<Martin Escardo 2012.
See my JSL paper "Infinite sets that satisfy the principle of
omniscience" for a discussion of the type ℕ∞ defined here.
Essentially, ℕ∞ is ℕ with an added point ∞.
Added December 2017. What we knew for a long time: The ℕ∞ is a retract
of the Cantor type ℕ → 𝟚. This required adding a number of
lemmas. More additions after that date.
\begin{code}
{-# OPTIONS --safe --without-K --exact-split #-}
module CoNaturals.GenericConvergentSequence where
open import MLTT.Spartan
open import MLTT.Two-Properties
open import Naturals.Addition renaming (_+_ to _∔_)
open import Naturals.Order hiding (max)
open import Naturals.Properties
open import Notation.CanonicalMap
open import Notation.Order
open import TypeTopology.Density
open import UF.Base
open import UF.DiscreteAndSeparated
open import UF.Embeddings
open import UF.Equiv
open import UF.FunExt
open import UF.NotNotStablePropositions
open import UF.Retracts
open import UF.Sets
open import UF.SubtypeClassifier
open import UF.Subsingletons
open import UF.Subsingletons-FunExt
funext₀ : 𝓤₁ ̇
funext₀ = funext 𝓤₀ 𝓤₀
\end{code}
Definition (The generic convergent sequence). We use u,v,x to range
over ℕ∞ and α,β to range over (ℕ → 𝟚):
\begin{code}
is-decreasing : (ℕ → 𝟚) → 𝓤₀ ̇
is-decreasing α = (i : ℕ) → α i ≥ α (i ∔ 1)
being-decreasing-is-prop : funext₀ → (α : ℕ → 𝟚) → is-prop (is-decreasing α)
being-decreasing-is-prop fe α = Π-is-prop fe (λ _ → ≤₂-is-prop-valued)
ℕ∞ : 𝓤₀ ̇
ℕ∞ = Σ α ꞉ (ℕ → 𝟚) , is-decreasing α
ℕ∞-to-ℕ→𝟚 : ℕ∞ → (ℕ → 𝟚)
ℕ∞-to-ℕ→𝟚 = pr₁
instance
canonical-map-ℕ∞-ℕ→𝟚 : Canonical-Map ℕ∞ (ℕ → 𝟚)
ι {{canonical-map-ℕ∞-ℕ→𝟚}} = ℕ∞-to-ℕ→𝟚
ℕ∞-to-ℕ→𝟚-lc : funext₀ → left-cancellable ℕ∞-to-ℕ→𝟚
ℕ∞-to-ℕ→𝟚-lc fe = pr₁-lc (being-decreasing-is-prop fe _)
force-decreasing : (ℕ → 𝟚) → (ℕ → 𝟚)
force-decreasing β 0 = β 0
force-decreasing β (succ i) = min𝟚 (β (i ∔ 1)) (force-decreasing β i)
force-decreasing-is-decreasing : (β : ℕ → 𝟚) → is-decreasing (force-decreasing β)
force-decreasing-is-decreasing β zero = Lemma[minab≤₂b]
force-decreasing-is-decreasing β (succ i) = Lemma[minab≤₂b] {β (i ∔ 2)}
{force-decreasing β (i ∔ 1)}
force-decreasing-unchanged : (α : ℕ → 𝟚) → is-decreasing α → force-decreasing α ∼ α
force-decreasing-unchanged α d zero = refl
force-decreasing-unchanged α d (succ i) = g
where
IH : force-decreasing α i = α i
IH = force-decreasing-unchanged α d i
p : α (i ∔ 1) ≤ α i
p = d i
h : min𝟚 (α (i ∔ 1)) (α i) = α (i ∔ 1)
h = Lemma[a≤₂b→min𝟚ab=a] p
g' : min𝟚 (α (i ∔ 1)) (force-decreasing α i) = α (i ∔ 1)
g' = transport (λ b → min𝟚 (α (i ∔ 1)) b = α (i ∔ 1)) (IH ⁻¹) h
g : force-decreasing α (i ∔ 1) = α (i ∔ 1)
g = g'
ℕ→𝟚-to-ℕ∞ : (ℕ → 𝟚) → ℕ∞
ℕ→𝟚-to-ℕ∞ β = force-decreasing β , force-decreasing-is-decreasing β
ℕ→𝟚-to-ℕ∞-is-retraction : funext₀ → (x : ℕ∞) → ℕ→𝟚-to-ℕ∞ (ι x) = x
ℕ→𝟚-to-ℕ∞-is-retraction fe (α , d) = to-Σ-= (dfunext fe (force-decreasing-unchanged α d) ,
being-decreasing-is-prop fe α _ _)
ℕ∞-retract-of-Cantor : funext₀ → retract ℕ∞ of (ℕ → 𝟚)
ℕ∞-retract-of-Cantor fe = ℕ→𝟚-to-ℕ∞ , ι , ℕ→𝟚-to-ℕ∞-is-retraction fe
force-decreasing-is-smaller : (β : ℕ → 𝟚) (i : ℕ) → force-decreasing β i ≤ β i
force-decreasing-is-smaller β zero = ≤₂-refl
force-decreasing-is-smaller β (succ i) = Lemma[minab≤₂a]
force-decreasing-is-not-much-smaller : (β : ℕ → 𝟚) (n : ℕ)
→ force-decreasing β n = ₀
→ Σ m ꞉ ℕ , β m = ₀
force-decreasing-is-not-much-smaller β zero p = zero , p
force-decreasing-is-not-much-smaller β (succ n) p = f c
where
A = Σ m ꞉ ℕ , β m = ₀
c : (β (n ∔ 1) = ₀) + (force-decreasing β n = ₀)
c = lemma[min𝟚ab=₀] {β (n ∔ 1)} {force-decreasing β n} p
f : (β (n ∔ 1) = ₀) + (force-decreasing β n = ₀) → A
f (inl q) = n ∔ 1 , q
f (inr r) = force-decreasing-is-not-much-smaller β n r
Cantor-is-¬¬-separated : funext₀ → is-¬¬-separated (ℕ → 𝟚)
Cantor-is-¬¬-separated fe = Π-is-¬¬-separated fe (λ _ → 𝟚-is-¬¬-separated)
ℕ∞-is-¬¬-separated : funext₀ → is-¬¬-separated ℕ∞
ℕ∞-is-¬¬-separated fe = subtype-is-¬¬-separated
pr₁
(ℕ∞-to-ℕ→𝟚-lc fe)
(Cantor-is-¬¬-separated fe)
