Martin Escardo, January 2018, May 2020 Based on joint work with Cory Knapp. http://www.cs.bham.ac.uk/~mhe/papers/partial-elements-and-recursion.pdf Convention: * 𝓣 is the universe where the dominant truth values live. * 𝓚 is the universe where the knowledge they are dominant lives. * A dominance is given by a function d : 𝓣 ̇ → 𝓚 ̇ subject to suitable properties. \begin{code} {-# OPTIONS --safe --without-K #-} open import MLTT.Spartan open import UF.Equiv open import UF.Subsingletons open import UF.Subsingletons-FunExt open import UF.FunExt module Dominance.Definition where module _ {𝓣 𝓚 : Universe} where D2 : (𝓣 ̇ → 𝓚 ̇ ) → 𝓣 ⁺ ⊔ 𝓚 ̇ D2 d = (X : 𝓣 ̇ ) → is-prop (d X) D3 : (𝓣 ̇ → 𝓚 ̇ ) → 𝓣 ⁺ ⊔ 𝓚 ̇ D3 d = (X : 𝓣 ̇ ) → d X → is-prop X D4 : (𝓣 ̇ → 𝓚 ̇ ) → 𝓚 ̇ D4 d = d 𝟙 D5 : (𝓣 ̇ → 𝓚 ̇ ) → 𝓣 ⁺ ⊔ 𝓚 ̇ D5 d = (P : 𝓣 ̇ ) (Q : P → 𝓣 ̇ ) → d P → ((p : P) → d (Q p)) → d (Σ Q) \end{code} condition D5 is more conceptual and often what we need in practice, and condition D5' below is easier to check: \begin{code} D5' : (𝓣 ̇ → 𝓚 ̇ ) → 𝓣 ⁺ ⊔ 𝓚 ̇ D5' d = (P Q' : 𝓣 ̇ ) → d P → (P → d Q') → d (P × Q') D5-gives-D5' : (d : 𝓣 ̇ → 𝓚 ̇ ) → D5 d → D5' d D5-gives-D5' d d5 P Q' i j = d5 P (λ p → Q') i j D3-and-D5'-give-D5 : propext 𝓣 → (d : 𝓣 ̇ → 𝓚 ̇ ) → D3 d → D5' d → D5 d D3-and-D5'-give-D5 pe d d3 d5' P Q i j = w where Q' : 𝓣 ̇ Q' = Σ Q k : is-prop P k = d3 P i l : (p : P) → is-prop (Q p) l p = d3 (Q p) (j p) m : is-prop Q' m = Σ-is-prop k l n : (p : P) → Q p = Q' n p = pe (l p) m (λ q → (p , q)) (λ (p' , q) → transport Q (k p' p) q) j' : P → d Q' j' p = transport d (n p) (j p) u : d (P × Q') u = d5' P Q' i j' v : P × Q' = Σ Q v = pe (×-is-prop k m) m (λ (p , p' , q) → (p' , q)) (λ (p' , q) → (p' , p' , q)) w : d (Σ Q) w = transport d v u is-dominance : (𝓣 ̇ → 𝓚 ̇ ) → 𝓣 ⁺ ⊔ 𝓚 ̇ is-dominance d = D2 d × D3 d × D4 d × D5 d Dominance : (𝓣 ⊔ 𝓚)⁺ ̇ Dominance = Σ d ꞉ (𝓣 ̇ → 𝓚 ̇ ) , is-dominance d is-dominant : (D : Dominance) → 𝓣 ̇ → 𝓚 ̇ is-dominant (d , _) = d being-dominant-is-prop : (D : Dominance) → (X : 𝓣 ̇ ) → is-prop (is-dominant D X) being-dominant-is-prop (_ , (isp , _)) = isp dominant-types-are-props : (D : Dominance) → (X : 𝓣 ̇ ) → is-dominant D X → is-prop X dominant-types-are-props (_ , (_ , (disp , _))) = disp dominant-prop : Dominance → 𝓣 ⁺ ⊔ 𝓚 ̇ dominant-prop D = Σ P ꞉ 𝓣 ̇ , is-dominant D P 𝟙-is-dominant : (D : Dominance) → is-dominant D 𝟙 𝟙-is-dominant (_ , (_ , (_ , (oisd , _)))) = oisd dominant-closed-under-Σ : (D : Dominance) → (P : 𝓣 ̇ ) (Q : P → 𝓣 ̇ ) → is-dominant D P → ((p : P) → is-dominant D (Q p)) → is-dominant D (Σ Q) dominant-closed-under-Σ (_ , (_ , (_ , (_ , cus)))) = cus being-dominance-is-prop : Fun-Ext → (d : 𝓣 ̇ → 𝓚 ̇ ) → is-prop (is-dominance d) being-dominance-is-prop fe d = prop-criterion lemma where lemma : is-dominance d → is-prop (is-dominance d) lemma i = Σ-is-prop (Π-is-prop fe (λ _ → being-prop-is-prop fe)) (λ _ → ×₃-is-prop (Π₂-is-prop fe (λ _ _ → being-prop-is-prop fe)) (being-dominant-is-prop (d , i) 𝟙) (Π₄-is-prop fe λ _ Q _ _ → being-dominant-is-prop (d , i) (Σ Q))) \end{code} TODO. Define a dominance to be a function Ω → Ω and prove the equivalence with the above definition. But keep the above definition.