Martin Escardo, August 2018 The ordinal of ordinals. Based on the HoTT Book, with a few modifications in some of the definitions and arguments. This is an example where we are studying sets only, but the univalence axiom is used to show that (1) the type of ordinals forms a (large) set, (2) its order is extensional, (3) hence it is itself a (large) ordinal, (4) the type of ordinals is locally small. \begin{code} {-# OPTIONS --safe --without-K #-} open import UF.Univalence module Ordinals.OrdinalOfOrdinals (ua : Univalence) where open import MLTT.Spartan open import Ordinals.Equivalence open import Ordinals.Maps open import Ordinals.Notions open import Ordinals.Type open import Ordinals.Underlying open import UF.Base open import UF.Embeddings open import UF.Equiv open import UF.EquivalenceExamples open import UF.FunExt open import UF.Subsingletons open import UF.UA-FunExt private fe : FunExt fe = Univalence-gives-FunExt ua fe' : Fun-Ext fe' {𝓤} {𝓥} = fe 𝓤 𝓥 \end{code} The simulations make the ordinals into a poset: \begin{code} _⊴_ : Ordinal 𝓤 → Ordinal 𝓥 → 𝓤 ⊔ 𝓥 ̇ α ⊴ β = Σ f ꞉ (⟨ α ⟩ → ⟨ β ⟩) , is-simulation α β f [_,_]⟨_⟩ : (α : Ordinal 𝓤) (β : Ordinal 𝓥) → α ⊴ β → ⟨ α ⟩ → ⟨ β ⟩ [ α , β ]⟨ f ⟩ = pr₁ f ⊴-gives-↪ : (α : Ordinal 𝓤) (β : Ordinal 𝓥) → α ⊴ β → ⟨ α ⟩ ↪ ⟨ β ⟩ ⊴-gives-↪ α β (f , s) = f , simulations-are-embeddings fe α β f s ⊴-is-prop-valued : (α : Ordinal 𝓤) (β : Ordinal 𝓥) → is-prop (α ⊴ β) ⊴-is-prop-valued {𝓤} {𝓥} α β (f , s) (g , t) = to-subtype-= (being-simulation-is-prop fe' α β) (dfunext fe' (at-most-one-simulation α β f g s t)) ⊴-refl : (α : Ordinal 𝓤) → α ⊴ α ⊴-refl α = id , (λ x z l → z , l , refl) , (λ x y l → l) ⊴-trans : (α : Ordinal 𝓤) (β : Ordinal 𝓥) (γ : Ordinal 𝓦) → α ⊴ β → β ⊴ γ → α ⊴ γ ⊴-trans α β γ (f , i , p) (g , j , q) = g ∘ f , k , (λ x y l → q (f x) (f y) (p x y l)) where k : (x : ⟨ α ⟩) (z : ⟨ γ ⟩) → z ≺⟨ γ ⟩ (g (f x)) → Σ x' ꞉ ⟨ α ⟩ , (x' ≺⟨ α ⟩ x) × (g (f x') = z) k x z l = pr₁ b , pr₁ (pr₂ b) , (ap g (pr₂ (pr₂ b)) ∙ pr₂ (pr₂ a)) where a : Σ y ꞉ ⟨ β ⟩ , (y ≺⟨ β ⟩ f x) × (g y = z) a = j (f x) z l y : ⟨ β ⟩ y = pr₁ a b : Σ x' ꞉ ⟨ α ⟩ , (x' ≺⟨ α ⟩ x) × (f x' = y) b = i x y (pr₁ (pr₂ a)) ≃ₒ-to-⊴ : (α : Ordinal 𝓤) (β : Ordinal 𝓥) → α ≃ₒ β → α ⊴ β ≃ₒ-to-⊴ α β (f , e) = (f , order-equivs-are-simulations α β f e) ordinal-equiv-gives-bisimilarity : (α : Ordinal 𝓤) (β : Ordinal 𝓥) → α ≃ₒ β → (α ⊴ β) × (β ⊴ α) ordinal-equiv-gives-bisimilarity α β (f , p , e , q) = γ where g : ⟨ β ⟩ → ⟨ α ⟩ g = ⌜ f , e ⌝⁻¹ d : is-equiv g d = ⌜⌝-is-equiv (≃-sym (f , e)) γ : (α ⊴ β) × (β ⊴ α) γ = (f , order-equivs-are-simulations α β f (p , e , q)) , (g , order-equivs-are-simulations β α g (q , d , p)) bisimilarity-gives-ordinal-equiv : (α : Ordinal 𝓤) (β : Ordinal 𝓥) → α ⊴ β → β ⊴ α → α ≃ₒ β bisimilarity-gives-ordinal-equiv α β (f , s) (g , t) = γ where ηs : is-simulation β β (f ∘ g) ηs = pr₂ (⊴-trans β α β (g , t) (f , s)) η : (y : ⟨ β ⟩) → f (g y) = y η = at-most-one-simulation β β (f ∘ g) id ηs (pr₂ (⊴-refl β)) εs : is-simulation α α (g ∘ f) εs = pr₂ (⊴-trans α β α (f , s) (g , t)) ε : (x : ⟨ α ⟩) → g (f x) = x ε = at-most-one-simulation α α (g ∘ f) id εs (pr₂ (⊴-refl α)) γ : α ≃ₒ β γ = f , pr₂ s , qinvs-are-equivs f (g , ε , η) , pr₂ t \end{code} A corollary of the above is that the ordinal order _⊴_ is antisymmetric. \begin{code} ⊴-antisym : (α β : Ordinal 𝓤) → α ⊴ β → β ⊴ α → α = β ⊴-antisym α β l m = eqtoidₒ (ua _) fe' α β (bisimilarity-gives-ordinal-equiv α β l m) \end{code} Any lower set α ↓ a of