ℕ∞-is-set : funext₀ → is-set ℕ∞
ℕ∞-is-set fe = ¬¬-separated-types-are-sets fe (ℕ∞-is-¬¬-separated fe)
open import TypeTopology.TotallySeparated
ℕ∞-is-totally-separated : funext₀ → is-totally-separated ℕ∞
ℕ∞-is-totally-separated fe = retract-of-totally-separated
(ℕ∞-retract-of-Cantor fe)
(Cantor-is-totally-separated fe)
Zero : ℕ∞
Zero = (λ i → ₀) , (λ i → ≤₂-refl {₀})
Succ : ℕ∞ → ℕ∞
Succ (α , d) = (α' , d')
where
α' : ℕ → 𝟚
α' 0 = ₁
α'(succ n) = α n
d' : is-decreasing α'
d' 0 = ₁-top
d' (succ i) = d i
instance
Square-Order-ℕ∞-ℕ : Square-Order ℕ∞ ℕ
_⊑_ {{Square-Order-ℕ∞-ℕ}} u n = ι u n = ₀
Strict-Square-Order-ℕ-ℕ∞ : Strict-Square-Order ℕ ℕ∞
_⊏_ {{Strict-Square-Order-ℕ-ℕ∞}} n u = ι u n = ₁
not-⊏-is-⊒ : {m : ℕ} {u : ℕ∞} → ¬ (m ⊏ u) → u ⊑ m
not-⊏-is-⊒ f = different-from-₁-equal-₀ f
not-⊑-is-⊐ : {m : ℕ} {u : ℕ∞} → ¬ (u ⊑ m) → m ⊏ u
not-⊑-is-⊐ f = different-from-₀-equal-₁ f
is-Zero : ℕ∞ → 𝓤₀ ̇
is-Zero u = u ⊑ 0
is-positive : ℕ∞ → 𝓤₀ ̇
is-positive u = 0 ⊏ u
positivity : ℕ∞ → 𝟚
positivity u = ι u 0
𝟚-retract-of-ℕ∞ : retract 𝟚 of ℕ∞
𝟚-retract-of-ℕ∞ = positivity , s , η
where
s : 𝟚 → ℕ∞
s ₀ = Zero
s ₁ = Succ Zero
η : positivity ∘ s ∼ id
η ₀ = refl
η ₁ = refl
is-Zero-Zero : is-Zero Zero
is-Zero-Zero = refl
is-positive-Succ : (α : ℕ∞) → is-positive (Succ α)
is-positive-Succ α = refl
Zero-not-Succ : {u : ℕ∞} → Zero ≠ Succ u
Zero-not-Succ {u} r = zero-is-not-one (ap positivity r)
Succ-not-Zero : {u : ℕ∞} → Succ u ≠ Zero
Succ-not-Zero = ≠-sym Zero-not-Succ
∞ : ℕ∞
∞ = (λ i → ₁) , (λ i → ≤₂-refl {₁})
Succ-∞-is-∞ : funext₀ → Succ ∞ = ∞
Succ-∞-is-∞ fe = ℕ∞-to-ℕ→𝟚-lc fe (dfunext fe lemma)
where
lemma : (i : ℕ) → ι (Succ ∞) i = ι ∞ i
lemma 0 = refl
lemma (succ i) = refl
unique-fixed-point-of-Succ : funext₀ → (u : ℕ∞) → u = Succ u → u = ∞
unique-fixed-point-of-Succ fe u r = ℕ∞-to-ℕ→𝟚-lc fe claim
where
fact : (i : ℕ) → ι u i = ι (Succ u) i
fact i = ap (λ - → ι - i) r
lemma : (i : ℕ) → ι u i = ₁
lemma 0 = fact 0
lemma (succ i) = ι u (i ∔ 1) =⟨ fact (i ∔ 1) ⟩
ι (Succ u) (i ∔ 1) =⟨ lemma i ⟩
₁ ∎
claim : ι u = ι ∞
claim = dfunext fe lemma
Pred : ℕ∞ → ℕ∞
Pred (α , d) = (α ∘ succ , d ∘ succ)
Pred-Zero-is-Zero : Pred Zero = Zero
Pred-Zero-is-Zero = refl
Pred-Zero-is-Zero' : (u : ℕ∞) → u = Zero → Pred u = u
Pred-Zero-is-Zero' u p = transport (λ - → Pred - = -) (p ⁻¹) Pred-Zero-is-Zero
Pred-Succ : {u : ℕ∞} → Pred (Succ u) = u
Pred-Succ {u} = refl
Pred-∞-is-∞ : Pred ∞ = ∞
Pred-∞-is-∞ = refl
Succ-lc : left-cancellable Succ
Succ-lc = ap Pred
ℕ-to-ℕ∞ : ℕ → ℕ∞
ℕ-to-ℕ∞ 0 = Zero
ℕ-to-ℕ∞ (succ n) = Succ (ℕ-to-ℕ∞ n)
instance
Canonical-Map-ℕ-ℕ∞ : Canonical-Map ℕ ℕ∞
ι {{Canonical-Map-ℕ-ℕ∞}} = ℕ-to-ℕ∞
_≣_ : ℕ∞ → ℕ → 𝓤₀ ̇
u ≣ n = u = ι n
ℕ-to-ℕ∞-lc : left-cancellable ι
ℕ-to-ℕ∞-lc {0} {0} r = refl
ℕ-to-ℕ∞-lc {0} {succ n} r = 𝟘-elim (Zero-not-Succ r)
ℕ-to-ℕ∞-lc {succ m} {0} r = 𝟘-elim (Zero-not-Succ (r ⁻¹))
ℕ-to-ℕ∞-lc {succ m} {succ n} r = ap succ (ℕ-to-ℕ∞-lc {m} {n} (Succ-lc r))
ℕ-to-ℕ∞-is-embedding : funext₀ → is-embedding ℕ-to-ℕ∞
ℕ-to-ℕ∞-is-embedding fe = lc-maps-into-sets-are-embeddings ℕ-to-ℕ∞ ℕ-to-ℕ∞-lc (ℕ∞-is-set fe)
embedding-ℕ-to-ℕ∞ : funext₀ → ℕ ↪ ℕ∞
embedding-ℕ-to-ℕ∞ fe = ℕ-to-ℕ∞ , ℕ-to-ℕ∞-is-embedding fe
ℕ-to-ℕ∞-lc-refl : (k : ℕ) → ℕ-to-ℕ∞-lc refl = refl {_} {ℕ} {k}
ℕ-to-ℕ∞-lc-refl 0 = refl
ℕ-to-ℕ∞-lc-refl (succ k) = ap (ap succ) (ℕ-to-ℕ∞-lc-refl k)
ℕ-to-ℕ∞-diagonal₀ : (n : ℕ) → ι n ⊑ n
ℕ-to-ℕ∞-diagonal₀ 0 = refl
ℕ-to-ℕ∞-diagonal₀ (succ n) = ℕ-to-ℕ∞-diagonal₀ n
ℕ-to-ℕ∞-diagonal₁ : (n : ℕ) → n ⊏ ι (n ∔ 1)
ℕ-to-ℕ∞-diagonal₁ 0 = refl
ℕ-to-ℕ∞-diagonal₁ (succ n) = ℕ-to-ℕ∞-diagonal₁ n
is-Zero-equal-Zero : funext₀ → {u : ℕ∞} → is-Zero u → u = Zero
is-Zero-equal-Zero fe {u} base = ℕ∞-to-ℕ→𝟚-lc fe (dfunext fe lemma)
where
lemma : (i : ℕ) → ι u i = ι Zero i
lemma 0 = base
lemma (succ i) = [a=₁→b=₁]-gives-[b=₀→a=₀] (≤₂-criterion-converse (pr₂ u i)) (lemma i)
same-positivity : funext₀ → (u v : ℕ∞)
→ (u = Zero → v = Zero)
→ (v = Zero → u = Zero)
→ positivity u = positivity v
same-positivity fe₀ u v f g = ≤₂-anti (≤₂'-gives-≤₂ a)
(≤₂'-gives-≤₂ b)
where
a : is-Zero v → is-Zero u
