Martin Escardo, 29 June 2018 The subtype Ordinalsᵀ of ordinals with a top element. \begin{code} {-# OPTIONS --safe --without-K #-} open import UF.FunExt module Ordinals.ToppedType (fe : FunExt) where open import MLTT.Spartan open import Notation.CanonicalMap open import Ordinals.Notions open import Ordinals.Type open import Ordinals.Underlying open import UF.Sets open import UF.Subsingletons \end{code} To get closure under sums constructively, we need to restrict to particular kinds of ordinals. Having a top element is a simple sufficient condition, which holds in the applications we have in mind (for compact ordinals). Classically, the topped ordinals are the successor ordinals. Constructively, ℕ∞ is an example of an ordinal with a top element which is not a successor ordinal, as its top element is not isolated. \begin{code} Ordinalᵀ : ∀ 𝓤 → 𝓤 ⁺ ̇ Ordinalᵀ 𝓤 = Σ α ꞉ Ordinal 𝓤 , has-top (underlying-order α) instance canonical-map-Ordinalᵀ-Ordinal : Canonical-Map (Ordinalᵀ 𝓤) (Ordinal 𝓤) ι {{canonical-map-Ordinalᵀ-Ordinal}} (α , _) = α instance underlying-type-of-topped-ordinal : Underlying (Ordinalᵀ 𝓤) ⟨_⟩ {{underlying-type-of-topped-ordinal}} (α , _) = ⟨ α ⟩ underlying-order {{underlying-type-of-topped-ordinal}} (α , _) = underlying-order α underlying-type-is-setᵀ : FunExt → (β : Ordinalᵀ 𝓤) → is-set ⟨ β ⟩ underlying-type-is-setᵀ fe (α , t) = underlying-type-is-set fe α \end{code} Topped ordinals are ranged over by τ,υ. \begin{code} tis-well-ordered : (τ : Ordinalᵀ 𝓤) → is-well-order (underlying-order τ) tis-well-ordered ((X , _<_ , o) , t) = o ≾-prop-valued : (τ : Ordinalᵀ 𝓤) (x y : ⟨ τ ⟩) → is-prop (x ≾⟨ τ ⟩ y) ≾-prop-valued {𝓤} τ = ≾-is-prop-valued (underlying-order τ) (fe 𝓤 𝓤₀) (Prop-valuedness [ τ ]) topped : (τ : Ordinalᵀ 𝓤) → has-top (underlying-order τ) topped (α , t) = t top : (τ : Ordinalᵀ 𝓤) → ⟨ τ ⟩ top (α , (x , i)) = x top-is-top : (τ : Ordinalᵀ 𝓤) → is-top (underlying-order τ) (top τ) top-is-top (α , (x , i)) = i open import TypeTopology.InfProperty has-infs-of-complemented-subsets : Ordinalᵀ 𝓤 → 𝓤 ̇ has-infs-of-complemented-subsets τ = has-inf (underlying-weak-order τ) \end{code}