a point a : ⟨ α ⟩ forms a (sub-)ordinal: \begin{code} _↓_ : (α : Ordinal 𝓤) → ⟨ α ⟩ → Ordinal 𝓤 α ↓ a = (Σ x ꞉ ⟨ α ⟩ , x ≺⟨ α ⟩ a) , _<_ , p , w , e , t where _<_ : (Σ x ꞉ ⟨ α ⟩ , x ≺⟨ α ⟩ a) → (Σ x ꞉ ⟨ α ⟩ , x ≺⟨ α ⟩ a) → _ ̇ (y , _) < (z , _) = y ≺⟨ α ⟩ z p : is-prop-valued _<_ p (x , _) (y , _) = Prop-valuedness α x y w : is-well-founded _<_ w (x , l) = f x (Well-foundedness α x) l where f : ∀ x → is-accessible (underlying-order α) x → ∀ l → is-accessible _<_ (x , l) f x (acc s) l = acc (λ σ m → f (pr₁ σ) (s (pr₁ σ) m) (pr₂ σ)) e : is-extensional _<_ e (x , l) (y , m) f g = to-subtype-= (λ z → Prop-valuedness α z a) (Extensionality α x y (λ u n → f (u , Transitivity α u x a n l) n) (λ u n → g (u , Transitivity α u y a n m) n)) t : is-transitive _<_ t (x , _) (y , _) (z , _) = Transitivity α x y z segment-inclusion : (α : Ordinal 𝓤) (a : ⟨ α ⟩) → ⟨ α ↓ a ⟩ → ⟨ α ⟩ segment-inclusion α a = pr₁ segment-inclusion-bound : (α : Ordinal 𝓤) (a : ⟨ α ⟩) → (x : ⟨ α ↓ a ⟩) → segment-inclusion α a x ≺⟨ α ⟩ a segment-inclusion-bound α a = pr₂ segment-inclusion-is-simulation : (α : Ordinal 𝓤) (a : ⟨ α ⟩) → is-simulation (α ↓ a) α (segment-inclusion α a) segment-inclusion-is-simulation α a = i , p where i : is-initial-segment (α ↓ a) α (segment-inclusion α a) i (x , l) y m = (y , Transitivity α y x a m l) , m , refl p : is-order-preserving (α ↓ a) α (segment-inclusion α a) p x x' = id segment-⊴ : (α : Ordinal 𝓤) (a : ⟨ α ⟩) → (α ↓ a) ⊴ α segment-⊴ α a = segment-inclusion α a , segment-inclusion-is-simulation α a ↓-⊴-lc : (α : Ordinal 𝓤) (a b : ⟨ α ⟩) → (α ↓ a) ⊴ (α ↓ b ) → a ≼⟨ α ⟩ b ↓-⊴-lc {𝓤} α a b (f , s) u l = n where h : segment-inclusion α a ∼ segment-inclusion α b ∘ f h = at-most-one-simulation (α ↓ a) α (segment-inclusion α a) (segment-inclusion α b ∘ f) (segment-inclusion-is-simulation α a) (pr₂ (⊴-trans (α ↓ a) (α ↓ b) α (f , s) (segment-⊴ α b))) v : ⟨ α ⟩ v = segment-inclusion α b (f (u , l)) m : v ≺⟨ α ⟩ b m = segment-inclusion-bound α b (f (u , l)) q : u = v q = h (u , l) n : u ≺⟨ α ⟩ b n = transport⁻¹ (λ - → - ≺⟨ α ⟩ b) q m ↓-lc : (α : Ordinal 𝓤) (a b : ⟨ α ⟩) → α ↓ a = α ↓ b → a = b ↓-lc α a b p = Extensionality α a b (↓-⊴-lc α a b (transport (λ - → (α ↓ a) ⊴ -) p (⊴-refl (α ↓ a)))) (↓-⊴-lc α b a (transport⁻¹ (λ - → (α ↓ b) ⊴ -) p (⊴-refl (α ↓ b)))) ↓-is-embedding : (α : Ordinal 𝓤) → is-embedding (α ↓_) ↓-is-embedding α = lc-maps-into-sets-are-embeddings (α ↓_) (↓-lc α _ _) (the-type-of-ordinals-is-a-set (ua _) fe') \end{code} We are now ready to make the type of ordinals into an ordinal. \begin{code} _⊲_ : Ordinal 𝓤 → Ordinal 𝓤 → 𝓤 ⁺ ̇ α ⊲ β = Σ b ꞉ ⟨ β ⟩ , α = (β ↓ b) ⊲-is-prop-valued : (α β : Ordinal 𝓤) → is-prop (α ⊲ β) ⊲-is-prop-valued {𝓤} α β (b , p) (b' , p') = γ where q = (β ↓ b) =⟨ p ⁻¹ ⟩ α =⟨ p' ⟩ (β ↓ b') ∎ r : b = b' r = ↓-lc β b b' q γ : (b , p) = (b' , p') γ = to-subtype-= (λ x → the-type-of-ordinals-is-a-set (ua 𝓤) fe') r \end{code} NB. We could instead define α ⊲ β to mean that we have b with α ≃ₒ (β ↓ b), or with α ⊴ (β ↓ b) and (β ↓ b) ⊴ α, by antisymmetry, and these two alternative, equivalent, definitions make ⊲ to have values in the universe 𝓤 rather than the next universe 𝓤 ⁺. Added 23 December 2020. The previous observation turns out to be useful to resize down the relation _⊲_ in certain applications. So we make it official: \begin{code} _⊲⁻_ : Ordinal 𝓤 → Ordinal 𝓥 → 𝓤 ⊔ 𝓥 ̇ α ⊲⁻ β = Σ b ꞉ ⟨ β ⟩ , α ≃ₒ (β ↓ b) ⊲-is-equivalent-to-⊲⁻ : (α β : Ordinal 𝓤) → (α ⊲ β) ≃ (α ⊲⁻ β) ⊲-is-equivalent-to-⊲⁻ α β = Σ-cong (λ (b : ⟨ β ⟩) → UAₒ-≃ (ua _) fe' α (β ↓ b)) \end{code} Back to the past. A lower set of a lower set is a lower set: \begin{code} iterated-↓ : (α : Ordinal 𝓤) (a b : ⟨ α ⟩) (l : b ≺⟨ α ⟩ a) → ((α ↓ a ) ↓ (b , l)) = (α ↓ b) iterated-↓ α a b l = ⊴-antisym ((α ↓ a) ↓ (b , l)) (α ↓ b) (φ α a b l) (ψ α a b l) where φ : (α : Ordinal 𝓤) (b u : ⟨ α ⟩) (l : u ≺⟨ α ⟩ b) → ((α ↓ b ) ↓ (u , l)) ⊴ (α ↓ u) φ α b u l = f , i , p where f : ⟨ (α ↓ b) ↓ (u , l) ⟩ → ⟨ α ↓ u ⟩ f ((x , m) , n) = x , n i : (w : ⟨ (α ↓ b) ↓ (u , l) ⟩) (t : ⟨ α ↓ u ⟩) → t ≺⟨ α ↓ u ⟩ f w → Σ w' ꞉ ⟨ (α ↓ b) ↓ (u , l) ⟩ , (w' ≺⟨ (α ↓ b) ↓ (u , l) ⟩ w) × (f w' = t) i ((x , m) , n) (x' , m') n' = ((x' , Transitivity α x' u b m' l) , m') , (n' , refl) p : (w w' : ⟨ (α ↓ b) ↓ (u , l) ⟩) → w ≺⟨ (α ↓ b) ↓ (u , l) ⟩ w' → f w ≺⟨ α ↓ u ⟩ (f w') p w w' = id ψ : (α : Ordinal 𝓤) (b u : ⟨ α ⟩) (l : u ≺⟨ α ⟩ b) → (α ↓ u) ⊴ ((α ↓ b ) ↓ (u , l)) ψ α b u l = f , (i , p) where f : ⟨ α ↓ u ⟩ → ⟨ (α ↓ b) ↓ (u , l) ⟩ f (x , n) = ((x , Transitivity α x u b n l) , n) i : (t : ⟨ α ↓ u ⟩) (w : ⟨ (α ↓ b) ↓ (u , l) ⟩) → w ≺⟨ (α ↓ b) ↓ (u , l) ⟩ f t → Σ t' ꞉ ⟨ α ↓ u ⟩ , (t' ≺⟨ α ↓ u ⟩ t) × (f t' = w) i (x , n) ((x' , m') , n') o = (x' , n') , (o , r) where r : ((x' , Transitivity α x' u b n' l) , n') = (x' , m') , n' r = ap (λ - → ((x' , -) , n')) (Prop-valuedness α x' b (Transitivity α x' u b n' l) m') p : (t t' : ⟨ α ↓ u ⟩) → t ≺⟨ α ↓ u ⟩ t' → f t ≺⟨ (α ↓ b) ↓ (u , l) ⟩ f t' p t t' = id \end{code} Therefore the map (α ↓ -) reflects and preserves order: \begin{code} ↓-reflects-order : (α : Ordinal 𝓤) (a b : ⟨ α ⟩) → (α ↓ a) ⊲ (α ↓ b) → a ≺⟨ α ⟩ b ↓-reflects-order α a b ((u , l) , p) = γ where have : type-of l = (u ≺⟨ α ⟩ b) have = refl q : (α ↓ a) = (α ↓ u) q = (α ↓ a) =⟨ p ⟩ ((α ↓ b) ↓ (u , l)) =⟨ iterated-↓ α b u l ⟩ (α ↓ u) ∎ r : a = u r = ↓-lc α a u q γ : a ≺⟨ α ⟩ b γ = transport⁻¹ (λ - → - ≺⟨ α ⟩ b) r l ↓-preserves-order : (α : Ordinal 𝓤) (a b : ⟨ α ⟩) → a ≺⟨ α ⟩ b → (α ↓ a) ⊲ (α ↓ b) ↓-preserves-order α a b l = (a , l) , ((iterated-↓ α b a l)⁻¹) \end{code} It remains to show that _⊲_ is a well-order: \begin{code} ↓-accessible : (α : Ordinal 𝓤) (a : ⟨ α ⟩) → is-accessible _⊲_ (α ↓ a) ↓-accessible {𝓤} α a = f a (Well-foundedness α a) where f : (a : ⟨ α ⟩) → is-accessible (underlying-order α) a → is-accessible _⊲_ (α ↓ a) f a (acc s) = acc g where IH : (b : ⟨ α ⟩) → b ≺⟨ α ⟩ a → is-accessible _⊲_ (α ↓ b) IH b l = f b (s b l) g : (β : Ordinal 𝓤) → β ⊲ (α ↓ a) → is-accessible _⊲_ β g β ((b , l) , p) = transport⁻¹ (is-accessible _⊲_) q (IH b l) where q : β = (α ↓ b) q = p ∙ iterated-↓ α a b l ⊲-is-well-founded : is-well-founded (_⊲_ {𝓤}) ⊲-is-well-founded {𝓤} α = acc g where g : (β : Ordinal 𝓤) → β ⊲ α → is-accessible _⊲_ β g β (b , p) = transport⁻¹ (is-accessible _⊲_) p (↓-accessible α b) ⊲-is-extensional : is-extensional (_⊲_ {𝓤}) ⊲-is-extensional α β f g = ⊴-antisym α β ((λ x → pr₁ (φ x)) , i , p) ((λ y → pr₁ (γ y)) , j , q) where φ : (x : ⟨ α ⟩) → Σ y ꞉ ⟨ β ⟩ , α ↓ x = β ↓ y φ x = f (α ↓ x) (x , refl) γ : (y : ⟨ β ⟩) → Σ x ꞉ ⟨ α ⟩ , β ↓ y = α ↓ x γ y = g (β ↓ y) (y , refl) η : (x : ⟨ α ⟩) → pr₁ (γ (pr₁ (φ x))) = x η x = (↓-lc α x (pr₁ (γ (pr₁ (φ x)))) a)⁻¹ where a : (α ↓ x) = (α ↓ pr₁ (γ (pr₁ (φ x)))) a = pr₂ (φ x) ∙ pr₂ (γ (pr₁ (φ x))) ε : (y : ⟨ β ⟩) → pr₁ (φ (pr₁ (γ y))) = y ε y = (↓-lc β y (pr₁ (φ (pr₁ (γ y)))) a)⁻¹ where a : (β ↓ y) = (β ↓ pr₁ (φ (pr₁ (γ y)))) a = pr₂ (γ y) ∙ pr₂ (φ (pr₁ (γ y))) p : is-order-preserving α β (λ x → pr₁ (φ x)) p x x' l = ↓-reflects-order β (pr₁ (φ x)) (pr₁ (φ x')) b where a : (α ↓ x) ⊲ (α ↓ x') a = ↓-preserves-order α x x' l b : (β ↓ pr₁ (φ x)) ⊲ (β ↓ pr₁ (φ x')) b = transport₂ _⊲_ (pr₂ (φ x)) (pr₂ (φ x')) a q : is-order-preserving β α (λ y → pr₁ (γ y)) q y y' l = ↓-reflects-order α (pr₁ (γ y)) (pr₁ (γ y')) b where a : (β ↓ y) ⊲ (β ↓ y') a = ↓-preserves-order β y y' l b : (α ↓ pr₁ (γ y)) ⊲ (α ↓ pr₁ (γ y')) b = transport₂ _⊲_ (pr₂ (γ y)) (pr₂ (γ y')) a i : is-initial-segment α β (λ x → pr₁ (φ x)) i x y l = pr₁ (γ y) , transport (λ - → pr₁ (γ y) ≺⟨ α ⟩ -) (η x) a , ε y where a : pr₁ (γ y) ≺⟨ α ⟩ (pr₁ (γ (pr₁ (φ x)))) a = q y (pr₁ (φ x)) l j : is-initial-segment β α (λ y → pr₁ (γ y)) j y x l = pr₁ (φ x) , transport (λ - → pr₁ (φ x) ≺⟨ β ⟩ -) (ε y) a , η x where a : pr₁ (φ x) ≺⟨ β ⟩ (pr₁ (φ (pr₁ (γ y)))) a = p x (pr₁ (γ y)) l ⊲-is-transitive : is-transitive (_⊲_ {𝓤}) ⊲-is-transitive {𝓤} α β φ (a , p) (b , q) = γ where t : (q : β = (φ ↓ b)) → (β ↓ a) = ((φ ↓ b) ↓ transport ⟨_⟩ q a) t refl = refl u : ⟨ φ ↓ b ⟩ u = transport (⟨_⟩) q a c : ⟨ φ ⟩ c = pr₁ u l : c ≺⟨ φ ⟩ b l = pr₂ u r : α = (φ ↓ c) r = α =⟨ p ⟩ (β ↓ a) =⟨ t q ⟩ ((φ ↓ b) ↓ u) =⟨ iterated-↓ φ b c l ⟩ (φ ↓ c) ∎ γ : Σ c ꞉ ⟨ φ ⟩ , α = (φ ↓ c) γ = c , r ⊲-is-well-order : is-well-order (_⊲_ {𝓤}) ⊲-is-well-order = ⊲-is-prop-valued , ⊲-is-well-founded , ⊲-is-extensional , ⊲-is-transitive \end{code} We denote the ordinal of ordinals in the universe 𝓤 by OO 𝓤. It lives in the next universe 𝓤 ⁺. \begin{code} OO : (𝓤 : Universe) → Ordinal (𝓤 ⁺) OO 𝓤 = Ordinal 𝓤 , _⊲_ , ⊲-is-well-order \end{code} Any ordinal in OO 𝓤 is embedded in OO 𝓤 as an initial segment: \begin{code} ordinals-in-OO-are-embedded-in-OO : (α : ⟨ OO 𝓤 ⟩) → α ⊴ OO 𝓤 ordinals-in-OO-are-embedded-in-OO {𝓤} α = (λ x → α ↓ x) , i , ↓-preserves-order α where i : is-initial-segment α (OO 𝓤) (λ x → α ↓ x) i x β ((u , l) , p) = u , l , ((p ∙ iterated-↓ α x u l)⁻¹) OO-⊴-next-OO : OO 𝓤 ⊴ OO (𝓤 ⁺) OO-⊴-next-OO {𝓤} = ordinals-in-OO-are-embedded-in-OO (OO 𝓤) ordinals-are-embedded-in-Ordinal : (α : Ordinal 𝓤) → ⟨ α ⟩ ↪ Ordinal 𝓤 ordinals-are-embedded-in-Ordinal {𝓤} α = ⊴-gives-↪ α (OO 𝓤) (ordinals-in-OO-are-embedded-in-OO α) Ordinal-embedded-in-next-Ordinal : Ordinal 𝓤 ↪ Ordinal (𝓤 ⁺) Ordinal-embedded-in-next-Ordinal {𝓤} = ordinals-are-embedded-in-Ordinal (OO 𝓤) \end{code} Any ordinal in OO 𝓤 is a lower set of OO 𝓤: \begin{code} ordinals-in-OO-are-lowersets-of-OO : (α : ⟨ OO 𝓤 ⟩) → α ≃ₒ (OO 𝓤 ↓ α) ordinals-in-OO-are-lowersets-of-OO {𝓤} α = f , p , ((g , η) , (g , ε)) , q where f : ⟨ α ⟩ → ⟨ OO 𝓤 ↓ α ⟩ f x = α ↓ x , x , refl p : is-order-preserving α (OO 𝓤 ↓ α) f p x y l = (x , l) , ((iterated-↓ α y x l)⁻¹) g : ⟨ OO 𝓤 ↓ α ⟩ → ⟨ α ⟩ g (β , x , r) = x η : (σ : ⟨ OO 𝓤 ↓ α ⟩) → f (g σ) = σ η (.(α ↓ x) , x , refl) = refl ε : (x : ⟨ α ⟩) → g (f x) = x ε x = refl q : is-order-preserving (OO 𝓤 ↓ α) α g q (.(α ↓ x) , x , refl) (.(α ↓ x') , x' , refl) = ↓-reflects-order α x x' \end{code} Added 19-20 January 2021. The partial order _⊴_ is equivalent to _≼_. We first observe that, almost tautologically, the relation α ≼ β is logically equivalent to the condition (a : ⟨ α ⟩) → (α ↓ a) ⊲ β. \begin{code} _≼_ _≾_ : Ordinal 𝓤 → Ordinal 𝓤 → 𝓤 ⁺ ̇ α ≼ β = α ≼⟨ OO _ ⟩ β α ≾ β = ¬ (β ≼ α) to-≼ : {α β : Ordinal 𝓤} → ((a : ⟨ α ⟩) → (α ↓ a) ⊲ β) → α ≼ β to-≼ {𝓤} {α} {β} ϕ α' (a , p) = m where l : (α ↓ a) ⊲ β l = ϕ a m : α' ⊲ β m = transport (_⊲ β) (p ⁻¹) l from-≼ : {α β : Ordinal 𝓤} → α ≼ β → (a : ⟨ α ⟩) → (α ↓ a) ⊲ β from-≼ {𝓤} {α} {β} l a = l (α ↓ a) m where m : (α ↓ a) ⊲ α m = (a , refl) ⊴-gives-≼ : (α β : Ordinal 𝓤) → α ⊴ β → α ≼ β ⊴-gives-≼ α β (f , f-is-initial-segment , f-is-order-preserving) α' (a , p) = l where f-is-simulation : is-simulation α β f f-is-simulation = f-is-initial-segment , f-is-order-preserving g : ⟨ α ↓ a ⟩ → ⟨ β ↓ f a ⟩ g (x , l) = f x , f-is-order-preserving x a l h : ⟨ β ↓ f a ⟩ → ⟨ α ↓ a ⟩ h (y , m) = pr₁ σ , pr₁ (pr₂ σ) where σ : Σ x ꞉ ⟨ α ⟩ , (x ≺⟨ α ⟩ a) × (f x = y) σ = f-is-initial-segment a y m η : h ∘ g ∼ id η (x , l) = to-subtype-= (λ - → Prop-valuedness α - a) r where σ : Σ x' ꞉ ⟨ α ⟩ , (x' ≺⟨ α ⟩ a) × (f x' = f x) σ = f-is-initial-segment a (f x) (f-is-order-preserving x a l) x' = pr₁ σ have : pr₁ (h (g (x , l))) = x' have = refl s : f x' = f x s = pr₂ (pr₂ σ) r : x' = x r = simulations-are-lc α β f f-is-simulation s ε : g ∘ h ∼ id ε (y , m) = to-subtype-= (λ - → Prop-valuedness β - (f a)) r where r : f (pr₁ (f-is-initial-segment a y m)) = y r = pr₂ (pr₂ (f-is-initial-segment a y m)) g-is-order-preserving : is-order-preserving (α ↓ a) (β ↓ f a) g g-is-order-preserving (x , _) (x' , _) = f-is-order-preserving x x' h-is-order-preserving : is-order-preserving (β ↓ f a) (α ↓ a) h h-is-order-preserving (y , m) (y' , m') l = o where have : y ≺⟨ β ⟩ y' have = l σ = f-is-initial-segment a y m σ' = f-is-initial-segment a y' m' x = pr₁ σ x' = pr₁ σ' s : f x = y s = pr₂ (pr₂ σ) s' : f x' = y' s' = pr₂ (pr₂ σ') t : f x ≺⟨ β ⟩ f x' t = transport₂ (λ y y' → y ≺⟨ β ⟩ y') (s ⁻¹) (s' ⁻¹) l o : x ≺⟨ α ⟩ x' o = simulations-are-order-reflecting α β f f-is-simulation x x' t q : (α ↓ a) = (β ↓ f a) q = eqtoidₒ (ua _) fe' (α ↓ a) (β ↓ f a) (g , g-is-order-preserving , qinvs-are-equivs g (h , η , ε) , h-is-order-preserving) l : α' ⊲ β l = transport (_⊲ β) (p ⁻¹) (f a , q) \end{code} For the converse of the above, it suffices to show the following: \begin{code} to-⊴ : (α β : Ordinal 𝓤) → ((a : ⟨ α ⟩) → (α ↓ a) ⊲ β) → α ⊴ β to-⊴ α β ϕ = g where f : ⟨ α ⟩ → ⟨ β ⟩ f a = pr₁ (ϕ a) f-property : (a : ⟨ α ⟩) → (α ↓ a) = (β ↓ f a) f-property a = pr₂ (ϕ a) f-is-order-preserving : is-order-preserving α β f f-is-order-preserving a a' l = o where m : (α ↓ a) ⊲ (α ↓ a') m = ↓-preserves-order α a a' l n : (β ↓ f a) ⊲ (β ↓ f a') n = transport₂ _⊲_ (f-property a) (f-property a') m o : f a ≺⟨ β ⟩ f a' o = ↓-reflects-order β (f a) (f a') n f-is-initial-segment : (x : ⟨ α ⟩) (y : ⟨ β ⟩) → y ≺⟨ β ⟩ f x → Σ x' ꞉ ⟨ α ⟩ , (x' ≺⟨ α ⟩ x) × (f x' = y) f-is-initial-segment x y l = x' , o , (q ⁻¹) where m : (β ↓ y) ⊲ (β ↓ f x) m = ↓-preserves-order β y (f x) l n : (β ↓ y) ⊲ (α ↓ x) n = transport ((β ↓ y) ⊲_) ((f-property x)⁻¹) m x' : ⟨ α ⟩ x' = pr₁ (pr₁ n) o : x' ≺⟨ α ⟩ x o = pr₂ (pr₁ n) p = (β ↓ y) =⟨ pr₂ n ⟩ ((α ↓ x) ↓ (x' , o)) =⟨ iterated-↓ α x x' o ⟩ (α ↓ x') =⟨ f-property x' ⟩ (β ↓ f x') ∎ q : y = f x' q = ↓-lc β y (f x') p g : α ⊴ β g = f , f-is-initial-segment , f-is-order-preserving ≼-gives-⊴ : (α β : Ordinal 𝓤) → α ≼ β → α ⊴ β ≼-gives-⊴ {𝓤} α β l = to-⊴ α β (from-≼ l) ⊲-gives-≼ : (α β : Ordinal 𝓤) → α ⊲ β → α ≼ β ⊲-gives-≼ {𝓤} α β l α' m = Transitivity (OO 𝓤) α' α β m l ⊲-gives-⊴ : (α β : Ordinal 𝓤) → α ⊲ β → α ⊴ β ⊲-gives-⊴ α β l = ≼-gives-⊴ α β (⊲-gives-≼ α β l) \end{code} Added 9 September 2024 by Tom de Jong and Fredrik Nordvall Forsberg. \begin{code} ⊲-⊴-gives-⊲ : (α β γ : Ordinal 𝓤) → α ⊲ β → β ⊴ γ → α ⊲ γ ⊲-⊴-gives-⊲ α β γ l k = ≼-trans _⊲_ (⊴-gives-≼ β γ k) (≼-refl _⊲_) α l \end{code} Transfinite induction on the ordinal of ordinals: \begin{code} transfinite-induction-on-OO : (P : Ordinal 𝓤 → 𝓥 ̇ ) → ((α : Ordinal 𝓤) → ((a : ⟨ α ⟩) → P (α ↓ a)) → P α) → (α : Ordinal 𝓤) → P α transfinite-induction-on-OO {𝓤} {𝓥} P f = Transfinite-induction (OO 𝓤) P f' where f' : (α : Ordinal 𝓤) → ((α' : Ordinal 𝓤) → α' ⊲ α → P α') → P α f' α g = f α (λ a → g (α ↓ a) (a , refl)) transfinite-recursion-on-OO : (X : 𝓥 ̇ ) → ((α : Ordinal 𝓤) → (⟨ α ⟩ → X) → X) → Ordinal 𝓤 → X transfinite-recursion-on-OO {𝓤} {𝓥} X = transfinite-induction-on-OO (λ _ → X) has-minimal-element : Ordinal 𝓤 → 𝓤 ̇ has-minimal-element α = Σ a ꞉ ⟨ α ⟩ , ((x : ⟨ α ⟩) → a ≾⟨ α ⟩ x) has-no-minimal-element : Ordinal 𝓤 → 𝓤 ̇ has-no-minimal-element α = ((a : ⟨ α ⟩) → ¬¬ (Σ x ꞉ ⟨ α ⟩ , x ≺⟨ α ⟩ a)) ordinal-with-no-minimal-element-is-empty : (α : Ordinal 𝓤) → has-no-minimal-element α → is-empty ⟨ α ⟩ ordinal-with-no-minimal-element-is-empty {𝓤} = transfinite-induction-on-OO P ϕ where P : Ordinal 𝓤 → 𝓤 ̇ P α = has-no-minimal-element α → is-empty ⟨ α ⟩ ϕ : (α : Ordinal 𝓤) → ((a : ⟨ α ⟩) → P (α ↓ a)) → P α ϕ α f g x = g x (f x h) where h : has-no-minimal-element (α ↓ x) h (y , l) u = g y (contrapositive k u) where k : ⟨ α ↓ y ⟩ → ⟨ (α ↓ x) ↓ (y , l) ⟩ k (z , m) = (z , o) , m where o : z ≺⟨ α ⟩ x o = Transitivity α z y x m l non-empty-classically-has-minimal-element : (α : Ordinal 𝓤) → is-nonempty ⟨ α ⟩ → ¬¬ has-minimal-element α non-empty-classically-has-minimal-element {𝓤} α n = iv where i : ¬ has-no-minimal-element α i = contrapositive (ordinal-with-no-minimal-element-is-empty α) n ii : ¬¬ (Σ a ꞉ ⟨ α ⟩ , ¬ (Σ x ꞉ ⟨ α ⟩ , x ≺⟨ α ⟩ a)) ii = not-Π-not-not-implies-not-not-Σ-not i iii : (Σ a ꞉ ⟨ α ⟩ , ¬ (Σ x ꞉ ⟨ α ⟩ , x ≺⟨ α ⟩ a)) → (Σ a ꞉ ⟨ α ⟩ , ((x : ⟨ α ⟩) → a ≾⟨ α ⟩ x)) iii (a , n) = a , not-Σ-implies-Π-not n iv : ¬¬ (Σ a ꞉ ⟨ α ⟩ , ((x : ⟨ α ⟩) → a ≾⟨ α ⟩ x)) iv = ¬¬-functor iii ii NB-minimal : (α : Ordinal 𝓤) (a : ⟨ α ⟩) → ((x : ⟨ α ⟩) → a ≾⟨ α ⟩ x) ↔ ((x : ⟨ α ⟩) → a ≼⟨ α ⟩ x) NB-minimal α a = f , g where f : ((x : ⟨ α ⟩) → a ≾⟨ α ⟩ x) → ((x : ⟨ α ⟩) → a ≼⟨ α ⟩ x) f h x u l = 𝟘-elim (h u l) g : ((x : ⟨ α ⟩) → a ≼⟨ α ⟩ x) → ((x : ⟨ α ⟩) → a ≾⟨ α ⟩ x) g k x m = irrefl α x (k x x m) \end{code} Added 2nd May 2022. \begin{code} order-preserving-gives-not-⊲ : (α β : Ordinal 𝓤) → (Σ f ꞉ (⟨ α ⟩ → ⟨ β ⟩) , is-order-preserving α β f) → ¬ (β ⊲ α) order-preserving-gives-not-⊲ {𝓤} α β σ (x₀ , refl) = γ σ where γ : ¬ (Σ f ꞉ (⟨ α ⟩ → ⟨ α ↓ x₀ ⟩) , is-order-preserving α (α ↓ x₀) f) γ (f , fop) = κ where g : ⟨ α ⟩ → ⟨ α ⟩ g x = pr₁ (f x) h : (x : ⟨ α ⟩) → g x ≺⟨ α ⟩ x₀ h x = pr₂ (f x) δ : (n : ℕ) → (g ^ succ n) x₀ ≺⟨ α ⟩ (g ^ n) x₀ δ 0 = h x₀ δ (succ n) = fop _ _ (δ n) A : ⟨ α ⟩ → 𝓤 ̇ A x = Σ n ꞉ ℕ , (g ^ n) x₀ = x d : (x : ⟨ α ⟩) → A x → Σ y ꞉ ⟨ α ⟩ , (y ≺⟨ α ⟩ x) × A y d x (n , refl) = g x , δ n , succ n , refl κ : 𝟘 κ = no-minimal-is-empty' (underlying-order α) (Well-foundedness α) A d (x₀ , 0 , refl) open import UF.ClassicalLogic order-preserving-gives-≼ : EM (𝓤 ⁺) → (α β : Ordinal 𝓤) → (Σ f ꞉ (⟨ α ⟩ → ⟨ β ⟩) , is-order-preserving α β f) → α ≼ β order-preserving-gives-≼ em α β σ = δ where γ : (α ≼ β) + (β ⊲ α) → α ≼ β γ (inl l) = l γ (inr m) = 𝟘-elim (order-preserving-gives-not-⊲ α β σ m) δ : α ≼ β δ = γ (≼-or-> _⊲_ fe' em ⊲-is-well-order α β) \end{code} Added 7 November 2022 by Tom de Jong. A consequence of the above constructions is that a simulation preserves initial segments in the following sense: \begin{code} simulations-preserve-↓ : (α β : Ordinal 𝓤) ((f , _) : α ⊴ β) → ((a : ⟨ α ⟩) → α ↓ a = β ↓ f a) simulations-preserve-↓ α β 𝕗 a = pr₂ (from-≼ (⊴-gives-≼ α β 𝕗) a) \end{code} Added 31 October 2022 by Tom de Jong. We record the (computational) behaviour of transfinite induction on OO for use in other constructions. \begin{code} transfinite-induction-on-OO-behaviour : (P : Ordinal 𝓤 → 𝓥 ̇ ) → (f : (α : Ordinal 𝓤) → ((a : ⟨ α ⟩) → P (α ↓ a)) → P α) → (α : Ordinal 𝓤) → transfinite-induction-on-OO P f α = f α (λ a → transfinite-induction-on-OO P f (α ↓ a)) transfinite-induction-on-OO-behaviour {𝓤} {𝓥} P f = Transfinite-induction-behaviour fe (OO 𝓤) P f' where f' : (α : Ordinal 𝓤) → ((α' : Ordinal 𝓤) → α' ⊲ α → P α') → P α f' α g = f α (λ a → g (α ↓ a) (a , refl)) transfinite-recursion-on-OO-behaviour : (X : 𝓥 ̇ ) → (f : (α : Ordinal 𝓤) → (⟨ α ⟩ → X) → X) → (α : Ordinal 𝓤) → transfinite-recursion-on-OO X f α = f α (λ a → transfinite-recursion-on-OO X f (α ↓ a)) transfinite-recursion-on-OO-behaviour X f = transfinite-induction-on-OO-behaviour (λ _ → X) f \end{code} Added 1st June 2023 by Martin Escardo. \begin{code} definition-by-transfinite-recursion-on-OO : (X : 𝓥 ̇ ) → (f : (α : Ordinal 𝓤) → (⟨ α ⟩ → X) → X) → Σ h ꞉ (Ordinal 𝓤 → X) , (∀ α → h α = f α (λ a → h (α ↓ a))) definition-by-transfinite-recursion-on-OO X f = transfinite-recursion-on-OO X f , transfinite-recursion-on-OO-behaviour X f definition-by-transfinite-induction-on-OO : (X : Ordinal 𝓤 → 𝓥 ̇ ) → (f : (α : Ordinal 𝓤) → ((a : ⟨ α ⟩) → X (α ↓ a)) → X α) → Σ h ꞉ ((α : Ordinal 𝓤) → X α) , (∀ α → h α = f α (λ a → h (α ↓ a))) definition-by-transfinite-induction-on-OO X f = transfinite-induction-on-OO X f , transfinite-induction-on-OO-behaviour X f \end{code} Added 4 June 2024 at the Hausdorff Reseach Institute for Mathematics (HIM). By Tom de Jong and Fredrik Nordvall Forsberg. Given simulations f : α ⊴ γ and g : β ⊴ γ and points a : α and b : β we have f a ≼ g b ⇔ α ↓ a ⊴ β ↓ b, and f a = g b ⇔ α ↓ a ≃ₒ β ↓ b. \begin{code} initial-segments-⊴-gives-simulations-pointwise-≼ : (α : Ordinal 𝓤) (β : Ordinal 𝓥) (γ : Ordinal 𝓦) (f : α ⊴ γ) (g : β ⊴ γ) (a : ⟨ α ⟩) (b : ⟨ β ⟩) → (α ↓ a) ⊴ (β ↓ b) → [ α , γ ]⟨ f ⟩ a ≼⟨ γ ⟩ [ β , γ ]⟨ g ⟩ b initial-segments-⊴-gives-simulations-pointwise-≼ α β γ 𝕗@(f , f-sim) 𝕘@(g , g-sim) a b 𝕖@(e , e-sim) c c-below-fa = V where I : Σ x ꞉ ⟨ α ⟩ , x ≺⟨ α ⟩ a × (f x = c) I = simulations-are-initial-segments α γ f f-sim a c c-below-fa x : ⟨ α ⟩ x = pr₁ I x-below-a : x ≺⟨ α ⟩ a x-below-a = pr₁ (pr₂ I) fx-equals-c : f x = c fx-equals-c = pr₂ (pr₂ I) II : ⟨ β ↓ b ⟩ II = e (x , x-below-a) y : ⟨ β ⟩ y = pr₁ II y-below-b : y ≺⟨ β ⟩ b y-below-b = pr₂ II \end{code} We now prove that f x = g y by considering the necessarily commutative diagram of simulations α ↓ a ⊴ β ↓ b ⊴ ⊴ α β ⊴ᶠ ᵍ⊵ γ \begin{code} III : f x = g y III = ap (λ - → pr₁ - (x , x-below-a)) sim-commute where sim-commute : ⊴-trans (α ↓ a) α γ (segment-⊴ α a) 𝕗 = ⊴-trans (α ↓ a) (β ↓ b) γ 𝕖 (⊴-trans (β ↓ b) β γ (segment-⊴ β b) 𝕘) sim-commute = ⊴-is-prop-valued (α ↓ a) γ (⊴-trans (α ↓ a) α γ (segment-⊴ α a) 𝕗) (⊴-trans (α ↓ a) (β ↓ b) γ 𝕖 (⊴-trans (β ↓ b) β γ (segment-⊴ β b) 𝕘)) IV : c = g y IV = fx-equals-c ⁻¹ ∙ III V : c ≺⟨ γ ⟩ g b V = transport⁻¹ (λ - → - ≺⟨ γ ⟩ g b) IV (simulations-are-order-preserving β γ g g-sim y b y-below-b) isomorphic-initial-segments-gives-simulations-pointwise-equal : (α : Ordinal 𝓤) (β : Ordinal 𝓥) (γ : Ordinal 𝓦) (f : α ⊴ γ) (g : β ⊴ γ) (a : ⟨ α ⟩) (b : ⟨ β ⟩) → (α ↓ a) ≃ₒ (β ↓ b) → (pr₁ f) a = (pr₁ g) b isomorphic-initial-segments-gives-simulations-pointwise-equal α β γ f g a b e = Extensionality