a p = transport⁻¹ is-Zero (g (is-Zero-equal-Zero fe₀ p)) refl
b : is-Zero u → is-Zero v
b p = transport⁻¹ is-Zero (f (is-Zero-equal-Zero fe₀ p)) refl
successors-same-positivity : {u u' v v' : ℕ∞}
→ u = Succ u'
→ v = Succ v'
→ positivity u = positivity v
successors-same-positivity refl refl = refl
not-Zero-is-Succ : funext₀ → {u : ℕ∞} → u ≠ Zero → u = Succ (Pred u)
not-Zero-is-Succ fe {u} f = ℕ∞-to-ℕ→𝟚-lc fe (dfunext fe lemma)
where
lemma : (i : ℕ) → ι u i = ι (Succ (Pred u)) i
lemma 0 = different-from-₀-equal-₁ (f ∘ is-Zero-equal-Zero fe)
lemma (succ i) = refl
positive-is-not-Zero : {u : ℕ∞} → is-positive u → u ≠ Zero
positive-is-not-Zero {u} r s = lemma r
where
lemma : ¬ (is-positive u)
lemma = equal-₀-different-from-₁ (ap positivity s)
positive-equal-Succ : funext₀ → {u : ℕ∞} → is-positive u → u = Succ (Pred u)
positive-equal-Succ fe r = not-Zero-is-Succ fe (positive-is-not-Zero r)
Zero-or-Succ : funext₀ → (u : ℕ∞) → (u = Zero) + (u = Succ (Pred u))
Zero-or-Succ fe₀ u = 𝟚-equality-cases
(λ (z : is-Zero u) → inl (is-Zero-equal-Zero fe₀ z))
(λ (p : is-positive u) → inr (positive-equal-Succ fe₀ p))
is-Succ : ℕ∞ → 𝓤₀ ̇
is-Succ u = Σ w ꞉ ℕ∞ , u = Succ w
Zero+Succ : funext₀ → (u : ℕ∞) → (u = Zero) + is-Succ u
Zero+Succ fe₀ u = Cases (Zero-or-Succ fe₀ u) inl (λ p → inr (Pred u , p))
Succ-criterion : funext₀ → {u : ℕ∞} {n : ℕ} → n ⊏ u → u ⊑ n ∔ 1 → u = Succ (ι n)
Succ-criterion fe {u} {n} r s = ℕ∞-to-ℕ→𝟚-lc fe claim
where
lemma : (u : ℕ∞) (n : ℕ) → n ⊏ u → u ⊑ n ∔ 1
→ (i : ℕ) → ι u i = ι (Succ (ι n)) i
lemma u 0 r s 0 = r
lemma u 0 r s (succ i) = lemma₀ i
where
lemma₀ : (i : ℕ) → u ⊑ i ∔ 1
lemma₀ 0 = s
lemma₀ (succ i) = [a=₁→b=₁]-gives-[b=₀→a=₀] (≤₂-criterion-converse (pr₂ u (i ∔ 1))) (lemma₀ i)
lemma u (succ n) r s 0 = lemma₁ (n ∔ 1) r
where
lemma₁ : (n : ℕ) → n ⊏ u → is-positive u
lemma₁ 0 t = t
lemma₁ (succ n) t = lemma₁ n (≤₂-criterion-converse (pr₂ u n) t)
lemma u (succ n) r s (succ i) = lemma (Pred u) n r s i
claim : ι u = ι (Succ (ι n))
claim = dfunext fe (lemma u n r s)
∞-is-not-finite : (n : ℕ) → ∞ ≠ ι n
∞-is-not-finite n s = one-is-not-zero (₁ =⟨ ap (λ - → ι - n) s ⟩
ι (ι n) n =⟨ ℕ-to-ℕ∞-diagonal₀ n ⟩
₀ ∎)
not-finite-is-∞ : funext₀ → {u : ℕ∞} → ((n : ℕ) → u ≠ ι n) → u = ∞
not-finite-is-∞ fe {u} f = ℕ∞-to-ℕ→𝟚-lc fe (dfunext fe lemma)
where
lemma : (n : ℕ) → n ⊏ u
lemma 0 = different-from-₀-equal-₁ (λ r → f 0 (is-Zero-equal-Zero fe r))
lemma (succ n) = different-from-₀-equal-₁ (λ r → f (n ∔ 1) (Succ-criterion fe (lemma n) r))
ℕ∞-ddensity : funext₀ → {Y : ℕ∞ → 𝓤 ̇ }
→ ({u : ℕ∞} → is-¬¬-separated (Y u))
→ {f g : Π Y}
→ ((n : ℕ) → f (ι n) = g (ι n))
→ f ∞ = g ∞
→ (u : ℕ∞) → f u = g u
ℕ∞-ddensity fe {Y} s {f} {g} h h∞ u = s (f u) (g u) c
where
a : f u ≠ g u → (n : ℕ) → u ≠ ι n
a t n = contrapositive (λ (r : u = ι n) → transport⁻¹ (λ - → f - = g -) r (h n)) t
b : f u ≠ g u → u ≠ ∞
b = contrapositive (λ (r : u = ∞) → transport⁻¹ (λ - → f - = g -) r h∞)
c : ¬¬ (f u = g u)
c = λ t → b t (not-finite-is-∞ fe (a t))
ℕ∞-density : funext₀
→ {Y : 𝓤 ̇ }
→ is-¬¬-separated Y
→ {f g : ℕ∞ → Y}
→ ((n : ℕ) → f (ι n) = g (ι n))
→ f ∞ = g ∞
→ (u : ℕ∞) → f u = g u
ℕ∞-density fe s = ℕ∞-ddensity fe (λ {_} → s)
ℕ∞-𝟚-density : funext₀
→ {p : ℕ∞ → 𝟚}
→ ((n : ℕ) → p (ι n) = ₁)
→ p ∞ = ₁
→ (u : ℕ∞) → p u = ₁
ℕ∞-𝟚-density fe = ℕ∞-density fe 𝟚-is-¬¬-separated
ι𝟙 : ℕ + 𝟙 → ℕ∞
ι𝟙 = cases {𝓤₀} {𝓤₀} ι (λ _ → ∞)
ι𝟙-is-embedding : funext₀ → is-embedding ι𝟙
ι𝟙-is-embedding fe = disjoint-cases-embedding ι (λ _ → ∞) (ℕ-to-ℕ∞-is-embedding fe) g d
where
g : is-embedding (λ _ → ∞)
g x (* , p) (⋆ , q) = ap (λ - → ⋆ , -) (ℕ∞-is-set fe p q)
d : (n : ℕ) (y : 𝟙) → ι n ≠ ∞
d n _ p = ∞-is-not-finite n (p ⁻¹)
ι𝟙-dense : funext₀ → is-dense ι𝟙
ι𝟙-dense fe (u , f) = g (not-finite-is-∞ fe h)
where
g : ¬ (u = ∞)
g p = f ((inr ⋆) , (p ⁻¹))
h : (n : ℕ) → ¬ (u = ι n)
h n p = f (inl n , (p ⁻¹))
\end{code}
There should be a better proof of the following. The idea is simple:
by the above development, u = ι 0 if and only if ι u 0 = 0, and
u = ι (n+1) if and only if n ⊏ u ⊑ n+1.
