Martin Escardo 2012.

The following says that a particular kind of discontinuity for
functions p : ℕ∞ → ₂ is a taboo. Equivalently, it says that the
convergence of the constant sequence ₀ to the number ₁ in the type
of binary numbers is a taboo. A Brouwerian continuity axiom is
that any convergent sequence in the type ₂ of binary numbers must
be eventually constant (which we don't postulate).

\begin{code}

{-# OPTIONS --safe --without-K #-}

open import MLTT.Spartan
open import UF.FunExt

module Taboos.BasicDiscontinuity (fe : funext₀) where

open import CoNaturals.Type

open import MLTT.Plus-Properties
open import MLTT.Two-Properties
open import Notation.CanonicalMap
open import Taboos.WLPO

basic-discontinuity : (ℕ∞  𝟚)  𝓤₀ ̇
basic-discontinuity p = ((n : )  p (ι n)  ) × (p   )

basic-discontinuity-taboo : (p : ℕ∞  𝟚)
                           basic-discontinuity p
                           WLPO
basic-discontinuity-taboo p (f , r) u = 𝟚-equality-cases lemma₀ lemma₁
 where
  fact₀ : u    p u  
  fact₀ t = p u =⟨ ap p t 
            p  =⟨ r 
               

  fact₁ : p u    u  
  fact₁ = contrapositive fact₀

  fact₂ : p u    u  
  fact₂ = fact₁  equal-₀-different-from-₁

  lemma₀ : p u    (u  ) + (u  )
  lemma₀ s = inr (fact₂ s)

  fact₃ : p u    ((n : )  u  ι n)
  fact₃ t n s = zero-is-not-one (       =⟨ (f n)⁻¹ 
                                 p (ι n) =⟨ (ap p s)⁻¹ 
                                 p u     =⟨ t 
                                        )

  lemma₁ : p u    (u  ) + (u  )
  lemma₁ t = inl (not-finite-is-∞ fe (fact₃ t))

\end{code}

The converse also holds. It shows that any proof of WLPO is a
discontinuous function, which we use to build a discontinuous function
of type ℕ∞ → 𝟚.

\begin{code}

WLPO-is-discontinuous : WLPO
                       Σ p  (ℕ∞  𝟚), basic-discontinuity p
WLPO-is-discontinuous f = p , (d , d∞)
 where
  p : ℕ∞  𝟚
  p u = equality-cases (f u) case₀ case₁
   where
    case₀ : (r : u  )  f u  inl r  𝟚
    case₀ r s = 

    case₁ : (r : u  )  f u  inr r  𝟚
    case₁ r s = 

  d : (n : )  p (ι n)  
  d n = equality-cases (f (ι n)) case₀ case₁
   where
    case₀ : (r : ι n  )  f (ι n)  inl r  p (ι n)  
    case₀ r s = 𝟘-elim (∞-is-not-finite n (r ⁻¹))

    case₁ : (g : ι n  )  f (ι n)  inr g  p (ι n)  
    case₁ g = ap  -  equality-cases -  r s  )  r s  ))

  d∞ : p   
  d∞ = equality-cases (f ) case₀ case₁
   where
    case₀ : (r :   )  f   inl r  p   
    case₀ r = ap  -  equality-cases -  r s  )  r s  ))

    case₁ : (g :   )  f   inr g  p   
    case₁ g = 𝟘-elim (g refl)

\end{code}

If two discrete-valued functions defined on ℕ∞ agree, they have to
agree at ∞ too, unless WLPO holds:

\begin{code}

open import NotionsOfDecidability.Decidable
open import UF.DiscreteAndSeparated

module _ {D : 𝓤 ̇ } (d : is-discrete D) where

 disagreement-taboo' : (p q : ℕ∞  D)
                      ((n : )  p (ι n)  q (ι n))
                      p   q 
                      WLPO
 disagreement-taboo' p q f g = basic-discontinuity-taboo r (r-lemma , r-lemma∞)
  where
   A : ℕ∞  𝓤 ̇
   A u = p u  q u

