Martin Escardo, 25th August 2022, written down in Agda 27th August 2022 while travelling back from Thierry Coquand's 60th birthday celebration. The type of ordinals is decomposable as a disjoint union of two pointed types if and only if weak excluded middle holds (every negated proposition is decidable, which is equivalent to De Morgan's Law). Equivalently, there is a function f : Ordinal π€ β π such that f Ξ± οΌ 0 and f Ξ² = 1 for some ordinals Ξ± and Ξ² if and only if weak excluded middle holds. In other words, the type Ordinal π€ has no non-trivial decidable property unless weak excluded middle holds. Further additions 3rd August 2023. \begin{code} {-# OPTIONS --safe --without-K #-} open import UF.FunExt module Taboos.Decomposability (fe : FunExt) where open import MLTT.Spartan open import MLTT.Two-Properties open import Ordinals.Arithmetic fe open import Ordinals.Equivalence open import Ordinals.Maps open import Ordinals.Type open import Ordinals.Underlying open import UF.Base open import UF.ClassicalLogic open import UF.Classifiers open import UF.Equiv open import UF.Equiv-FunExt open import UF.EquivalenceExamples open import UF.PropTrunc open import UF.Size open import UF.Subsingletons open import UF.Subsingletons-FunExt open import UF.SubtypeClassifier open import UF.SubtypeClassifier-Properties open import UF.Univalence private fe' : Fun-Ext fe' {π€} {π₯} = fe π€ π₯ β_ : Ξ© π€ β Ξ© π€ β_ = not fe' \end{code} A type X is decomposable if there are pointed types Xβ and Xβ with X β Xβ + Xβ. Equivalently, X is decomposable if there is a non-constant function f : X β π, in the strong sense that there are xβ and xβ in X that are mapped to respectively β and β by f. We first work with the type of all decompositions, in the above two equivalent manifestations, and later we consider decomposability defined as its propositional truncation. \begin{code} decomposition : π€ Μ β π€ Μ decomposition X = Ξ£ f κ (X β π) , (Ξ£ xβ κ X , f xβ οΌ β) Γ (Ξ£ xβ κ X , f xβ οΌ β) decomposition' : π€ Μ β π€ βΊ Μ decomposition' {π€} X = Ξ£ Y κ (π β π€ Μ ) , (Y β + Y β β X) Γ Y β Γ Y β \end{code} We remark that the above two decomposition types are equivalent, but we don't use this fact anywhere for the moment, and we work with the first one. \begin{code} decomposition-lemma : is-univalent π€ β (X : π€ Μ ) β (Ξ£ Y κ (π β π€ Μ ) , (Y β + Y β β X)) β (X β π) decomposition-lemma {π€} ua X = (Ξ£ Y κ (π β π€ Μ ) , (Y β + Y β β X)) ββ¨ I β© (Ξ£ Y κ (π β π€ Μ ) , ((Ξ£ n κ π , Y n) β X)) ββ¨ II β© (X β π) β where I = Ξ£-cong (Ξ» Y β β-cong-left fe (β-sym alternative-+)) II = Ξ£-fibers-β ua fe' decompositions-agree : is-univalent π€ β (X : π€ Μ ) β decomposition X β decomposition' X decompositions-agree {π€} ua X = (Ξ£ f κ (X β π) , fiber f β Γ fiber f β) ββ¨ I β© (Ξ£ (Y , _) κ (Ξ£ Y κ (π β π€ Μ ) , (Y β + Y β β X)) , Y β Γ Y β) ββ¨ II β© (Ξ£ Y κ (π