γ (pr₁ f a) (pr₁ g b) I II where I : pr₁ f a ≼⟨ γ ⟩ pr₁ g b I = initial-segments-⊴-gives-simulations-pointwise-≼ α β γ f g a b (≃ₒ-to-⊴ (α ↓ a) (β ↓ b) e) II : pr₁ g b ≼⟨ γ ⟩ pr₁ f a II = initial-segments-⊴-gives-simulations-pointwise-≼ β α γ g f b a (≃ₒ-to-⊴ (β ↓ b) (α ↓ a) (≃ₒ-sym (α ↓ a) (β ↓ b) e)) \end{code} We illustrate the above lemmas by showing that they generalize the left-cancellability of taking initial segments (which was already proved above). \begin{code} ↓-⊴-lc-bis : (α : Ordinal 𝓤) (a b : ⟨ α ⟩) → (α ↓ a) ⊴ (α ↓ b ) → a ≼⟨ α ⟩ b ↓-⊴-lc-bis α = initial-segments-⊴-gives-simulations-pointwise-≼ α α α (⊴-refl α) (⊴-refl α) ↓-lc-bis : (α : Ordinal 𝓤) (a b : ⟨ α ⟩) → (α ↓ a) ≃ₒ (α ↓ b ) → a = b ↓-lc-bis α = isomorphic-initial-segments-gives-simulations-pointwise-equal α α α (⊴-refl α) (⊴-refl α) \end{code} We now prove the converses to the above lemmas. \begin{code} simulations-pointwise-≼-gives-initial-segments-⊴ : (α : Ordinal 𝓤) (β : Ordinal 𝓥) (γ : Ordinal 𝓦) (f : α ⊴ γ) (g : β ⊴ γ) (a : ⟨ α ⟩) (b : ⟨ β ⟩) → (pr₁ f) a ≼⟨ γ ⟩ (pr₁ g) b → (α ↓ a) ⊴ (β ↓ b) simulations-pointwise-≼-gives-initial-segments-⊴ α β γ 𝕗@(f , f-sim) 𝕘@(g , g-sim) a b fa-below-gb = h , h-intial-segment , h-order-preserving where h-prelim : (x : ⟨ α ⟩) → x ≺⟨ α ⟩ a → Σ y ꞉ ⟨ β ⟩ , (y ≺⟨ β ⟩ b) × (g y = f x) h-prelim x l = simulations-are-initial-segments β γ g g-sim b (f x) l' where l' : f x ≺⟨ γ ⟩ g b l' = fa-below-gb (f x) (simulations-are-order-preserving α γ f f-sim x a l) h : ⟨ α ↓ a ⟩ → ⟨ β ↓ b ⟩ h (x , l) = (pr₁ (h-prelim x l) , pr₁ (pr₂ (h-prelim x l))) h̅ : ⟨ α ↓ a ⟩ → ⟨ β ⟩ h̅ = segment-inclusion β b ∘ h h-eq : (x : ⟨ α ⟩) (l : x ≺⟨ α ⟩ a) → g (h̅ (x , l)) = f x h-eq x l = pr₂ (pr₂ (h-prelim x l)) h-order-preserving : is-order-preserving (α ↓ a) (β ↓ b) h h-order-preserving (x , l) (y , k) x-below-y = III where I : f x ≺⟨ γ ⟩ f y I = simulations-are-order-preserving α γ f f-sim x y x-below-y II : g (h̅ (x , l)) ≺⟨ γ ⟩ g (h̅ (y , k)) II = transport₂⁻¹ (underlying-order γ) (h-eq x l) (h-eq y k) I III : h̅ (x , l) ≺⟨ β ⟩ h̅ (y , k) III = simulations-are-order-reflecting β γ g g-sim (h̅ (x , l)) (h̅ (y , k)) II h-intial-segment : is-initial-segment (α ↓ a) (β ↓ b) h h-intial-segment (x , l) (y , k) y-below-hx = (x' , IV) , x'-below-x , V where I : g y ≺⟨ γ ⟩ g (h̅ (x , l)) I = simulations-are-order-preserving β γ g g-sim y (h̅ (x , l)) y-below-hx II : g y ≺⟨ γ ⟩ f x II = transport (λ - → g y ≺⟨ γ ⟩ -) (h-eq x l) I III : Σ x' ꞉ ⟨ α ⟩ , x' ≺⟨ α ⟩ x × (f x' = g y) III = simulations-are-initial-segments α γ f f-sim x (g y) II x' : ⟨ α ⟩ x' = pr₁ III x'-below-x : x' ≺⟨ α ⟩ x x'-below-x = pr₁ (pr₂ III) IV : x' ≺⟨ α ⟩ a IV = Transitivity α x' x a x'-below-x l V : h (x' , IV) = y , k V = to-subtype-= (λ _ → Prop-valuedness β _ b) (simulations-are-lc β γ g g-sim (g (h̅ (x' , IV)) =⟨ h-eq x' IV ⟩ f x' =⟨ pr₂ (pr₂ III) ⟩ g y ∎)) simulations-pointwise-equal-gives-isomorphic-initial-segments : (α : Ordinal 𝓤) (β : Ordinal 𝓥) (γ : Ordinal 𝓦) (f : α ⊴ γ) (g : β ⊴ γ) (a : ⟨ α ⟩) (b : ⟨ β ⟩) → (pr₁ f) a = (pr₁ g) b → (α ↓ a) ≃ₒ (β ↓ b) simulations-pointwise-equal-gives-isomorphic-initial-segments α β γ f g a b eq = bisimilarity-gives-ordinal-equiv (α ↓ a) (β ↓ b) I II where I : (α ↓ a) ⊴ (β ↓ b) I = simulations-pointwise-≼-gives-initial-segments-⊴ α β γ f g a b (≼-refl-= (underlying-order γ) eq) II : (β ↓ b) ⊴ (α ↓ a) II = simulations-pointwise-≼-gives-initial-segments-⊴ β α γ g f b a (≼-refl-= (underlying-order γ) (eq ⁻¹)) \end{code}