\begin{code}
finite-isolated : funext₀ → (n : ℕ) → is-isolated (ι n)
finite-isolated fe n u = is-decidable-eq-sym u (ι n) (f u n)
where
f : (u : ℕ∞) (n : ℕ) → is-decidable (u = ι n)
f u 0 = 𝟚-equality-cases g₀ g₁
where
g₀ : is-Zero u → is-decidable (u = Zero)
g₀ r = inl (is-Zero-equal-Zero fe r)
h : u = Zero → is-Zero u
h = ap (λ - → ι - 0)
g₁ : is-positive u → is-decidable (u = Zero)
g₁ r = inr (contrapositive h (equal-₁-different-from-₀ r))
f u (succ n) = 𝟚-equality-cases g₀ g₁
where
g : u = ι (n ∔ 1) → n ⊏ u
g r = ap (λ - → ι - n) r ∙ ℕ-to-ℕ∞-diagonal₁ n
g₀ : u ⊑ n → is-decidable (u = ι (n ∔ 1))
g₀ r = inr (contrapositive g (equal-₀-different-from-₁ r))
h : u = ι (n ∔ 1) → u ⊑ n ∔ 1
h r = ap (λ - → ι - (n ∔ 1)) r ∙ ℕ-to-ℕ∞-diagonal₀ (n ∔ 1)
g₁ : n ⊏ u → is-decidable (u = ι (n ∔ 1))
g₁ r = 𝟚-equality-cases g₁₀ g₁₁
where
g₁₀ : u ⊑ n ∔ 1 → is-decidable (u = ι (n ∔ 1))
g₁₀ s = inl (Succ-criterion fe r s)
g₁₁ : n ∔ 1 ⊏ u → is-decidable (u = ι (n ∔ 1))
g₁₁ s = inr (contrapositive h (equal-₁-different-from-₀ s))
is-finite : ℕ∞ → 𝓤₀ ̇
is-finite u = Σ n ꞉ ℕ , ι n = u
size : {u : ℕ∞} → is-finite u → ℕ
size (n , r) = n
being-finite-is-prop : funext₀ → (u : ℕ∞) → is-prop (is-finite u)
being-finite-is-prop = ℕ-to-ℕ∞-is-embedding
ℕ-to-ℕ∞-is-finite : (n : ℕ) → is-finite (ι n)
ℕ-to-ℕ∞-is-finite n = (n , refl)
Zero-is-finite : is-finite Zero
Zero-is-finite = ℕ-to-ℕ∞-is-finite zero
Zero-is-finite' : funext₀ → (u : ℕ∞) → is-Zero u → is-finite u
Zero-is-finite' fe u z = transport⁻¹
is-finite
(is-Zero-equal-Zero fe z)
Zero-is-finite
is-finite-down : (u : ℕ∞) → is-finite (Succ u) → is-finite u
is-finite-down u (zero , r) = 𝟘-elim (Zero-not-Succ r)
is-finite-down u (succ n , r) = n , Succ-lc r
is-finite-up : (u : ℕ∞) → is-finite u → is-finite (Succ u)
is-finite-up u (n , r) = (n ∔ 1 , ap Succ r)
is-finite-up' : funext₀ → (u : ℕ∞) → is-finite (Pred u) → is-finite u
is-finite-up' fe u i = 𝟚-equality-cases
(λ (z : is-Zero u)
→ Zero-is-finite' fe u z)
(λ (p : is-positive u)
→ transport⁻¹
is-finite
(positive-equal-Succ fe p)
(is-finite-up (Pred u) i))
is-infinite-∞ : ¬ is-finite ∞
is-infinite-∞ (n , r) = 𝟘-elim (∞-is-not-finite n (r ⁻¹))
\end{code}
Order on ℕ∞:
\begin{code}
_≼ℕ∞_ : ℕ∞ → ℕ∞ → 𝓤₀ ̇
u ≼ℕ∞ v = (n : ℕ) → n ⊏ u → n ⊏ v
instance
Curly-Order-ℕ∞-ℕ∞ : Curly-Order ℕ∞ ℕ∞
_≼_ {{Curly-Order-ℕ∞-ℕ∞}} = _≼ℕ∞_
≼-anti : funext₀ → (u v : ℕ∞) → u ≼ v → v ≼ u → u = v
≼-anti fe u v l m = ℕ∞-to-ℕ→𝟚-lc fe γ
where
γ : ι u = ι v
γ = dfunext fe (λ i → ≤₂-anti (≤₂-criterion (l i)) (≤₂-criterion (m i)))
∞-largest : (u : ℕ∞) → u ≼ ∞
∞-largest u = λ n _ → refl
Zero-smallest : (u : ℕ∞) → Zero ≼ u
Zero-smallest u n = λ (p : ₀ = ₁) → 𝟘-elim (zero-is-not-one p)
Succ-not-≼-Zero : (u : ℕ∞) → ¬ (Succ u ≼ Zero)
Succ-not-≼-Zero u l = zero-is-not-one (l zero refl)
Succ-monotone : (u v : ℕ∞) → u ≼ v → Succ u ≼ Succ v
Succ-monotone u v l zero p = p
Succ-monotone u v l (succ n) p = l n p
Succ-loc : (u v : ℕ∞) → Succ u ≼ Succ v → u ≼ v
Succ-loc u v l n = l (n ∔ 1)
above-Succ-is-positive : (u v : ℕ∞) → Succ u ≼ v → is-positive v
above-Succ-is-positive u v l = l zero refl
≼-unfold-Succ : funext₀ → (u v : ℕ∞) → Succ u ≼ v → Succ u ≼ Succ (Pred v)
≼-unfold-Succ fe u v l = transport (λ - → Succ u ≼ -)
(positive-equal-Succ fe {v}
(above-Succ-is-positive u v l)) l
≼-unfold : funext₀ → (u v : ℕ∞)
→ u ≼ v
→ (u = Zero) + (Σ w ꞉ ℕ∞ , Σ t ꞉ ℕ∞ , (u = Succ w) × (v = Succ t) × (w ≼ t))
≼-unfold fe u v l = φ (Zero+Succ fe u) (Zero+Succ fe v)
where
φ : (u = Zero) + is-Succ u → (v = Zero) + is-Succ v → _
φ (inl p) _ = inl p
φ (inr (w , refl)) (inl refl) = 𝟘-elim (Succ-not-≼-Zero w l)
φ (inr (w , refl)) (inr (t , refl)) = inr (w , t , refl , refl , Succ-loc w t l)
≼-fold : (u v : ℕ∞)
→ ((u = Zero) + (Σ w ꞉ ℕ∞ , Σ t ꞉ ℕ∞ , (u = Succ w) × (v = Succ t) × (w ≼ t)))
→ u ≼ v
≼-fold Zero v (inl refl) = Zero-smallest v
≼-fold .(Succ w) .(Succ t) (inr (w , t , refl , refl , l)) = Succ-monotone w t l
max : ℕ∞ → ℕ∞ → ℕ∞
max (α , r) (β , s) = (λ i → max𝟚 (α i) (β i)) , t
where
t : is-decreasing (λ i → max𝟚 (α i) (β i))
t i = max𝟚-preserves-≤ (r i) (s i)
min : ℕ∞ → ℕ∞ → ℕ∞
min (α , r) (β , s) = (λ i → min𝟚 (α i) (β i)) , t
where
t : is-decreasing (λ i → min𝟚 (α i) (β i))
t i = min𝟚-preserves-≤ (r i) (s i)
\end{code}
More lemmas about order should be added, but I will do this on demand
as the need arises.