β π€ Μ ) , (Y β + Y β β X) Γ Y β Γ Y β) β where I = Ξ£-change-of-variable-β _ (β-sym (decomposition-lemma ua X)) II = Ξ£-assoc WEM-gives-decomposition-of-two-pointed-types : WEM π€ β (X : π€ Μ ) β has-two-distinct-points X β decomposition X WEM-gives-decomposition-of-two-pointed-types wem X ((xβ , xβ) , d) = Ξ³ where g : (x : X) β Β¬ (x β xβ) + ¬¬ (x β xβ) β π g x (inl _) = β g x (inr _) = β h : (x : X) β Β¬ (x β xβ) + ¬¬ (x β xβ) h x = wem (x β xβ) f : X β π f x = g x (h x) gβ : (Ξ΄ : Β¬ (xβ β xβ) + ¬¬ (xβ β xβ)) β g xβ Ξ΄ οΌ β gβ (inl _) = refl gβ (inr u) = π-elim (three-negations-imply-one u refl) eβ : f xβ οΌ β eβ = gβ (h xβ) gβ : (Ξ΄ : Β¬ (xβ β xβ) + ¬¬ (xβ β xβ)) β g xβ Ξ΄ οΌ β gβ (inl Ο) = π-elim (Ο (β -sym d)) gβ (inr _) = refl eβ : f xβ οΌ β eβ = gβ (h xβ) Ξ³ : decomposition X Ξ³ = f , (xβ , eβ) , (xβ , eβ) WEM-gives-decomposition-of-ordinals-typeβΊ : WEM (π€ βΊ) β decomposition (Ordinal π€) WEM-gives-decomposition-of-ordinals-typeβΊ {π€} wem = WEM-gives-decomposition-of-two-pointed-types wem (Ordinal π€) ((πβ , πβ) , (Ξ» (e : πβ οΌ πβ) β π-elim (idtofun π π (ap β¨_β© e) β))) \end{code} We can strengthen the hypothesis of the above implication to WEM π€ using the fact that the type Ordinal π€ Μ is locally small. \begin{code} WEM-gives-decomposition-of-two-pointed-typesβΊ : WEM π€ β (X : π€ βΊ Μ ) β is-locally-small X β has-two-distinct-points X β decomposition X WEM-gives-decomposition-of-two-pointed-typesβΊ {π€} wem X l ((xβ , xβ) , d) = Ξ³ where g : (x : X) β Β¬ (x β β¦ l β§ xβ) + ¬¬ (x β β¦ l β§ xβ) β π g x (inl _) = β g x (inr _) = β h : (x : X) β Β¬ (x β β¦ l β§ xβ) + ¬¬ (x β β¦ l β§ xβ) h x = wem (x β β¦ l β§ xβ) f : X β π f x = g x (h x) gβ : (Ξ΄ : Β¬ (xβ β β¦ l β§ xβ) + ¬¬ (xβ β β¦ l β§ xβ)) β g xβ Ξ΄ οΌ β gβ (inl _) = refl gβ (inr u) = π-elim (three-negations-imply-one u οΌβ¦ l β§-refl) eβ : f xβ οΌ β eβ = gβ (h xβ) gβ : (Ξ΄ : Β¬ (xβ β β¦ l β§ xβ) + ¬¬ (xβ β β¦ l β§ xβ)) β g xβ Ξ΄ οΌ β gβ (inl Ο) = π-elim (Ο (β -gives-β β¦ l β§ (β -sym d))) gβ (inr _) = refl eβ : f xβ οΌ β eβ = gβ (h xβ) Ξ³ : decomposition X Ξ³ = f , (xβ , eβ) , (xβ , eβ) WEM-gives-decomposition-of-ordinals-type : is-univalent π€ β WEM π€ β decomposition (Ordinal π€) WEM-gives-decomposition-of-ordinals-type {π€} ua wem = WEM-gives-decomposition-of-two-pointed-typesβΊ wem (Ordinal π€) (the-type-of-ordinals-is-locally-small ua fe') ((πβ , πβ) , (Ξ» (e : πβ οΌ πβ) β π-elim (idtofun π π (ap β¨_β© e) β))) \end{code} For the converse, we use the following notion, where Ξ© π€ is the type of truth values, or propositions, in the universe π€. An Ξ©-path from x to y in a type X is a function f κ Ξ© π₯ β X that maps false to x and true to y. We collect all such functions in a type Ξ©-Path π₯ x y. \begin{code} Ξ©-Path : {X : π€ Μ } (π₯ : Universe) β X β X β π€ β (π₯ βΊ) Μ Ξ©-Path {π€} {X} π₯ x y = Ξ£ f κ (Ξ© π₯ β X) , (f β₯ οΌ x) Γ (f β€ οΌ y) \end{code} The type of ordinals in any universe has Ξ©-paths between any two points. \begin{code} has-Ξ©-paths : (π₯ : Universe) β π€ Μ β π€ β (π₯ βΊ) Μ has-Ξ©-paths π₯ X = (x y : X) β Ξ©-Path π₯ x y type-of-ordinals-has-Ξ©-paths : is-univalent π€ β has-Ξ©-paths π€ (Ordinal π€) type-of-ordinals-has-Ξ©-paths {π€} ua Ξ± Ξ² = f , Ξ³β₯ , Ξ³β€ where f : Ξ© π€ β Ordinal π€ f p = (Ξ©-to-ordinal (β p) Γβ Ξ±) +β (Ξ©-to-ordinal p Γβ Ξ²) Ξ³β₯ : f β₯ οΌ Ξ± Ξ³β₯ = eqtoidβ ua fe' (f β₯) Ξ± (u , o , e , p) where u : β¨ f β₯ β© β β¨ Ξ± β© u (inl (x , a)) = a o : is-order-preserving (f β₯) Ξ± u o (inl (x , a)) (inl (y , b)) (inl l) = l v : β¨ Ξ± β© β β¨ f β₯ β© v a = inl (π-elim , a) vu : v β u βΌ id vu (inl (x , a)) = ap inl (to-Γ-οΌ (dfunext fe' (Ξ» z β π-elim z)) refl) uv : u β v βΌ id uv a = refl e : is-equiv u e = qinvs-are-equivs u (v , vu , uv) p : is-order-preserving Ξ± (f β₯) v p a b l = inl l Ξ³β€ : f β€ οΌ Ξ² Ξ³β€ = eqtoidβ ua fe' (f β€) Ξ² (u , o , e , p) where u : β¨ f β€ β© β β¨ Ξ² β© u (inl (f , _)) = π-elim (f β) u (inr (β , b)) = b o : is-order-preserving (f β€) Ξ² u o (inl (f , _)) y l = π-elim (f β) o (inr (β , _)) (inr (β , _)) (inl l) = l v : β¨ Ξ² β© β β¨ f β€ β© v b = inr (β , b) vu : v β u βΌ id vu (inl (f , _)) = π-elim (f β) vu (inr (β , b)) = refl uv : u β v βΌ id uv b = refl e : is-equiv u e = qinvs-are-equivs u (v , vu , uv) p : is-order-preserving Ξ² (f β€) v p b c l = inl l decomposition-of-Ξ©-gives-WEM : propext π€ β decomposition (Ξ© π€) β WEM π€ decomposition-of-Ξ©-gives-WEM {π€} pe (f , (pβ@(Pβ , iβ) , eβ) , (pβ@(Pβ , iβ) , eβ)) = V where g : Ξ© π€ β Ξ© π€ g (Q , j) = ((Pβ Γ Q) + (Pβ Γ Β¬ Q)) , k where k : is-prop ((Pβ Γ Q) + (Pβ Γ Β¬ Q)) k = +-is-prop (Γ-is-prop iβ j) (Γ-is-prop iβ (negations-are-props fe')) (Ξ» (pβ , q) (pβ , Ξ½) β Ξ½ q) Iβ : (q : Ξ© π€) β q holds β f (g q) οΌ β Iβ q h = II where I : g q οΌ pβ I = to-subtype-οΌ (Ξ» _ β being-prop-is-prop fe') (pe (prβ (g q)) iβ (cases prβ (Ξ» (_ , n) β π-elim (n h))) (Ξ» x β inl (x , h))) II = f (g q) οΌβ¨ ap f I β© f pβ οΌβ¨ eβ β© β β Iβ : (q : Ξ© π€) β Β¬ (q holds) β f (g q) οΌ β Iβ q n = II where I : g q οΌ pβ I = to-subtype-οΌ (Ξ» _ β being-prop-is-prop fe') (pe (prβ (g q)) iβ (cases (Ξ» (_ , h) β π-elim (n h)) prβ) (Ξ» x β inr (x , n))) II = f (g q) οΌβ¨ ap f I β© f pβ οΌβ¨ eβ β© β β IIIβ : (q : Ξ© π€) β f (g q) οΌ β β Β¬ (q holds) + ¬¬ (q holds) IIIβ q e = inr (contrapositive (Iβ q) (equal-β-different-from-β e)) IIIβ : (q : Ξ© π€) β f (g q) οΌ β β Β¬ (q holds) + ¬¬ (q holds) IIIβ q e = inl (contrapositive (Iβ q) (equal-β-different-from-β e)) IV : (Q : π€ Μ ) β is-prop Q β Β¬ Q + ¬¬ Q IV Q j = π-equality-cases (IIIβ (Q , j)) (IIIβ (Q , j)) V : (Q : π€ Μ ) β Β¬ Q + ¬¬ Q V = WEM'-gives-WEM fe' IV decomposition-of-type-with-Ξ©-paths-gives-WEM : propext π₯ β {X : π€ Μ } β decomposition X β has-Ξ©-paths π₯ X β WEM π₯ decomposition-of-type-with-Ξ©-paths-gives-WEM {π₯} {π€} pe {X} (f , (xβ , eβ) , (xβ , eβ)) c = Ξ³ where g : Ξ© π₯ β X g = prβ (c xβ xβ) gp : (g β₯ οΌ xβ) Γ (g β€ οΌ xβ) gp = prβ (c xβ xβ) Iβ = f (g β₯) οΌβ¨ ap f (prβ gp) β© f xβ οΌβ¨ eβ β© β β Iβ = f (g β€) οΌβ¨ ap f (prβ gp) β© f xβ οΌβ¨ eβ β© β β Ξ³ : WEM π₯ Ξ³ = decomposition-of-Ξ©-gives-WEM pe (f β g , (β₯ , Iβ) , (β€ , Iβ)) decomposition-of-ordinals-type-gives-WEM : is-univalent π€ β decomposition (Ordinal π€) β WEM π€ decomposition-of-ordinals-type-gives-WEM ua d = decomposition-of-type-with-Ξ©-paths-gives-WEM (univalence-gives-propext ua) d (type-of-ordinals-has-Ξ©-paths ua) Ordinal-decomposition-iff-WEM : is-univalent π€ β decomposition (Ordinal π€) β WEM π€ Ordinal-decomposition-iff-WEM ua = decomposition-of-ordinals-type-gives-WEM ua , WEM-gives-decomposition-of-ordinals-type ua \end{code} We now assume that propositional truncations exist to define decomposability as the truncation of the type of decompositions. It is a corollary of the above development that the decomposability of the type of ordinals gives a specific decomposition. \begin{code} module decomposability (pt : propositional-truncations-exist) where open PropositionalTruncation pt decomposable : π€ Μ β π€ Μ decomposable X = β₯ decomposition X β₯ Ordinal-decomposable-iff-WEM : is-univalent π€ β decomposable (Ordinal π€) β WEM π€ Ordinal-decomposable-iff-WEM ua = β₯β₯-rec (WEM-is-prop fe) (decomposition-of-ordinals-type-gives-WEM ua) , (Ξ» wem β β£ WEM-gives-decomposition-of-ordinals-type ua wem β£) decomposability-gives-decomposition : is-univalent π€ β decomposable (Ordinal π€) β decomposition (Ordinal π€) decomposability-gives-decomposition ua Ξ΄ = WEM-gives-decomposition-of-ordinals-type ua (lr-implication (Ordinal-decomposable-iff-WEM ua) Ξ΄) \end{code} Notice that the formulation of this fact doesn't refer to WEM, but its proof uses WEM, which follows from the hypothesis. Even though the types decomposable (Ordinal π€) and WEM are property, we get data out of them if we are given a proof of decomposability. Added 9th September 2022 by Tom de Jong (which is subsumed by a remark below added 25th July 2024). After a discussion with MartΓn on 8th September 2022, we noticed that the decomposability theorem can be generalised from Ord π€ to any locally small π€-sup-lattice with two distinct points. (This is indeed a generalisation because Ord π€ is a locally small π€-sup-lattice, at least in the presence of small set quotients or set replacement, see Ordinals.OrdinalOfOrdinalsSuprema.) One direction is still given by the lemma above: WEM-gives-decomposition-of-two-pointed-typesβΊ : WEM π€ β (X : π€ βΊ Μ ) β is-locally-small X β has-two-distinct-points X β decomposition X [NB. Predicatively, nontrivial π€-sup-lattices necessarily have large carriers [dJE21,dJE22], so that the simpler lemma WEM-gives-decomposition-of-two-pointed-types : WEM π€ β (X : π€ Μ ) β has-two-distinct-points X β decomposition X is not sufficient.] For the other we use decomposition-of-type-with-Ξ©-paths-gives-WEM : {X : π€ Μ } β decomposition X β has-Ξ©-paths π₯ X β WEM π₯ The point is that every π€-sup-lattice X has Ξ©π€-paths, because given x y : X, we can define f : Ξ© π€ β X by mapping a proposition P to the join of the family Ξ΄ : π + P β X Ξ΄(inl β) = x; Ξ΄(inr p) = y. The family Ξ΄ also plays a key role in [dJE21,dJE22] although we have the restriction that x β y in those papers, because we consider a broader collection of posets there that includes the π€-sup-lattices, but also π€-bounded-complete posets and π€-directed complete posets. References ---------- [dJE21] Tom de Jong and MartΓn HΓΆtzel EscardΓ³. βPredicative Aspects of Order Theory in Univalent Foundationsβ. In: 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021). Ed. by Naoki Kobayashi. Vol. 195. Leibniz International Proceedings in Informatics (LIPIcs). Schloss DagstuhlβLeibniz-Zentrum fΓΌr Informatik, 2021, 8:1β8:18. doi: 10.4230/LIPIcs.FSCD.2021.8. [dJE22] Tom de Jong and MartΓn HΓΆtzel EscardΓ³. βOn Small Types in Univalent Foundationsβ. Sept. 2022. arXiv: 2111.00482 [cs.LO]. Revised and expanded version of [dJE21b]. Accepted pending minor revision to a special issue of Logical Methods in Computer Science on selected papers from FSCD 2021. TODO. Implement the above thoughts. Added 3rd August 2023 by Martin Escardo. Injective types are decomposable iff WEM holds. This subsumes the above developement, because the type of ordinals is injective. \begin{code} open import InjectiveTypes.Blackboard fe open import InjectiveTypes.OverSmallMaps fe open import Ordinals.Injectivity open ordinals-injectivity fe \end{code} A naive application of injectivity gives the following: \begin{code} ainjective-types-have-Ξ©-Paths-naive : propext π¦ β (D : π€ Μ ) β ainjective-type D π€β (π¦ βΊ) β has-Ξ©-paths π¦ D ainjective-types-have-Ξ©-Paths-naive {π¦} {π€} pe D D-ainj xβ xβ = II I where f : π β D f β = xβ f β = xβ I : Ξ£ g κ (Ξ© π¦ β D) , g β π-to-Ξ© βΌ f I = D-ainj π-to-Ξ© (π-to-Ξ©-is-embedding fe' pe) f II : type-of I β Ξ©-Path π¦ xβ xβ II (g , h) = g , h β , h β \end{code} But this is too weak for applications, as the universe π¦βΊ is higher than we can obtain in practice. This can be improved as follows, exploiting the fact that the map π-to-Ξ© : π β Ξ© π€ has π€-small fibers and that algebraic flabbiness gives injectivity over embeddings with small fibers for lower universes. The key point is that this allows to replace π¦βΊ by π¦ in the above, so that we can apply this to the injectivity of the universe and to that of the type of ordinals, and more examples like these. \begin{code} ainjective-types-have-Ξ©-Paths : propext π₯ β (D : π€ Μ ) β ainjective-type D π₯ π¦ β has-Ξ©-paths π₯ D ainjective-types-have-Ξ©-Paths {π₯} {π€} {π¦} pe D D-ainj xβ xβ = II I where f : π β D f β = xβ f β = xβ I : Ξ£ g κ (Ξ© π₯ β D) , g β π-to-Ξ© βΌ f I = ainjectivity-over-small-maps {π€β} {π₯ βΊ} {π€} {π₯} {π₯} {π¦} D D-ainj π-to-Ξ© (π-to-Ξ©-is-embedding fe' pe) (π-to-Ξ©-is-small-map {π₯} fe' pe) f II : type-of I β Ξ©-Path π₯ xβ xβ II (g , h) = g , h β , h β decomposition-of-ainjective-type-gives-WEM : propext π₯ β (D : π€ Μ ) β ainjective-type D π₯ π¦ β decomposition D β WEM π₯ decomposition-of-ainjective-type-gives-WEM {π₯} {π€} {π¦} pe D D-ainj D-decomp = decomposition-of-type-with-Ξ©-paths-gives-WEM pe D-decomp (ainjective-types-have-Ξ©-Paths {π₯} {π€} {π¦} pe D D-ainj) \end{code} Examples: \begin{code} decomposition-of-universe-gives-WEM : is-univalent π€ β decomposition (π€ Μ ) β WEM π€ decomposition-of-universe-gives-WEM {π€} ua = decomposition-of-ainjective-type-gives-WEM {π€} {π€ βΊ} {π€} (univalence-gives-propext ua) (π€ Μ ) (universes-are-ainjective-Ξ ua) decomposition-of-ordinals-type-gives-WEM-bis : is-univalent π€ β decomposition (Ordinal π€) β WEM π€ decomposition-of-ordinals-type-gives-WEM-bis {π€} ua = decomposition-of-ainjective-type-gives-WEM {π€} {π€ βΊ} {π€} (univalence-gives-propext ua) (Ordinal π€) (Ordinal-is-ainjective ua) \end{code} Added by Martin Escardo and Tom de Jong 18th July 2024. We generalize a fact given above from ordinals to injective types. \begin{code} module decomposability-bis (pt : propositional-truncations-exist) where open PropositionalTruncation pt open decomposability pt ainjective-type-decomposable-iff-WEM : propext π€ β (D : π€ Μ ) β ainjective-type D π€ π₯ β has-two-distinct-points D β decomposable D β WEM π€ ainjective-type-decomposable-iff-WEM pe D D-ainj htdp = β₯β₯-rec (WEM-is-prop fe) (decomposition-of-ainjective-type-gives-WEM pe D D-ainj) , (Ξ» wem β β£ WEM-gives-decomposition-of-two-pointed-types wem D htdp β£) \end{code} Added 25th July 2024 by Tom de Jong and Martin Escardo. The previous theorem, however, doesn't capture our examples of injective types. Indeed, the assumption that D : π€ is injective with respect to π€ and π₯ is a bit unnatural, as all known examples of injective types are large, e.g. the universe π€ is injective w.r.t π€ and π€, as are the ordinals in π€ and the propositions in π€. In fact, in InjectiveTypes.Resizing we showed that such injective types are necessarily large unless ꪪ-resizing holds. Therefore, we now improve and generalize the above theorem to a large, but locally small, type, so that all known examples are captured. \begin{code} ainjective-type-decomposable-iff-WEMβΊ : propext π€ β (D : π€ βΊ Μ ) β is-locally-small D β ainjective-type D π€ π₯ β has-two-distinct-points D β decomposable D β WEM π€ ainjective-type-decomposable-iff-WEMβΊ pe D D-ls D-ainj htdp = β₯β₯-rec (WEM-is-prop fe) (decomposition-of-ainjective-type-gives-WEM pe D D-ainj) , (Ξ» wem