , refl) , γ) where IH : map₃₁ (b i) x ≺⟨ ⟦ b i ⟧₁ ⟩ map₃₁ (b i) y IH = map₃₁-is-order-preserving (b i) x y m γ : transport⁻¹ (λ - → ⟨ ⟦ b - ⟧₁ ⟩) (ℕ-to-ℕ∞-lc refl) (map₃₁ (b i) x) ≺⟨ ⟦ b i ⟧₁ ⟩ transport⁻¹ (λ - → ⟨ ⟦ b - ⟧₁ ⟩) (ℕ-to-ℕ∞-lc refl) (map₃₁ (b i) y) γ = transport⁻¹ (λ r → transport⁻¹ (λ - → ⟨ ⟦ b - ⟧₁ ⟩) r (map₃₁ (b i) x) ≺⟨ ⟦ b i ⟧₁ ⟩ transport⁻¹ (λ - → ⟨ ⟦ b - ⟧₁ ⟩) r (map₃₁ (b i) y)) (ℕ-to-ℕ∞-lc-refl i) IH comparison₃₁ : EM 𝓤₁ → (b : B) → [ ⟦ b ⟧₃ ] ⊴ [ ⟦ b ⟧₁ ] comparison₃₁ em b = ≼-gives-⊴ _ _ (order-preserving-gives-≼ em _ _ (map₃₁ b , map₃₁-is-order-preserving b)) \end{code} This completes the promised comparisons. We also have: \begin{code} map₁₂ : (b : B) → ⟨ ⟦ b ⟧₁ ⟩ → ⟨ ⟦ b ⟧₂ ⟩ map₁₂ Z x = x map₁₂ (S b) (inl ⋆ , x) = inl (map₁₂ b x) map₁₂ (S b) (inr ⋆ , y) = inr ⋆ map₁₂ (L b) (u , f) = sum-to-sup (extension (λ i → ⟦ b i ⟧₂)) (u , g) where g : ((i , _) : fiber ℕ-to-ℕ∞ u) → ⟨ ⟦ b i ⟧₂ ⟩ g (i , p) = map₁₂ (b i) (f (i , p)) \end{code} Question. Is the function map₁₂ a surjection?