Martin Escardo 20-21 December 2012

\begin{code}

{-# OPTIONS --safe --without-K #-}

open import MLTT.Spartan
open import MLTT.Two-Properties
open import TypeTopology.CompactTypes

module TypeTopology.InfProperty {𝓤 𝓥} {X : 𝓤 ̇ } (_≤_ : X  X  𝓥 ̇ ) where

is-conditional-root : (X  𝟚)  X  𝓤 ̇
is-conditional-root p x₀ = (Σ x  X , p x  )  p x₀  

is-roots-lower-bound : (X  𝟚)  X  𝓤  𝓥 ̇
is-roots-lower-bound p l = (x : X)  p x    l  x

is-upper-bound-of-lower-bounds : (X  𝟚)  X  𝓤  𝓥 ̇
is-upper-bound-of-lower-bounds p u = (l : X)  is-roots-lower-bound p l  l  u

is-roots-infimum : (X  𝟚)  X  𝓤  𝓥 ̇
is-roots-infimum p x = is-roots-lower-bound p x
                     × is-upper-bound-of-lower-bounds p x

has-inf : 𝓤  𝓥 ̇
has-inf = (p : X  𝟚)  Σ x  X , is-conditional-root p x × is-roots-infimum p x

has-inf-gives-compact∙ : has-inf  is-compact∙ X
has-inf-gives-compact∙ h p = f (h p)
 where
  f : (Σ x₀  X , is-conditional-root p x₀ × is-roots-infimum p x₀)
     (Σ x₀  X , (p x₀    (x : X)  p x  ))
  f (x₀ , g , _) = (x₀ , k)
   where
    g' : p x₀    ¬ (Σ x  X , p x  )
    g' = contrapositive g

    u : ¬ (Σ x  X , p x  )  (x : X)  p x  
    u ν x = different-from-₀-equal-₁  (e : p x  )  ν (x , e))

    k : p x₀    (x : X)  p x  
    k e = u (g' (equal-₁-different-from-₀ e))

has-inf-gives-compact : has-inf  is-compact X
has-inf-gives-compact = compact∙-types-are-compact  has-inf-gives-compact∙

has-inf-gives-Compact : {𝓦 : Universe}  has-inf  is-Compact X {𝓦}
has-inf-gives-Compact = compact-types-are-Compact  has-inf-gives-compact

\end{code}