Martin Escardo

The type of truth values and its basic notions and properties. More
notions and properties are in UF.SubtypeClassifier-Properties.

\begin{code}

{-# OPTIONS --safe --without-K #-}

module UF.SubtypeClassifier where

open import MLTT.Spartan
open import Notation.CanonicalMap
open import UF.Base
open import UF.Equiv
open import UF.FunExt
open import UF.Subsingletons
open import UF.Subsingletons-FunExt

Ω :  𝓤  𝓤  ̇
Ω 𝓤 = Σ P  𝓤 ̇ , is-prop P

Ω₀ = Ω 𝓤₀

_holds : Ω 𝓤  𝓤 ̇
(P , i) holds = P

module _ {𝓤 : Universe} where
 instance
  canonical-map-Ω-𝓤 : Canonical-Map (Ω 𝓤) (𝓤 ̇ )
  ι {{canonical-map-Ω-𝓤}} = _holds

holds-is-prop : (p : Ω 𝓤)  is-prop (p holds)
holds-is-prop (P , i) = i

to-Ω-= : funext 𝓤 𝓤
         {P Q : 𝓤 ̇ }
          {i : is-prop P} {j : is-prop Q}
         P  Q
         (P , i) =[ Ω 𝓤 ] (Q , j)
to-Ω-= fe = to-subtype-=  _  being-prop-is-prop fe)

from-Ω-= : {P Q : 𝓤 ̇ }
            {i : is-prop P} {j : is-prop Q}
           (P , i) =[ Ω 𝓤 ] (Q , j)
           P  Q
from-Ω-= = ap _holds

SigmaΩ : {𝓤 𝓥 : Universe} (p : Ω 𝓤) (q : p holds  Ω 𝓥)  Ω (𝓤  𝓥)
SigmaΩ p q = (Σ h  p holds , q h holds) ,
             Σ-is-prop (holds-is-prop p)  (h : p holds)  holds-is-prop (q h))

syntax SigmaΩ p  x  q) = ΣΩ x  p , q

infixr -1 SigmaΩ

  : Ω 𝓤
 = 𝟘 , 𝟘-is-prop   -- false
 = 𝟙 , 𝟙-is-prop   -- true

⊥-doesnt-hold : ¬ ( {𝓤} holds)
⊥-doesnt-hold = 𝟘-elim

⊤-holds :  {𝓤} holds
⊤-holds = 

⊥-is-not-⊤ :  {𝓤}   {𝓤}
⊥-is-not-⊤ b = 𝟘-elim (𝟘-is-not-𝟙 (ap _holds b))

not : funext 𝓤 𝓤₀  Ω 𝓤  Ω 𝓤
not fe (P , i) = (¬ P , negations-are-props fe)

true-gives-equal-⊤ : propext 𝓤
                    funext 𝓤 𝓤
                    (P : 𝓤 ̇ ) (i : is-prop P)
                    P  (P , i)  
true-gives-equal-⊤ pe fe P i p = to-Σ-= (holds-gives-equal-𝟙 pe P i p ,
                                 being-prop-is-prop fe _ _)

holds-gives-equal-⊤ : propext 𝓤  funext 𝓤 𝓤  (p : Ω 𝓤)  p holds  p  
holds-gives-equal-⊤ pe fe (P , i) = true-gives-equal-⊤ pe fe P i

equal-⊤-gives-holds : (p : Ω 𝓤)  p    p holds
equal-⊤-gives-holds . refl = 

equal-⊥-gives-not-equal-⊤ : (fe : Fun-Ext)
                            (pe : propext 𝓤)
                            (p : Ω 𝓤)
                           p  
                           not fe p  
equal-⊥-gives-not-equal-⊤ fe pe p r = γ
 where
  s : p holds  𝟘
  s = ap _holds r