\begin{code}
∞-⊏-largest : (n : ℕ) → n ⊏ ∞
∞-⊏-largest n = refl
_≺ℕ∞_ : ℕ∞ → ℕ∞ → 𝓤₀ ̇
u ≺ℕ∞ v = Σ n ꞉ ℕ , (u = ι n) × n ⊏ v
instance
Strict-Curly-Order-ℕ∞-ℕ∞ : Strict-Curly-Order ℕ∞ ℕ∞
_≺_ {{Strict-Curly-Order-ℕ∞-ℕ∞}} = _≺ℕ∞_
∞-top : (u : ℕ∞) → ¬ (∞ ≺ u)
∞-top u (n , r , l) = ∞-is-not-finite n r
below-isolated : funext₀ → (u v : ℕ∞) → u ≺ v → is-isolated u
below-isolated fe u v (n , r , l) = transport⁻¹ is-isolated r (finite-isolated fe n)
≺-prop-valued : funext₀ → (u v : ℕ∞) → is-prop (u ≺ v)
≺-prop-valued fe u v (n , r , a) (m , s , b) = to-Σ-= (ℕ-to-ℕ∞-lc (r ⁻¹ ∙ s) ,
to-Σ-= (ℕ∞-is-set fe _ _ ,
𝟚-is-set _ _))
⊏-gives-≺ : (n : ℕ) (u : ℕ∞) → n ⊏ u → ι n ≺ u
⊏-gives-≺ n u a = n , refl , a
≺-gives-⊏ : (n : ℕ) (u : ℕ∞) → ι n ≺ u → n ⊏ u
≺-gives-⊏ n u (m , r , a) = transport⁻¹ (λ k → k ⊏ u) (ℕ-to-ℕ∞-lc r) a
∞-≺-largest : (n : ℕ) → ι n ≺ ∞
∞-≺-largest n = n , refl , ∞-⊏-largest n
≺-implies-finite : (a b : ℕ∞) → a ≺ b → is-finite a
≺-implies-finite a b (n , p , _) = n , (p ⁻¹)
ℕ-to-ℕ∞-≺-diagonal : (n : ℕ) → ι n ≺ ι (n ∔ 1)
ℕ-to-ℕ∞-≺-diagonal n = n , refl , ℕ-to-ℕ∞-diagonal₁ n
finite-≺-Succ : (a : ℕ∞) → is-finite a → a ≺ Succ a
finite-≺-Succ a (n , p) = transport (_≺ Succ a) p
(transport (ι n ≺_) (ap Succ p)
(ℕ-to-ℕ∞-≺-diagonal n))
≺-Succ : (a b : ℕ∞) → a ≺ b → Succ a ≺ Succ b
≺-Succ a b (n , p , q) = n ∔ 1 , ap Succ p , q
open import Naturals.Order
<-gives-⊏ : (m n : ℕ) → m < n → m ⊏ ι n
<-gives-⊏ zero zero l = 𝟘-elim l
<-gives-⊏ zero (succ n) l = refl
<-gives-⊏ (succ m) zero l = 𝟘-elim l
<-gives-⊏ (succ m) (succ n) l = <-gives-⊏ m n l
⊏-gives-< : (m n : ℕ) → m ⊏ ι n → m < n
⊏-gives-< zero zero l = 𝟘-elim (zero-is-not-one l)
⊏-gives-< zero (succ n) l = zero-least n
⊏-gives-< (succ m) zero l = 𝟘-elim (zero-is-not-one l)
⊏-gives-< (succ m) (succ n) l = ⊏-gives-< m n l
⊏-back : (u : ℕ∞) (n : ℕ) → n ∔ 1 ⊏ u → n ⊏ u
⊏-back u n = ≤₂-criterion-converse (pr₂ u n)
⊏-trans'' : (u : ℕ∞) (n : ℕ) → (m : ℕ) → m ≤ n → n ⊏ u → m ⊏ u
⊏-trans'' u = regress (λ n → n ⊏ u) (⊏-back u)
⊏-trans' : (m : ℕ) (n : ℕ) (u : ℕ∞) → m < n → n ⊏ u → m ⊏ u
⊏-trans' m n u l = ⊏-trans'' u n m (≤-trans m (m ∔ 1) n (≤-succ m) l)
⊏-trans : (m n : ℕ) (u : ℕ∞) → m ⊏ ι n → n ⊏ u → m ⊏ u
⊏-trans m n u a = ⊏-trans' m n u (⊏-gives-< m n a)
open import Ordinals.Notions
≺-trans : is-transitive _≺_
≺-trans u v w (m , r , a) (n , s , b) = m , r , c
where
c : m ⊏ w
c = ⊏-trans m n w (transport (λ t → m ⊏ t) s a) b
≺-Succ-r : (a b : ℕ∞) → a ≺ b → a ≺ Succ b
≺-Succ-r a b l = ≺-trans a (Succ a) (Succ b)
(finite-≺-Succ a (≺-implies-finite a b l))
(≺-Succ a b l)
≺≼-gives-≺ : (x y z : ℕ∞) → x ≺ y → y ≼ z → x ≺ z
≺≼-gives-≺ x y z (n , p , q) le = n , p , le n q
finite-accessible : (n : ℕ) → is-accessible _≺_ (ι n)
finite-accessible = course-of-values-induction (λ n → is-accessible _≺_ (ι n)) φ
where
φ : (n : ℕ)
→ ((m : ℕ) → m < n → is-accessible _≺_ (ι m))
→ is-accessible _≺_ (ι n)
φ n σ = acc τ
where
τ : (u : ℕ∞) → u ≺ ι n → is-accessible _≺_ u
τ u (m , r , l) = transport⁻¹ (is-accessible _≺_) r (σ m (⊏-gives-< m n l))
≺-well-founded : is-well-founded _≺_
≺-well-founded v = acc σ
where
σ : (u : ℕ∞) → u ≺ v → is-accessible _≺_ u
σ u (n , r , l) = transport⁻¹ (is-accessible _≺_) r (finite-accessible n)
≺-extensional : funext₀ → is-extensional _≺_
≺-extensional fe u v l m = γ
where
f : (i : ℕ) → i ⊏ u → i ⊏ v
