Martin Escardo 2012. The following says that a particular kind of discontinuity for functions p : ℕ∞ → ₂ is a taboo. Equivalently, it says that the convergence of the constant sequence ₀ to the number ₁ in the type of binary numbers is a taboo. A Brouwerian continuity axiom is that any convergent sequence in the type ₂ of binary numbers must be eventually constant (which we don't postulate). \begin{code} {-# OPTIONS --safe --without-K #-} open import MLTT.Spartan open import UF.FunExt module Taboos.BasicDiscontinuity (fe : funext₀) where open import CoNaturals.Type open import MLTT.Plus-Properties open import MLTT.Two-Properties open import Notation.CanonicalMap open import Taboos.WLPO basic-discontinuity : (ℕ∞ → 𝟚) → 𝓤₀ ̇ basic-discontinuity p = ((n : ℕ) → p (ι n) = ₀) × (p ∞ = ₁) basic-discontinuity-taboo : (p : ℕ∞ → 𝟚) → basic-discontinuity p → WLPO basic-discontinuity-taboo p (f , r) u = 𝟚-equality-cases lemma₀ lemma₁ where fact₀ : u = ∞ → p u = ₁ fact₀ t = p u =⟨ ap p t ⟩ p ∞ =⟨ r ⟩ ₁ ∎ fact₁ : p u ≠ ₁ → u ≠ ∞ fact₁ = contrapositive fact₀ fact₂ : p u = ₀ → u ≠ ∞ fact₂ = fact₁ ∘ equal-₀-different-from-₁ lemma₀ : p u = ₀ → (u = ∞) + (u ≠ ∞) lemma₀ s = inr (fact₂ s) fact₃ : p u = ₁ → ((n : ℕ) → u ≠ ι n) fact₃ t n s = zero-is-not-one (₀ =⟨ (f n)⁻¹ ⟩ p (ι n) =⟨ (ap p s)⁻¹ ⟩ p u =⟨ t ⟩ ₁ ∎) lemma₁ : p u = ₁ → (u = ∞) + (u ≠ ∞) lemma₁ t = inl (not-finite-is-∞ fe (fact₃ t)) \end{code} The converse also holds. It shows that any proof of WLPO is a discontinuous function, which we use to build a discontinuous function of type ℕ∞ → 𝟚. \begin{code} WLPO-is-discontinuous : WLPO → Σ p ꞉ (ℕ∞ → 𝟚), basic-discontinuity p WLPO-is-discontinuous f = p , (d , d∞) where p : ℕ∞ → 𝟚 p u = equality-cases (f u) case₀ case₁ where case₀ : (r : u = ∞) → f u = inl r → 𝟚 case₀ r s = ₁ case₁ : (r : u ≠ ∞) → f u = inr r → 𝟚 case₁ r s = ₀ d : (n : ℕ) → p (ι n) = ₀ d n = equality-cases (f (ι n)) case₀ case₁ where case₀ : (r : ι n = ∞) → f (ι n) = inl r → p (ι n) = ₀ case₀ r s = 𝟘-elim (∞-is-not-finite n (r ⁻¹)) case₁ : (g : ι n ≠ ∞) → f (ι n) = inr g → p (ι n) = ₀ case₁ g = ap (λ - → equality-cases - (λ r s → ₁) (λ r s → ₀)) d∞ : p ∞ = ₁ d∞ = equality-cases (f ∞) case₀ case₁ where case₀ : (r : ∞ = ∞) → f ∞ = inl r → p ∞ = ₁ case₀ r = ap (λ - → equality-cases - (λ r s → ₁) (λ r s → ₀)) case₁ : (g : ∞ ≠ ∞) → f ∞ = inr g → p ∞ = ₁ case₁ g = 𝟘-elim (g refl) \end{code} If two discrete-valued functions defined on ℕ∞ agree, they have to agree at ∞ too, unless WLPO holds: \begin{code} open import NotionsOfDecidability.Decidable open import UF.DiscreteAndSeparated module _ {D : 𝓤 ̇ } (d : is-discrete D) where disagreement-taboo' : (p q : ℕ∞ → D) → ((n : ℕ) → p (ι n) = q (ι n)) → p ∞ ≠ q ∞ → WLPO disagreement-taboo' p