  t : ¬ (p holds)  𝟙
  t = ap ¬_ s  not-𝟘-is-𝟙 fe pe

  γ : not fe p  
  γ = to-subtype-=  _  being-prop-is-prop fe) t

false-gives-equal-⊥ : propext 𝓤
                     funext 𝓤 𝓤
                     (P : 𝓤 ̇ ) (i : is-prop P)
                     ¬ P  (P , i)  
false-gives-equal-⊥ pe fe P i f =
 to-Ω-= fe (pe i 𝟘-is-prop  p  𝟘-elim (f p)) 𝟘-elim)

fails-gives-equal-⊥ : propext 𝓤  funext 𝓤 𝓤  (p : Ω 𝓤)  ¬ (p holds)  p  
fails-gives-equal-⊥ pe fe (P , i) = false-gives-equal-⊥ pe fe P i

equal-⊥-gives-fails : (p : Ω 𝓤)  p    ¬ (p holds)
equal-⊥-gives-fails . refl = 𝟘-elim

decidable-truth-values-are-⊥-or-⊤ : propext 𝓤
                                   funext 𝓤 𝓤
                                   (P : 𝓤 ̇ ) (i : is-prop P)
                                   is-decidable P
                                   ((P , i)  )
                                  + ((P , i)  )
decidable-truth-values-are-⊥-or-⊤ pe fe P i (inl p) =
 inl (true-gives-equal-⊤ pe fe P i p)
decidable-truth-values-are-⊥-or-⊤ pe fe P i (inr ν) =
 inr (false-gives-equal-⊥ pe fe P i ν)

decidable-truth-values-are-⊥-or-⊤' : propext 𝓤
                                   funext 𝓤 𝓤
                                   (p : Ω 𝓤)
                                   is-decidable (p holds)
                                   (p  )
                                  + (p  )
decidable-truth-values-are-⊥-or-⊤' pe fe p =
 decidable-truth-values-are-⊥-or-⊤ pe fe (p holds) (holds-is-prop p)

not-equal-⊤-gives-equal-⊥ : (fe : Fun-Ext)
                            (pe : propext 𝓤)
                            (p : Ω 𝓤)
                           not fe p  
                           p  
not-equal-⊤-gives-equal-⊥ fe pe p r = γ
 where
  f : (not fe p) holds
  f = Idtofun (ap _holds r ⁻¹) 

  t : p holds  𝟘
  t = empty-types-are-=-𝟘 fe pe f

  γ : p  
  γ = to-subtype-=  _  being-prop-is-prop fe) t

different-from-⊤-gives-equal-⊥ : (fe : Fun-Ext)
                                 (pe : propext 𝓤)
                                 (p : Ω 𝓤)
                                p  
                                p  
different-from-⊤-gives-equal-⊥ fe pe p ν = II
 where
  I : ¬ (p holds)
  I = contrapositive (holds-gives-equal-⊤ pe fe p) ν

  II : p  
  II = false-gives-equal-⊥ pe fe (p holds) (holds-is-prop p) I

equal-⊤-gives-true : (P : 𝓤 ̇ ) (i : is-prop P)  (P , i)    P
equal-⊤-gives-true P hp r = f 
 where
  s : 𝟙  P
  s = (ap pr₁ r)⁻¹

  f : 𝟙  P
  f = transport id s

Ω-extensionality : propext 𝓤
                  funext 𝓤 𝓤
                  {p q : Ω 𝓤}
                  (p holds  q holds)
                  (q holds  p holds)
                  p  q
Ω-extensionality pe fe {p} {q} f g =
 to-Ω-= fe (pe (holds-is-prop p) (holds-is-prop q) f g)

Ω-extensionality' : propext 𝓤
                   funext 𝓤 𝓤
                   {p q : Ω 𝓤}
                   (p holds  q holds)
                   p  q
Ω-extensionality' pe fe {p} {q} 𝕗 =
 Ω-extensionality pe fe  𝕗   𝕗 ⌝⁻¹

Ω-ext : propext 𝓤
       funext 𝓤 𝓤
       {p q : Ω 𝓤}
       (p    q  )
       (q    p  )
       p  q
Ω-ext pe fe {P , i} {Q , j} f g = III
 where
  I : P  Q
  I x = equal-⊤-gives-true Q j (f (true-gives-equal-⊤ pe fe P i x))