f i a = ≺-gives-⊏ i v (l (ι i) (⊏-gives-≺ i u a))
g : (i : ℕ) → i ⊏ v → i ⊏ u
g i a = ≺-gives-⊏ i u (m (ι i) (⊏-gives-≺ i v a))
h : (i : ℕ) → ι u i = ι v i
h i = ≤₂-anti (≤₂-criterion (f i)) (≤₂-criterion (g i))
γ : u = v
γ = ℕ∞-to-ℕ→𝟚-lc fe (dfunext fe h)
ℕ∞-ordinal : funext₀ → is-well-order _≺_
ℕ∞-ordinal fe = (≺-prop-valued fe) , ≺-well-founded , ≺-extensional fe , ≺-trans
\end{code}
The following is not needed anymore, as we have the stronger fact,
proved above, that ≺ is well founded:
\begin{code}
≺-well-founded₂ : funext₀ → is-well-founded₂ _≺_
≺-well-founded₂ fe p φ = ℕ∞-𝟚-density fe a b
where
γ : (n : ℕ) → ((m : ℕ) → m < n → p (ι m) = ₁) → p (ι n) = ₁
γ n g = φ (ι n) h
where
h : (u : ℕ∞) → u ≺ ι n → p u = ₁
h u (m , r , l) = transport⁻¹ (λ v → p v = ₁) r (g m (⊏-gives-< m n l))
a : (n : ℕ) → p (ι n) = ₁
a = course-of-values-induction (λ n → p (ι n) = ₁) γ
f : (u : ℕ∞) → u ≺ ∞ → p u = ₁
f u (n , r , l) = transport⁻¹ (λ v → p v = ₁) r (a n)
b : p ∞ = ₁
b = φ ∞ f
ℕ∞-ordinal₂ : funext₀ → is-well-order₂ _≺_
ℕ∞-ordinal₂ fe = ≺-prop-valued fe ,
≺-well-founded₂ fe ,
≺-extensional fe ,
≺-trans
ℕ-to-ℕ∞-lemma : funext₀ → (u : ℕ∞) (n : ℕ) → u ⊑ n → Σ m ꞉ ℕ , (m ≤ n) × (u = ι m)
ℕ-to-ℕ∞-lemma fe u zero p = zero , ≤-refl zero , is-Zero-equal-Zero fe p
ℕ-to-ℕ∞-lemma fe u (succ n) p = g (𝟚-is-discrete (ι u n) ₀)
where
IH : u ⊑ n → Σ m ꞉ ℕ , (m ≤ n) × (u = ι m)
IH = ℕ-to-ℕ∞-lemma fe u n
g : is-decidable(u ⊑ n) → Σ m ꞉ ℕ , (m ≤ n ∔ 1) × (u = ι m)
g (inl q) = pr₁(IH q) , ≤-trans (pr₁ (IH q)) n (n ∔ 1)
(pr₁ (pr₂ (IH q)))
(≤-succ n) , pr₂ (pr₂ (IH q))
g (inr φ) = n ∔ 1 , ≤-refl n , s
where
q : n ⊏ u
q = different-from-₀-equal-₁ φ
s : u = Succ (ι n)
s = Succ-criterion fe {u} {n} q p
≺-cotransitive : funext₀ → cotransitive _≺_
≺-cotransitive fe u v w (n , r , a) = g (𝟚-is-discrete (ι w n) ₁)
where
g : is-decidable (n ⊏ w) → (u ≺ w) + (w ≺ v)
g (inl a) = inl (n , r , a)
g (inr f) = inr (m , s , ⊏-trans'' v n m l a)
where
b : w ⊑ n
b = not-⊏-is-⊒ {n} {w} f
σ : Σ m ꞉ ℕ , (m ≤ n) × (w = ι m)
σ = ℕ-to-ℕ∞-lemma fe w n b
m : ℕ
m = pr₁ σ
l : m ≤ n
l = pr₁ (pr₂ σ)
s : w = ι m
s = pr₂ (pr₂ σ)
ℕ∞-𝟚-order-separated : funext₀ → 𝟚-order-separated _≺_
ℕ∞-𝟚-order-separated fe x y (n , r , l) = p , t , h
where
p : ℕ∞ → 𝟚
p z = ι z n
e : ι x n = ₀
e = transport⁻¹ (λ z → p z = ₀) r (ℕ-to-ℕ∞-diagonal₀ n)
t : ι x n <₂ ι y n
t = <₂-criterion e l
f : (u v : ℕ∞) → u ≺ v → p u ≤ p v
f u v (n' , r' , l') = ≤₂-criterion ϕ
where
ϕ : ι u n = ₁ → p v = ₁
ϕ s = ⊏-trans' n n' v b l'
where
a : p (ι n') = ₁
a = transport (λ z → p z = ₁) r' s
b : n < n'
b = ⊏-gives-< n n' a
g : (u v : ℕ∞) → p u <₂ p v → u ≺ v
g u v l = γ (<₂-criterion-converse l)
where
γ : (p u = ₀) × (p v = ₁) → u ≺ v
γ (a , b) = pr₁ c , pr₂ (pr₂ c) , (⊏-trans'' v n (pr₁ c) (pr₁ (pr₂ c)) b)
where
c : Σ m ꞉ ℕ , (m ≤ n) × (u = ι m)
c = ℕ-to-ℕ∞-lemma fe u n a
h : (u v : ℕ∞) → (u ≺ v → p u ≤ p v) × (p u <₂ p v → u ≺ v)
h u v = f u v , g u v
ℕ-to-ℕ∞-order-preserving : (m n : ℕ) → m < n → ι m ≺ ι n
ℕ-to-ℕ∞-order-preserving m n l = m , refl , <-gives-⊏ m n l
ℕ-to-ℕ∞-order-reflecting : (m n : ℕ) → ι m ≺ ι n → m < n
ℕ-to-ℕ∞-order-reflecting m n (m' , p , l') = ⊏-gives-< m n l
where
l : m ⊏ ι n
l = transport⁻¹ (λ - → - ⊏ ι n) (ℕ-to-ℕ∞-lc p) l'
\end{code}
Added 25 June 2018. This may be placed somewhere else in the future.
