Nicolai Kraus 2012.

This is adapted to our TypeTopology development by Martin Escardo, but
we keep Nicolai's original proof.

The main result is that the type of fixed-points of a weakly constant
endomap is a proposition, in pure MLTT without HoTT/UF extensions.

1. Nicolai Kraus, Martín Escardó, Thierry Coquand & Thorsten Altenkirch.
   Generalizations of Hedberg’s Theorem.
   TLCA 2013
   https://doi.org/10.1007/978-3-642-38946-7_14

2. Nicolai Kraus, Martín Escardó, Thierry Coquand & Thorsten Altenkirch.
   Notions of Anonymous Existence in Martin-Löf Type Theory.
   Logical Methods in Computer Science, March 24, 2017, Volume 13, Issue 1.
   https://doi.org/10.23638/LMCS-13(1:15)2017

\begin{code}

{-# OPTIONS --safe --without-K #-}

module UF.KrausLemma where

open import MLTT.Spartan
open import UF.Base
open import UF.Hedberg
open import UF.Subsingletons

key-lemma : {X Y : 𝓤 ̇ } (f : X  Y) (g : wconstant f) {x y : X} (p : x  y)
           ap f p  (g x x)⁻¹  g x y
key-lemma f g {x} refl = sym-is-inverse (g x x)

key-insight : {X Y : 𝓤 ̇ } (f : X  Y)
             wconstant f
             {x : X} (p : x  x)  ap f p  refl
key-insight f g p = key-lemma f g p  (sym-is-inverse (g _ _))⁻¹

transport-ids-along-ids
 : {X Y : 𝓤 ̇ }
   {x y : X}
   (p : x  y)
   (h k : X  Y)
   (q : h x  k x)
  transport  -  h -  k -) p q  (ap h p)⁻¹  q  ap k p
transport-ids-along-ids refl h k q = refl-left-neutral ⁻¹

transport-ids-along-ids'
 : {X : 𝓤 ̇ }
   {x : X}
   (p : x  x)
   (f : X  X)
   (q : x  f x)
  transport  -  -  f -) p q  (p ⁻¹  q)  ap f p
transport-ids-along-ids' {𝓤} {X} {x} p f q = γ
 where
  g : x  x  x  f x
  g r = r ⁻¹  q  (ap f p)

  γ : transport  -  -  f -) p q  p ⁻¹  q  ap f p
  γ = transport-ids-along-ids p id f q  ap g ((ap-id-is-id' p)⁻¹)

\end{code}

The following is what we refer to as Kraus Lemma:

\begin{code}

fix-is-prop : {X : 𝓤 ̇ } (f : X  X)  wconstant f  is-prop (fix f)
fix-is-prop {𝓤} {X} f g (x , p) (y , q) =
  (x , p)  =⟨ to-Σ-= (r , refl) 
  (y , p') =⟨ to-Σ-= (s , t) 
  (y , q)  
    where
     r : x  y
     r = x   =⟨ p 
         f x =⟨ g x y 
         f y =⟨ q ⁻¹ 
           y 

     p' : y  f y
     p' = transport  -  -  f -) r p

     s : y  y
     s = y   =⟨ p' 
         f y =⟨ q ⁻¹ 
         y   

     q' : y  f y
     q' = transport  -  -  f -) s p'

     t : q'  q
     t = q'                        =⟨ I 
         (s ⁻¹  p')  ap f s      =⟨ II 
         s ⁻¹  (p'  ap f s)      =⟨ III 
         s ⁻¹  (p'  refl)        =⟨ IV 
         s ⁻¹  p'                 =⟨ refl 
        (p'  (q ⁻¹))⁻¹  p'       =⟨ V 
        ((q ⁻¹)⁻¹  (p' ⁻¹))  p'  =⟨ VI 
        (q  (p' ⁻¹))  p'         =⟨ VII 
         q  ((p' ⁻¹)  p')        =⟨ VIII 
         q  refl                  =⟨ IX 
         q                         
          where
           I    = transport-ids-along-ids' s f p'
           II   = ∙assoc (s ⁻¹) p' (ap f s)
           III  = ap  -  s ⁻¹  (p'  -)) (key-insight f g s)
           IV   = ap  -  s ⁻¹  -) ((refl-right-neutral p')⁻¹)
           V    = ap  -  -  p') ((⁻¹-contravariant p' (q ⁻¹))⁻¹)
           VI   = ap  -  (-  (p' ⁻¹))  p') (⁻¹-involutive q)
           VII  = ∙assoc q (p' ⁻¹) p'
           VIII = ap  -  q  -) ((sym-is-inverse p')⁻¹)
           IX   = (refl-right-neutral q)⁻¹
\end{code}