  II : Q  P
  II y = equal-⊤-gives-true P i (g (true-gives-equal-⊤ pe fe Q j y))

  III : P , i  Q , j
  III = Ω-extensionality pe fe I II

Ω-ext' : propext 𝓤
        funext 𝓤 𝓤
        {p q : Ω 𝓤}
        (p  )  (q  )
        p  q
Ω-ext' pe fe 𝕗 = Ω-ext pe fe  𝕗   𝕗 ⌝⁻¹

Ω-discrete-gives-EM : funext 𝓤 𝓤
                     propext 𝓤
                     ((p q : Ω 𝓤)  is-decidable (p  q))
                     (P : 𝓤 ̇ )  is-prop P  P + ¬ P
Ω-discrete-gives-EM {𝓤} fe pe δ P i = f (δ p q)
 where
  p q : Ω 𝓤
  p = (P , i)
  q = (𝟙 , 𝟙-is-prop)

  f : is-decidable (p  q)  P + ¬ P
  f (inl e) = inl (equal-𝟙-gives-holds P (ap pr₁ e))
  f (inr ν) = inr  (x : P)  ν (to-subtype-=
                                    _  being-prop-is-prop fe)
                                   (holds-gives-equal-𝟙 pe P i x)))
\end{code}

Without excluded middle, we have that:

\begin{code}

no-truth-values-other-than-⊥-or-⊤ : funext 𝓤 𝓤
                                   propext 𝓤
                                   ¬ (Σ p  Ω 𝓤 , (p  ) × (p  ))
no-truth-values-other-than-⊥-or-⊤ fe pe ((P , i) , (f , g)) = φ u
 where
  u : ¬ P
  u h = g l
    where
     l : (P , i)  
     l = Ω-extensionality pe fe unique-to-𝟙  _  h)

  φ : ¬¬ P
  φ u = f l
    where
     l : (P , i)  
     l = Ω-extensionality pe fe  p  𝟘-elim (u p)) unique-from-𝟘

no-three-distinct-propositions : funext 𝓤 𝓤
                                propext 𝓤
                                ¬ has-three-distinct-points (Ω 𝓤)
no-three-distinct-propositions fe pe ((p , q , r) , u , v , w) = XI
 where
  I : p  
  I a = no-truth-values-other-than-⊥-or-⊤ fe pe (q , II , III)
   where
    II : q  
    II b = u (a  b ⁻¹)

    III : q  
    III c = no-truth-values-other-than-⊥-or-⊤ fe pe (r , IV , V)
     where
      IV : r  
      IV d = w (d  a ⁻¹)

      V : r  
      V e = v (c  e ⁻¹)

  VI : p  
  VI a = no-truth-values-other-than-⊥-or-⊤ fe pe (q , VII , X)
   where
    VII : q  
    VII b = no-truth-values-other-than-⊥-or-⊤ fe pe (r , VIII , IX)
     where
      VIII : r  
      VIII c = v (b  c ⁻¹)

      IX : r  
      IX d = w (d  a ⁻¹)

    X : q  
    X e = u (a  e ⁻¹)

  XI : 𝟘
  XI = no-truth-values-other-than-⊥-or-⊤ fe pe (p , I , VI)

\end{code}

The above function was added 19th March 2021.

The above implies that if Fin n is embedded in Ω 𝓤, then n ≤ 2. That
is, every finite subset of Ω has at most two elements. See the module
Fin.lagda.

Added 3rd September 2023.

\begin{code}

no-three-distinct-propositions' : funext 𝓤 𝓤
                                 propext 𝓤
                                 (p₀ p₁ q : Ω 𝓤)  p₀  q  p₁  q  ¬ (p₀  p₁)
no-three-distinct-propositions' fe pe p₀ p₁ q ν₀ ν₁ ν =
 no-three-distinct-propositions fe pe ((p₀ , q , p₁) , (ν₀ , ≠-sym ν₁ , ≠-sym ν))

\end{code}