Martin Escardo, 7 May 2014. For any function f : ℕ∞ → ℕ, it is decidable whether f is non-continuous. Π (f : ℕ∞ → ℕ). ¬ (continuous f) + ¬¬ (continuous f). Based on the paper Mathematical Structures in Computer Science , Volume 25, October 2015 , pp. 1578 - 1589 DOI: https://doi.org/10.1017/S096012951300042X The title of this paper is a bit misleading. It should have been called "Decidability of non-continuity". \begin{code} {-# OPTIONS --without-K --exact-split --safe --auto-inline #-} open import SpartanMLTT open import UF-FunExt module DecidabilityOfNonContinuity (fe : funext 𝓤₀ 𝓤₀) where open import Two-Properties open import DiscreteAndSeparated open import GenericConvergentSequence open import ADecidableQuantificationOverTheNaturals fe open import DecidableAndDetachable open import CanonicalMapNotation Lemma-3·1 : (q : ℕ∞ → ℕ∞ → 𝟚) → decidable ((m : ℕ) → ¬ ((n : ℕ) → q (ι m) (ι n) ≡ ₁)) Lemma-3·1 q = claim₄ where A : ℕ∞ → 𝓤₀ ̇ A u = (n : ℕ) → q u (ι n) ≡ ₁ claim₀ : (u : ℕ∞) → decidable (A u) claim₀ u = Theorem-8·2 (q u) p : ℕ∞ → 𝟚 p = pr₁ (indicator claim₀) p-spec : (x : ℕ∞) → (p x ≡ ₀ → A x) × (p x ≡ ₁ → ¬ A x) p-spec = pr₂ (indicator claim₀) claim₁ : decidable ((n : ℕ) → p (ι n) ≡ ₁) claim₁ = Theorem-8·2 p claim₂ : ((n : ℕ) → ¬ A (ι n)) → (n : ℕ) → p (ι n) ≡ ₁ claim₂ φ n = different-from-₀-equal-₁ (λ v → φ n (pr₁ (p-spec (ι n)) v)) claim₃ : decidable ((n : ℕ) → p (ι n) ≡ ₁) → decidable ((n : ℕ) → ¬ A (ι n)) claim₃ (inl f) = inl (λ n → pr₂ (p-spec (ι n)) (f n)) claim₃ (inr u) = inr (contrapositive claim₂ u) claim₄ : decidable ((n : ℕ) → ¬ (A (ι n))) claim₄ = claim₃ claim₁ \end{code} Omitting the inclusion function, or coercion, ι : ℕ → ℕ∞, a map f : ℕ∞ → ℕ is called continuous iff ∃ m. ∀ n ≥ m. f n ≡ ∞, where m and n range over the natural numbers. The negation of this statement is equivalent to ∀ m. ¬ ∀ n ≥ m. f n ≡ ∞. We can implement ∀ y ≥ x. A y as ∀ x. A (max x y), so that the continuity of f amounts to ∃ m. ∀ n. f (max m n) ≡ ∞, and its negation to ∀ m. ¬ ∀ n. f (max m n) ≡ ∞. \begin{code} non-continuous : (ℕ∞ → ℕ) → 𝓤₀ ̇ non-continuous f = (m : ℕ) → ¬ ((n : ℕ) → f (max (ι m) (ι n)) ≡[ℕ] f ∞) Theorem-3·2 : (f : ℕ∞ → ℕ) → decidable (non-continuous f) Theorem-3·2 f = Lemma-3·1 ((λ x y → χ≡ (f (max x y)) (f ∞))) \end{code} (Maybe) to be continued (see the paper for the moment). * MP gives that continuity and doubly negated continuity agree. * WLPO is equivalent to the existence of a non-continuous function ℕ∞ → ℕ. * ¬WLPO is equivalent to the doubly negated continuity of all functions ℕ∞ → ℕ. * If MP and ¬WLPO then all functions ℕ∞ → ℕ are continuous. For future use: \begin{code} continuous : (ℕ∞ → ℕ) → 𝓤₀ ̇ continuous f = Σ m ꞉ ℕ , ((n : ℕ) → f (max (ι m) (ι n)) ≡ f ∞) \end{code}