   δ : (u : ℕ∞)  is-decidable (p u  q u)
   δ u = d (p u) (q u)

   r : ℕ∞  𝟚
   r = characteristic-map A δ

   r-lemma : (n : )  r (ι n)  
   r-lemma n = characteristic-map-property₀-back A δ (ι n) (f n)

   r-lemma∞ : r   
   r-lemma∞ = characteristic-map-property₁-back A δ   a  g a)

 agreement-cotaboo' : ¬ WLPO
                     (p q : ℕ∞  D)
                     ((n : )  p (ι n)  q (ι n))
                     p   q 
 agreement-cotaboo' φ p q f = discrete-is-¬¬-separated d (p ) (q )
                               (contrapositive (disagreement-taboo' p q f) φ)

disagreement-taboo : (p q : ℕ∞  𝟚)
                    ((n : )  p (ι n)  q (ι n))
                    p   q 
                    WLPO
disagreement-taboo = disagreement-taboo' 𝟚-is-discrete

agreement-cotaboo : ¬ WLPO
                   (p q : ℕ∞  𝟚)
                   ((n : )  p (ι n)  q (ι n))
                   p   q 
agreement-cotaboo = agreement-cotaboo' 𝟚-is-discrete

\end{code}

Added 23rd August 2023. Variation.

\begin{code}

basic-discontinuity' : (ℕ∞  ℕ∞)  𝓤₀ ̇
basic-discontinuity' f = ((n : )  f (ι n)  ι 0) × (f   ι 1)

basic-discontinuity-taboo' : (f : ℕ∞  ℕ∞)
                            basic-discontinuity' f
                            WLPO
basic-discontinuity-taboo' f (f₀ , f₁) = VI
 where
  I : (u : ℕ∞)  f u  ι 0  u  
  I u p q = Zero-not-Succ
             (ι 0 =⟨ p ⁻¹ 
              f u =⟨ ap f q 
              f  =⟨ f₁ 
              ι 1 )

  II : (u : ℕ∞)  f u  ι 0  u  
  II u ν = not-finite-is-∞ fe III
   where
    III : (n : )  u  ι n
    III n refl = V IV
     where
      IV : f (ι n)  ι 0
      IV = f₀ n

      V : f (ι n)  ι 0
      V = ν

  VI : WLPO
  VI u = Cases (finite-isolated fe 0 (f u))
           (p : ι 0  f u)  inr (I u (p ⁻¹)))
           (ν : ι 0  f u)  inl (II u (≠-sym ν)))

\end{code}

Added 13th November 2023.

\begin{code}

open import Notation.Order

ℕ∞-linearity-taboo : ((u v : ℕ∞)  (u  v) + (v  u))
                    WLPO
ℕ∞-linearity-taboo δ = III
 where
  g : (u v : ℕ∞)  (u  v) + (v  u)  𝟚
  g u v (inl _) = 
  g u v (inr _) = 

  f : ℕ∞  ℕ∞  𝟚
  f u v = g u v (δ u v)

  I₀ : (n : )  f (ι n)   
  I₀ n = a (δ (ι n) )
   where
    a : (d : (ι n  ) + (  ι n))  g (ι n)  d  
    a (inl _) = refl
    a (inr ) = 𝟘-elim (≼-not-≺  (ι n)  (∞-≺-largest n))

  I₁ : (n : )  f  (ι n)  
  I₁ n = b (δ  (ι n))
   where
    b : (d : (  ι n) + (ι n  ))  g  (ι n) d  
    b (inl ) = 𝟘-elim (≼-not-≺  (ι n)  (∞-≺-largest n))
    b (inr _) = refl

  II : (b : 𝟚)  f    b  WLPO
  II  e = basic-discontinuity-taboo p II₀
   where
    p : ℕ∞  𝟚
    p x = complement (f  x)

    II₀ : ((n : )  p (ι n)  ) × (p   )
    II₀ =  n  p (ι n)                =⟨ refl 
                 complement (f  (ι n)) =⟨ ap complement (I₁ n) 
                 complement            =⟨ refl 
                                       ) ,
           (p                 =⟨ refl 
            complement (f  ) =⟨ ap complement e 
            complement        =⟨ refl 
                              )
  II  e = basic-discontinuity-taboo p II₁
   where
    p : ℕ∞  𝟚
    p x = f x 

    II₁ : ((n : )  p (ι n)  ) × (p   )
    II₁ = I₀ , e

  III : WLPO
  III = II (f  ) refl

\end{code}