Another version of N∞, to be investigated.
\begin{code}
Ν∞ : 𝓤₁ ̇
Ν∞ = Σ A ꞉ (ℕ → Ω 𝓤₀), ((n : ℕ) → A (n ∔ 1) holds → A n holds)
\end{code}
Needed 28 July 2018:
\begin{code}
≼-is-prop-valued : funext₀ → (u v : ℕ∞) → is-prop (u ≼ v)
≼-is-prop-valued fe u v = Π-is-prop fe (λ n → Π-is-prop fe (λ l → 𝟚-is-set))
≼-not-≺ : (u v : ℕ∞) → u ≼ v → ¬ (v ≺ u)
≼-not-≺ u v l (n , (p , m)) = zero-is-not-one (e ⁻¹ ∙ d)
where
a : v ≺ u
a = transport (λ - → - ≺ u) (p ⁻¹) (⊏-gives-≺ n u m)
k : ℕ
k = pr₁ a
b : v = ι k
b = pr₁ (pr₂ a)
c : k ⊏ v
c = l k (pr₂ (pr₂ a))
d : ι (ι k) k = ₁
d = transport (λ - → k ⊏ -) b c
e : ι (ι k) k = ₀
e = ℕ-to-ℕ∞-diagonal₀ k
not-≺-≼ : funext₀ → (u v : ℕ∞) → ¬ (v ≺ u) → u ≼ v
not-≺-≼ fe u v φ n l = 𝟚-equality-cases f g
where
f : v ⊑ n → n ⊏ v
f m = 𝟘-elim (φ (k , (p , b)))
where
k : ℕ
k = pr₁ (ℕ-to-ℕ∞-lemma fe v n m)
a : k ≤ n
a = pr₁ (pr₂ (ℕ-to-ℕ∞-lemma fe v n m))
p : v = ι k
p = pr₂ (pr₂ (ℕ-to-ℕ∞-lemma fe v n m))
b : k ⊏ u
b = ⊏-trans'' u n k a l
g : n ⊏ v → n ⊏ v
g = id
\end{code}
Characterization of ⊏.
\begin{code}
⊏-positive : (n : ℕ) (u : ℕ∞) → n ⊏ u → is-positive u
⊏-positive n u = ⊏-trans'' u n 0 (zero-least n)
⊏-charac→ : funext₀
→ (n : ℕ) (u : ℕ∞)
→ n ⊏ u
→ Σ v ꞉ ℕ∞ , u = (Succ ^ (n ∔ 1)) v
⊏-charac→ fe₀ zero u l = Pred u , (positive-equal-Succ fe₀ l)
⊏-charac→ fe₀ (succ n) u l = γ
where
IH : Σ v ꞉ ℕ∞ , Pred u = (Succ ^ (n ∔ 1)) v
IH = ⊏-charac→ fe₀ n (Pred u) l
v : ℕ∞
v = pr₁ IH
p : u = (Succ ^ (n ∔ 2)) v
p = u =⟨ positive-equal-Succ fe₀ (⊏-positive (n ∔ 1) u l) ⟩
Succ (Pred u) =⟨ ap Succ (pr₂ IH) ⟩
(Succ ^ (n ∔ 2)) v ∎
γ : Σ v ꞉ ℕ∞ , u = (Succ ^ (n ∔ 2)) v
γ = v , p
⊏-charac← : funext₀ → (n : ℕ) (u : ℕ∞)
→ (Σ v ꞉ ℕ∞ , u = (Succ ^ (n ∔ 1)) v) → n ⊏ u
⊏-charac← fe₀ zero u (v , refl) = refl
⊏-charac← fe₀ (succ n) u (v , refl) = γ
where
IH : n ⊏ Pred u
IH = ⊏-charac← fe₀ n (Pred u) (v , refl)
γ : n ∔ 1 ⊏ u
γ = IH
\end{code}
Added 19th April 2022.
\begin{code}
bounded-is-finite : funext₀
→ (n : ℕ) (u : ℕ∞)
→ u ⊑ n
→ is-finite u
bounded-is-finite fe n u le = case ℕ-to-ℕ∞-lemma fe u n le of
(λ (m , _ , p) → m , (p ⁻¹))
⊑-succ-gives-≺ : funext₀
→ (n : ℕ) (u : ℕ∞)
→ u ⊑ n
→ u ≺ ι (succ n)
⊑-succ-gives-≺ fe n u les = f (ℕ-to-ℕ∞-lemma fe u n les)
where
f : (Σ m ꞉ ℕ , (m ≤ n) × (u = ι m)) → u ≺ ι (succ n)
f (m , le , p) = m , p , a
where
a : m ⊏ ι (succ n)
a = <-gives-⊏ m (succ n) le
finite-trichotomous : funext₀
→ (n : ℕ) (u : ℕ∞)
→ (ι n ≺ u) + (ι n = u) + (u ≺ ι n)
finite-trichotomous fe 0 u = 𝟚-equality-cases
(λ (l : is-Zero u) → inr (inl ((is-Zero-equal-Zero fe l)⁻¹)))
(λ (m : is-positive u) → inl (⊏-gives-≺ 0 u m))
finite-trichotomous fe (succ n) u = 𝟚-equality-cases
(λ (l : u ⊑ succ n) →
𝟚-equality-cases
(λ (a : u ⊑ n) → inr (inr (⊑-succ-gives-≺ fe n u a)))
(λ (b : n ⊏ u) → inr (inl ((Succ-criterion fe b l)⁻¹))))
(λ (m : succ n ⊏ u) → inl (⊏-gives-≺ (succ n) u m))
\end{code}
Added 14th January 2022.
We now develop an automorphism ϕ with inverse γ of the Cantor
type ℕ → 𝟚 which induces an equivalent copy of ℕ∞.
The functions ϕ and γ restrict to an equivalence between ℕ∞ and the
subtype
Σ β ꞉ (ℕ → 𝟚) , is-prop (Σ n ꞉ ℕ , β n = ₁)
of the Cantor type (the sequences with at most one ₁).
Notice that the condition on β can be expressed as "is-prop (fiber β ₁)".
\begin{code}
has-at-most-one-₁ : (ℕ → 𝟚) → 𝓤₀ ̇
has-at-most-one-₁ β = is-prop (Σ n ꞉ ℕ , β n = ₁)
\end{code}
We define this in a submodule because the names ϕ and γ are likely to
be used in other files that import this one, so that name clashes are
avoided.
\begin{code}
module an-automorphism-and-an-equivalence where
ϕ γ : (ℕ → 𝟚) → (ℕ → 𝟚)
ϕ α 0 = complement (α 0)
ϕ α (succ n) = α n ⊕ α (n ∔ 1)
γ β 0 = complement (β 0)
γ β (succ n) = γ β n ⊕ β (n ∔ 1)
η-cantor : (β : ℕ → 𝟚) → ϕ (γ β) ∼ β
η-cantor β 0 = complement-involutive (β 0)
η-cantor β (succ n) = ⊕-involutive {γ β n} {β (n ∔ 1)}
ε-cantor : (α : ℕ → 𝟚) → γ (ϕ α) ∼ α
ε-cantor α 0 = complement-involutive (α 0)
ε-cantor α (succ n) = γ (ϕ α) (n ∔ 1) =⟨ refl ⟩
γ (ϕ α) n ⊕ α n ⊕ α (n ∔ 1) =⟨ I ⟩
α n ⊕ α n ⊕ α (n ∔ 1) =⟨ II ⟩
α (n ∔ 1) ∎
where
I = ap (_⊕ α n ⊕ α (succ n)) (ε-cantor α n)
II = ⊕-involutive {α n} {α (n ∔ 1)}
\end{code}
Now we discuss the restrictions of ϕ and γ mentioned above. Notice
that the following is by four cases without induction.