q f g = basic-discontinuity-taboo r (r-lemma , r-lemma∞) where A : ℕ∞ → 𝓤 ̇ A u = p u = q u δ : (u : ℕ∞) → is-decidable (p u = q u) δ u = d (p u) (q u) r : ℕ∞ → 𝟚 r = characteristic-map A δ r-lemma : (n : ℕ) → r (ι n) = ₀ r-lemma n = characteristic-map-property₀-back A δ (ι n) (f n) r-lemma∞ : r ∞ = ₁ r-lemma∞ = characteristic-map-property₁-back A δ ∞ (λ a → g a) agreement-cotaboo' : ¬ WLPO → (p q : ℕ∞ → D) → ((n : ℕ) → p (ι n) = q (ι n)) → p ∞ = q ∞ agreement-cotaboo' φ p q f = discrete-is-¬¬-separated d (p ∞) (q ∞) (contrapositive (disagreement-taboo' p q f) φ) disagreement-taboo : (p q : ℕ∞ → 𝟚) → ((n : ℕ) → p (ι n) = q (ι n)) → p ∞ ≠ q ∞ → WLPO disagreement-taboo = disagreement-taboo' 𝟚-is-discrete agreement-cotaboo : ¬ WLPO → (p q : ℕ∞ → 𝟚) → ((n : ℕ) → p (ι n) = q (ι n)) → p ∞ = q ∞ agreement-cotaboo = agreement-cotaboo' 𝟚-is-discrete \end{code} Added 23rd August 2023. Variation. \begin{code} basic-discontinuity' : (ℕ∞ → ℕ∞) → 𝓤₀ ̇ basic-discontinuity' f = ((n : ℕ) → f (ι n) = ι 0) × (f ∞ = ι 1) basic-discontinuity-taboo' : (f : ℕ∞ → ℕ∞) → basic-discontinuity' f → WLPO basic-discontinuity-taboo' f (f₀ , f₁) = VI where I : (u : ℕ∞) → f u = ι 0 → u ≠ ∞ I u p q = Zero-not-Succ (ι 0 =⟨ p ⁻¹ ⟩ f u =⟨ ap f q ⟩ f ∞ =⟨ f₁ ⟩ ι 1 ∎) II : (u : ℕ∞) → f u ≠ ι 0 → u = ∞ II u ν = not-finite-is-∞ fe III where III : (n : ℕ) → u ≠ ι n III n refl = V IV where IV : f (ι n) = ι 0 IV = f₀ n V : f (ι n) ≠ ι 0 V = ν VI : WLPO VI u = Cases (finite-isolated fe 0 (f u)) (λ (p : ι 0 = f u) → inr (I u (p ⁻¹))) (λ (ν : ι 0 ≠ f u) → inl (II u (≠-sym ν))) \end{code} Added 13th November 2023. \begin{code} open import Notation.Order ℕ∞-linearity-taboo : ((u v : ℕ∞) → (u ≼ v) + (v ≼ u)) → WLPO ℕ∞-linearity-taboo δ = III where g : (u v : ℕ∞) → (u ≼ v) + (v ≼ u) → 𝟚 g u v (inl _) = ₀ g u v (inr _) = ₁ f : ℕ∞ → ℕ∞ → 𝟚 f u v = g u v (δ u v) I₀ : (n : ℕ) → f (ι n) ∞ = ₀ I₀ n = a (δ (ι n) ∞) where a : (d : (ι n ≼ ∞) + (∞ ≼ ι n)) → g (ι n) ∞ d = ₀ a (inl _) = refl a (inr ℓ) = 𝟘-elim (≼-not-≺ ∞ (ι n) ℓ (∞-≺-largest n)) I₁ : (n : ℕ) → f ∞ (ι n) = ₁ I₁ n = b (δ ∞ (ι n)) where b : (d : (∞ ≼ ι n) + (ι n ≼ ∞)) → g ∞ (ι n) d = ₁ b (inl ℓ) = 𝟘-elim (≼-not-≺ ∞ (ι n) ℓ (∞-≺-largest n)) b (inr _) = refl II : (b : 𝟚) → f ∞ ∞ = b → WLPO II ₀ e = basic-discontinuity-taboo p II₀ where p : ℕ∞ → 𝟚 p x = complement (f ∞ x) II₀ : ((n : ℕ) → p (ι n) = ₀) × (p ∞ = ₁) II₀ = (λ n → p (ι n) =⟨ refl ⟩ complement (f ∞ (ι n)) =⟨ ap complement (I₁ n) ⟩ complement ₁ =⟨ refl ⟩ ₀ ∎) , (p ∞ =⟨ refl ⟩ complement (f ∞ ∞) =⟨ ap complement e ⟩ complement ₀ =⟨ refl ⟩ ₁ ∎) II ₁ e = basic-discontinuity-taboo p II₁ where p : ℕ∞ → 𝟚 p x = f x ∞ II₁ : ((n : ℕ) → p (ι n) = ₀) × (p ∞ = ₁) II₁ = I₀ , e III : WLPO III = II (f ∞ ∞) refl \end{code}