β β£ WEM-gives-decomposition-of-two-pointed-typesβΊ wem D D-ls htdp β£) \end{code} End of addition. Notice that the following doesn't mention WEM in its statement, but its proof does. Although the proof is constructive, the assumption is necessarily non-constructive. \begin{code} ainjective-type-decomposability-gives-decomposition : propext π€ β (D : π€ Μ ) β ainjective-type D π€ π₯ β has-two-distinct-points D β decomposable D β decomposition D ainjective-type-decomposability-gives-decomposition pe D D-ainj htdp Ξ΄ = WEM-gives-decomposition-of-two-pointed-types (lr-implication (ainjective-type-decomposable-iff-WEM pe D D-ainj htdp) Ξ΄) D htdp \end{code} Also added 25th July 2024 for the same reason given above: \begin{code} ainjective-type-decomposability-gives-decompositionβΊ : propext π€ β (D : π€ βΊ Μ ) β is-locally-small D β ainjective-type D π€ π₯ β has-two-distinct-points D β decomposable D β decomposition D ainjective-type-decomposability-gives-decompositionβΊ pe D D-ls D-ainj htdp Ξ΄ = WEM-gives-decomposition-of-two-pointed-typesβΊ (lr-implication (ainjective-type-decomposable-iff-WEMβΊ pe D D-ls D-ainj htdp) Ξ΄) D D-ls htdp \end{code} Added by Martin Escardo 10th June 2024. From any non-trivial, totally separated, injective type we get the double negation of the principle of weak excluded middle. Here by non-trivial we mean that not all two elements are equal, which means that the type is not a proposition. (Of course, "Ξ£" in the hypothesis can be replaced by "β" because the type of the conclusion, being a negation, is a proposition.) \begin{code} open import UF.Hedberg using (wconstant) open import TypeTopology.TotallySeparated non-trivial-totally-separated-ainjective-type-gives-¬¬-WEM : propext π₯ β (Ξ£ X κ π€ Μ , ((Β¬ is-prop X) Γ is-totally-separated X Γ ainjective-type X π₯ π¦)) β ¬¬ WEM π₯ non-trivial-totally-separated-ainjective-type-gives-¬¬-WEM {π₯} {π€} {π¦} pe (X , X-is-not-prop , X-is-totally-separated , X-ainj) = V where I : Β¬ decomposition X β (p : X β π) β wconstant p I Ξ΄ p xβ xβ = h (p xβ) (p xβ) refl refl where h : (bβ bβ : π) β p xβ οΌ bβ β p xβ οΌ bβ β p xβ οΌ p xβ h β β eβ eβ = eβ β eβ β»ΒΉ h β β eβ eβ = π-elim (Ξ΄ (p , (xβ , eβ) , (xβ , eβ))) h β β eβ eβ = π-elim (Ξ΄ (p , (xβ , eβ) , (xβ , eβ))) h β β eβ eβ = eβ β eβ β»ΒΉ II : ((p : X β π) β wconstant p) β is-prop X II w xβ xβ = X-is-totally-separated (Ξ» p β w p xβ xβ) III : Β¬ decomposition X β is-prop X III = II β I IV : ¬¬ decomposition X IV = contrapositive III X-is-not-prop V : ¬¬ WEM π₯ V = ¬¬-functor (decomposition-of-ainjective-type-gives-WEM pe X X-ainj) IV \end{code} Notice that Β¬ WEM π€ is consistent and hence ¬¬ WEM π€ is not provable. But of course ¬¬ WEM π€ is consistent as it follows from WEM π€, which in turn follows from EM π€. More examples are included in Iterative.Multisets-Addendum and Iterative.Sets-Addendum.