\begin{code}
ϕ-property : funext₀
→ (α : ℕ → 𝟚)
→ is-decreasing α
→ has-at-most-one-₁ (ϕ α)
ϕ-property fe α δ (0 , p) (0 , q) = to-subtype-= (λ _ → 𝟚-is-set) refl
ϕ-property fe α δ (0 , p) (succ m , q) = 𝟘-elim (Zero-not-Succ (II ⁻¹ ∙ IV))
where
u : ℕ∞
u = (α , δ)
I = α 0 =⟨ (complement-involutive (α 0))⁻¹ ⟩
complement (complement (α 0)) =⟨ ap complement p ⟩
complement ₁ =⟨ refl ⟩
₀ ∎
II : u = Zero
II = is-Zero-equal-Zero fe I
III : (α m = ₁) × (α (m ∔ 1) = ₀)
III = ⊕-property₁ {α m} {α (m ∔ 1)} (δ m) q
IV : u = Succ (ι m)
IV = uncurry (Succ-criterion fe) III
ϕ-property fe α δ (succ n , p) (0 , q)= 𝟘-elim (Zero-not-Succ (II ⁻¹ ∙ IV))
where
u : ℕ∞
u = (α , δ)
I = α 0 =⟨ (complement-involutive (α 0))⁻¹ ⟩
complement (complement (α 0)) =⟨ ap complement q ⟩
complement ₁ =⟨ refl ⟩
₀ ∎
II : u = Zero
II = is-Zero-equal-Zero fe I
III : (α n = ₁) × (α (n ∔ 1) = ₀)
III = ⊕-property₁ {α n} {α (n ∔ 1)} (δ n) p
IV : u = Succ (ι n)
IV = uncurry (Succ-criterion fe) III
ϕ-property fe α δ (succ n , p) (succ m , q) = VI
where
u : ℕ∞
u = (α , δ)
I : (α n = ₁) × (α (n ∔ 1) = ₀)
I = ⊕-property₁ (δ n) p
II : (α m = ₁) × (α (m ∔ 1) = ₀)
II = ⊕-property₁ (δ m) q
III : u = Succ (ι n)
III = uncurry (Succ-criterion fe) I
IV : u = Succ (ι m)
IV = uncurry (Succ-criterion fe) II
V : n ∔ 1 = m ∔ 1
V = ℕ-to-ℕ∞-lc (III ⁻¹ ∙ IV)
VI : (n ∔ 1 , p) = (m ∔ 1 , q)
VI = to-subtype-= (λ _ → 𝟚-is-set) V
\end{code}
The following two observations give an alternative understanding of
the definition of γ:
\begin{code}
γ-case₀ : {β : ℕ → 𝟚} {n : ℕ}
→ β (n ∔ 1) = ₀ → γ β (n ∔ 1) = γ β n
γ-case₀ = ⊕-₀-right-neutral'
γ-case₁ : {β : ℕ → 𝟚} {n : ℕ}
→ β (n ∔ 1) = ₁ → γ β (n ∔ 1) = complement (γ β n)
γ-case₁ = ⊕-left-complement
\end{code}
We need the following consequences of the sequence β having at most
one ₁.
\begin{code}
at-most-one-₁-Lemma₀ : (β : ℕ → 𝟚)
→ has-at-most-one-₁ β
→ {m n : ℕ} → (β m = ₁) × (β n = ₁) → m = n
at-most-one-₁-Lemma₀ β π {m} {n} (p , q) = ap pr₁ (π (m , p) (n , q))
at-most-one-₁-Lemma₁ : (β : ℕ → 𝟚)
→ has-at-most-one-₁ β
→ {m n : ℕ} → m ≠ n → β m = ₁ → β n = ₀
at-most-one-₁-Lemma₁ β π {m} {n} ν p = w
where
I : β n ≠ ₁
I q = ν (at-most-one-₁-Lemma₀ β π (p , q))
w : β n = ₀
w = different-from-₁-equal-₀ I
\end{code}
The main lemma about γ is the following, where we are interested in
the choice k = n, but we need to prove the lemma for general k to get
a suitable induction hypothesis.
\begin{code}
γ-lemma : (β : ℕ → 𝟚)
→ has-at-most-one-₁ β
→ (n : ℕ) → β (n ∔ 1) = ₁ → (k : ℕ) → k ≤ n → γ β k = ₁
γ-lemma β π n p zero l = w
where
w : complement (β 0) = ₁
w = complement-intro₀ (at-most-one-₁-Lemma₁ β π (positive-not-zero n) p)
γ-lemma β π 0 p (succ k) ()
γ-lemma β π (succ n) p (succ k) l = w
where
IH : γ β k = ₁
IH = γ-lemma β π (n ∔ 1) p k (≤-trans k n (n ∔ 1) l (≤-succ n))
I : n ∔ 2 ≠ succ k
I m = not-less-than-itself n r
where
q : n ∔ 1 = k
q = succ-lc m
r : n ∔ 1 ≤ n
r = transport⁻¹ (_≤ n) q l
II : β (succ k) = ₀
II = at-most-one-₁-Lemma₁ β π I p
w : γ β k ⊕ β (succ k) = ₁
w = ⊕-intro₁₀ IH II
\end{code}
With this it is almost immediate that γ produces a decreasing
sequence if it is given a sequence with at most one ₁:
\begin{code}
γ-property : (β : ℕ → 𝟚)
→ has-at-most-one-₁ β
→ is-decreasing (γ β)
γ-property β π n = IV
where
I : β (n ∔ 1) = ₁ → γ β n = ₁
I p = γ-lemma β π n p n (≤-refl n)
II : β (n ∔ 1) ≤ γ β n
II = ≤₂-criterion I
III : γ β n ⊕ β (n ∔ 1) ≤ γ β n
III = ≤₂-add-left (γ β n) (β (n ∔ 1)) II
IV : γ β (n ∔ 1) ≤ γ β n
IV = III
\end{code}
And with this we get the promised equivalence.
\begin{code}
ℕ∞-charac : funext₀ → ℕ∞ ≃ (Σ β ꞉ (ℕ → 𝟚), has-at-most-one-₁ β)
ℕ∞-charac fe = qinveq f (g , η , ε)
where
A = Σ β ꞉ (ℕ → 𝟚), is-prop (fiber β ₁)
f : ℕ∞ → A
f (α , δ) = ϕ α , ϕ-property fe α δ
g : A → ℕ∞
g (β , π) = γ β , γ-property β π
η : g ∘ f ∼ id
η (α , δ) = to-subtype-=
(being-decreasing-is-prop fe)
(dfunext fe (ε-cantor α))
ε : f ∘ g ∼ id
ε (β , π) = to-subtype-=
(λ β → being-prop-is-prop fe)
(dfunext fe (η-cantor β))
\end{code}
We export the above outside the module:
\begin{code}
ℕ∞-charac : funext₀ → ℕ∞ ≃ (Σ β ꞉ (ℕ → 𝟚), has-at-most-one-₁ β)
ℕ∞-charac = an-automorphism-and-an-equivalence.ℕ∞-charac
\end{code}