Martin Escardo, December 2017 (but done much earlier on paper) As discussed in the module CompactTypes, Bishop's "limited principle of omniscience" amount to the compactness of the type ℕ, that is, Π p ꞉ ℕ → 𝟚 , (Σ n ꞉ ℕ , p n = ₀) + (Π n ꞉ ℕ , p n = ₁), which fails in contructive mathematics (here in the sense that it is independent - it is not provable, and its negation is also not provable). This is in general not a univalent proposition, because there may be many n:ℕ with p n = ₀. In univalent mathematics, we may get a proposition by truncating the Σ to get the existential quantifier ∃ (see the Homotopy Type Theory book). Here instead we construct the truncation directly, and call it LPO. Using this and the module Prop-Tychonoff, we show that the function type LPO→ℕ is compact, despite the fact that LPO is undecided in our type theory. (We needed to add new helper lemmas in the module GenericConvergentSequence) \begin{code} {-# OPTIONS --safe --without-K #-} open import UF.FunExt module Taboos.LPO where open import CoNaturals.Type open import MLTT.Spartan open import MLTT.Two-Properties open import Naturals.Order open import Notation.CanonicalMap open import Notation.Order open import TypeTopology.CompactTypes open import UF.Base open import UF.Embeddings open import UF.Equiv open import UF.Subsingletons open import UF.Subsingletons-FunExt LPO : 𝓤₀ ̇ LPO = (x : ℕ∞) → is-decidable (Σ n ꞉ ℕ , x = ι n) \end{code} Added 10th September 2024. In retrospect, it would have been better if we had equivalently defined LPO = (x : ℕ∞) → is-decidable (Σ n ꞉ ℕ , ι n = ℕ) because we have fiber ι x = Σ n ꞉ ℕ , ι n = ℕ by definition and ι is an embedding, so that e.g. the following would require a proof given our definition of embedding. End of addition. \begin{code} LPO-is-prop : Fun-Ext → is-prop LPO LPO-is-prop fe = Π-is-prop fe f where a : (x : ℕ∞) → is-prop (Σ n ꞉ ℕ , x = ι n) a x (n , p) (m , q) = to-Σ-= (ℕ-to-ℕ∞-lc (p ⁻¹ ∙ q) , ℕ∞-is-set fe _ _) f : (x : ℕ∞) → is-prop (is-decidable (Σ n ꞉ ℕ , x = ι n)) f x = decidability-of-prop-is-prop fe (a x) \end{code} We now show that LPO is logically equivalent to its traditional formulation by Bishop, which here amounts the compactness of ℕ. However, the traditional formulation is not a univalent proposition in general, and not type equivalent (in the sense of UF) to our formulation. \begin{code} LPO-gives-compact-ℕ : funext 𝓤₀ 𝓤₀ → LPO → is-compact ℕ LPO-gives-compact-ℕ fe ℓ β = γ where A = (Σ n ꞉ ℕ , β n = ₀) + (Π n ꞉ ℕ , β n = ₁) α : ℕ → 𝟚 α = force-decreasing β x : ℕ∞ x = (α , force-decreasing-is-decreasing β) d : is-decidable (Σ n ꞉ ℕ , x = ι n) d = ℓ x a : (Σ n ꞉ ℕ , x = ι n) → A a (n , p) = inl (force-decreasing-is-not-much-smaller β n c) where c : α n = ₀ c = α n =⟨ ap (λ - → ι - n) p ⟩ ι (ι n) n =⟨ ℕ-to-ℕ∞-diagonal₀ n ⟩ ₀ ∎ b : (¬ (Σ n ꞉ ℕ , x = ι n)) → A b u = inr g where v : (n : ℕ) → x = ι n → 𝟘 v = curry u g : (n : ℕ) → β n = ₁ g n = ≤₂-criterion-converse (force-decreasing-is-smaller β n) e where c : x = ι n → 𝟘 c = v n l : x = ∞ l = not-finite-is-∞ fe v e : α n = ₁ e = ap (λ - → ι - n) l γ : A γ = cases a b d compact-ℕ-gives-LPO : funext 𝓤₀ 𝓤₀ → is-compact ℕ → LPO compact-ℕ-gives-LPO fe κ x = γ where A = is-decidable (Σ n ꞉ ℕ , x = ι n) β : ℕ → 𝟚 β = ι x d : (Σ n ꞉ ℕ , β n = ₀) + (Π n ꞉ ℕ , β n = ₁) d = κ β a : (Σ n ꞉ ℕ , β n = ₀) → A a (n , p) = inl (pr₁ g , pr₂(pr₂ g)) where g : Σ m ꞉ ℕ , (m ≤ n) × (x = ι m) g = ℕ-to-ℕ∞-lemma fe x n p b : (Π n ꞉ ℕ , β n = ₁) → A b φ = inr g where ψ : ¬ (Σ n ꞉ ℕ , β n = ₀) ψ = uncurry (λ n → equal-₁-different-from-₀(φ n)) f : (Σ n ꞉ ℕ , x = ι n) → Σ n ꞉ ℕ , β n = ₀ f (n , p) = (n , (ap (λ - → ι - n) p ∙ ℕ-to-ℕ∞-diagonal₀ n)) where l : ι x n = ι (ι n) n l = ap (λ - → ι - n) p g : ¬ (Σ n ꞉ ℕ , x = ι n) g = contrapositive f ψ γ : is-decidable (Σ n ꞉ ℕ , x = ι n) γ = cases a b d \end{code} Now, if LPO is false, that is, an empty type, then the function type LPO → ℕ is isomorphic to the unit type 𝟙, and hence is compact. If LPO holds, that is, LPO is equivalent to 𝟙 because it is a univalent proposition, then the function type LPO → ℕ is isomorphic to ℕ, and hence the type LPO → ℕ is again compact by LPO. So in any case we have that the type LPO → ℕ is compact. However, LPO is an undecided proposition in our type theory, so that the nature of the function type LPO → ℕ is undecided. Nevertheless, we can show that it is compact, without knowing whether LPO holds or not! \begin{code} open import TypeTopology.PropTychonoff [LPO→ℕ]-is-compact∙ : FunExt → is-compact∙ (LPO → ℕ) [LPO→ℕ]-is-compact∙ fe = prop-tychonoff-corollary' fe (LPO-is-prop (fe _ _)) f where f : LPO → is-compact∙ ℕ f lpo = compact-pointed-types-are-compact∙ (LPO-gives-compact-ℕ (fe 𝓤₀ 𝓤₀) lpo) 0 [LPO→ℕ]-is-compact : FunExt → is-compact (LPO → ℕ) [LPO→ℕ]-is-compact fe = compact∙-types-are-compact ([LPO→ℕ]-is-compact∙ fe) [LPO→ℕ]-is-Compact : FunExt → is-Compact (LPO → ℕ) {𝓤} [LPO→ℕ]-is-Compact fe = compact-types-are-Compact ([LPO→ℕ]-is-compact fe) \end{code} However, we cannot prove that the function type LPO→ℕ is discrete, as otherwise we would be able to decide the negation of LPO (added 14th Feb 2020): \begin{code} open import Naturals.Properties open import UF.DiscreteAndSeparated [LPO→ℕ]-discrete-gives-¬LPO-decidable : funext 𝓤₀ 𝓤₀ → is-discrete (LPO → ℕ) → is-decidable (¬ LPO) [LPO→ℕ]-discrete-gives-¬LPO-decidable fe = discrete-exponential-has-decidable-emptiness-of-exponent fe (1 , 0 , positive-not-zero 0) \end{code} Another condition equivalent to LPO is that the obvious embedding ι𝟙 : ℕ + 𝟙 → ℕ∞ has a section: \begin{code} ι𝟙-has-section-gives-LPO : (Σ s ꞉ (ℕ∞ → ℕ + 𝟙) , ι𝟙 ∘ s ∼ id) → LPO ι𝟙-has-section-gives-LPO (s , ε) u = ψ (s u) refl where ψ : (z : ℕ + 𝟙) → s u = z → is-decidable (Σ n ꞉ ℕ , u = ι n) ψ (inl n) p = inl (n , (u =⟨ (ε u) ⁻¹ ⟩ ι𝟙 (s u) =⟨ ap ι𝟙 p ⟩ ι n ∎)) ψ (inr *) p = inr γ where γ : ¬ (Σ n ꞉ ℕ , u = ι n) γ (n , q) = ∞-is-not-finite n (∞ =⟨ (ap ι𝟙 p)⁻¹ ⟩ ι𝟙 (s u) =⟨ ε u ⟩ u =⟨ q ⟩ ι n ∎) ι𝟙-is-equiv-gives-LPO : is-equiv ι𝟙 → LPO ι𝟙-is-equiv-gives-LPO i = ι𝟙-has-section-gives-LPO (equivs-have-sections ι𝟙 i) ι𝟙-inverse : (u : ℕ∞) → is-decidable (Σ n ꞉ ℕ , u = ι n) → ℕ + 𝟙 {𝓤₀} ι𝟙-inverse .(ι n) (inl (n , refl)) = inl n ι𝟙-inverse u (inr g) = inr ⋆ LPO-gives-has-section-ι𝟙 : funext 𝓤₀ 𝓤₀ → LPO → Σ s ꞉ (ℕ∞ → ℕ + 𝟙) , ι𝟙 ∘ s ∼ id LPO-gives-has-section-ι𝟙 fe lpo = s , ε where s : ℕ∞ → ℕ + 𝟙 s u = ι𝟙-inverse u (lpo u) φ : (u : ℕ∞) (d : is-decidable (Σ n ꞉ ℕ , u = ι n)) → ι𝟙 (ι𝟙-inverse u d) = u φ .(ι n) (inl (n , refl)) = refl φ u (inr g) = (not-finite-is-∞ fe (curry g))⁻¹ ε : ι𝟙 ∘ s ∼ id ε u = φ u (lpo u) LPO-gives-ι𝟙-is-equiv : funext 𝓤₀ 𝓤₀ → LPO → is-equiv ι𝟙 LPO-gives-ι𝟙-is-equiv fe lpo = embeddings-with-sections-are-equivs ι𝟙 (ι𝟙-is-embedding fe) (LPO-gives-has-section-ι𝟙 fe lpo) \end{code} Added 3rd September 2024. \begin{code} open import Taboos.WLPO LPO-gives-WLPO : funext 𝓤₀ 𝓤₀ → LPO → WLPO LPO-gives-WLPO fe lpo u = Cases (lpo u) (λ (n , p) → inr (λ {refl → ∞-is-not-finite n p})) (λ ν → inl (not-finite-is-∞ fe (λ n p → ν (n , p)))) ¬WLPO-gives-¬LPO : funext 𝓤₀ 𝓤₀ → ¬ WLPO → ¬ LPO ¬WLPO-gives-¬LPO fe = contrapositive (LPO-gives-WLPO fe) \end{code}