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Abstract
If all functions (N → N) → N are continuous then 0 = 1. We establish this in intensional (and
hence also in extensional) intuitionistic dependent-type theories, with existence in the formu-
lation of continuity expressed as a Σ type via the Curry-Howard interpretation. But with an
intuitionistic notion of anonymous existence, defined as the propositional truncation of Σ, it is
consistent that all such functions are continuous. A model is Johnstone’s topological topos. On
the other hand, any of these two intuitionistic conceptions of existence give the same, consistent,
notion of uniform continuity for functions (N → 2) → N, again valid in the topological topos.
It is open whether the consistency of (uniform) continuity extends to homotopy type theory.
The theorems of type theory informally proved here are also formally proved in Agda, but the
development presented here is self-contained and doesn’t show Agda code.

1998 ACM Subject Classification F.4.1

Keywords and phrases Dependent type, intensional Martin-Löf type theory, Curry-Howard
interpretation, constructive mathematics, Brouwerian continuity axioms, anonymous existence,
propositional truncation, function extensionality, homotopy type theory, topos theory.

Digital Object Identifier 10.4230/LIPIcs.TLCA.2015.x

1 Introduction

We show that a continuity principle that holds in Brouwerian intuitionistic mathematics
becomes false when we move to its Curry–Howard interpretation. We formulate and prove
this in an intensional version of intuitionistic type theory (Section 2). Another Brouwerian
(uniform) continuity principle, however, is logically equivalent to its Curry–Howard inter-
pretation (Section 4).

In order to be able to formulate and prove this logical equivalence, we need a type theory
in which both a formula and its Curry–Howard interpretation can be expressed (Section 3).
For example, toposes admit both ∀,∃ (via the subobject classifier) and Π,Σ (via their local
cartesian closedness) and hence qualify. We adopt the HoTT-book [17] approach of working
with propositional truncation ‖ − ‖ to express ∃(x : X).A(x) as the propositional truncation
of Σ(x : X).A(x). This is related to NuPrl’s squash types [14], Maietti’s mono-types [13],
and Awodey–Bauer bracket types in extensional type theory [1]. Here by a proposition we
mean a type whose elements are all equal in the sense of the identity type, as in the HoTT
book. In a topos with identity types understood as equalizers, the propositions are the truth
values (subterminal objects), and the propositional truncation of an object X is its support,
namely the image of the unique map X → 1 to the terminal object. This gives the truth
value of the inhabitedness of X, without necessarily revealing an inhabitant of X, and we
have that

(∃(x : X).A(x)) = ‖Σ(x : X).A(x)‖.
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2 The inconsistency of a continuity principle with the Curry–Howard interpretation

In HoTT, this is taken as the definition of ∃, with truncation taken as a primitive notion.
But we don’t (need to) work with the homotopical understanding of type theory or the
univalence axiom here.

1.1 The continuity of all functions NN → N
In Brouwerian intuitionistic mathematics, all functions f : NN → N on the Baire space
NN = (N→ N) are continuous [2, 19]. This means that, for any sequence α : NN of natural
numbers, the value fα of the function depends only on a finite prefix of the argument α : NN.
If we write α =n β to mean that the sequences α and β agree at their first n positions, a
precise formulation of this continuity principle is

∀(f : NN → N). ∀(α : NN). ∃(n : N). ∀(β : NN). α =n β → fα = fβ.

It is well known that this statement cannot be proved in higher-type Heyting arithmetic
(HAω), but that is consistent and validated by the model of Kleene–Kreisel continuous
functionals, and also realizable with Kleene’s second combinatory algebra K2 [2].

We show that, in intensional Martin-Löf type theory, the Curry–Howard interpretation
of the above continuity principle is false: It is a theorem of intensional MLTT, even without
universes, that(

Π(f : NN → N).Π(α : NN).Σ(n : N).Π(β : NN).α =n β → fα = fβ
)
→ 0 = 1.

We prove this by adapting Kreisel’s well-known argument that, e.g. in HAω, extensionality,
choice and continuity are together impossible [12][18][2, page 267]. The difference here is
that
1. We work in intensional type theory.
2. Choice for the Σ interpretation of existence is a theorem of type theory.
So what is left to understand is that extensionality is not needed in Kreisel’s argument when
it is rendered in type theory (Section 2).

The above two versions of the notion of continuity can be usefully compared by consid-
ering the interpretations of HAω and MLTT in Johnstone’s topological topos [9]. The point
of this topos is that it fully embeds a large cartesian closed category of continuous maps of
topological spaces, the sequential topological spaces, and the larger locally cartesian closed
category of Kuratowski limit spaces [15]. As discussed above, any topos has ∃,∀,Σ,Π and
therefore models both intuitionistic predicate logic and dependent type theory. We have
that
1. The formula

∀(f : NN → N). ∀(α : NN). ∃(n : N). ∀(β : NN). α =n β → fα = fβ

is true in the topological topos.

The informal reading of this is “all functions NN → N are continuous”.

2. There is a function

(Π(f : NN → N).Π(α : NN).Σ(n : N).Π(β : NN).α =n β → fα = fβ)→ 0 = 1

in the topological topos, or indeed in any topos whatsoever, by our version of Kreisel’s
argument.

The informal reading of this is “not all functions NN → N are continuous”.
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But there is no contradiction in the formal versions of the above statements: they simul-
taneously hold in the same world, the topological topos. From a hypothetical inhabitant
of

Π(f : NN → N).Π(α : NN).Σ(n : N).Π(β : NN).α =n β → fα = fβ

we get a modulus-of-continuity functional

M : (NN → N)× NN → N,

by projection (rather than by choice in the topos-logic sense), which gives a modulus of
continuity n = M(f, α) of the function f : NN → N at the point α : NN. Kreisel’s argument
derives a contradiction from the existence of M . What this shows, then, is that although
every function is continuous, there is no continuous way of finding a modulus of continuity
of a given function f at a given point α. There is no continuous M . Perhaps the difference
between the seemingly contradictory statements becomes clearer if we formulate them type
theoretically with and without propositional truncation. In the topological topos, the object

Π(f : NN → N). Π(α : NN). ‖Σ(n : N). Π(β : NN). α =n β → fα = fβ‖

is inhabited, but

Π(f : NN → N). Π(α : NN). Σ(n : N). Π(β : NN). α =n β → fα = fβ

is not.

1.2 The uniform continuity of all functions 2N → N
The above situation changes radically when we move from the Baire space to the Can-
tor space, and from continuous functions to uniformly continuous functions. Another
Brouwerian continuity principle is that all functions from the Cantor space 2N = (N → 2)
to the natural numbers are uniformly continuous:

∀(f : 2N → N). ∃(n : N). ∀(α, β : 2N). α =n β → fα = fβ.

Again this is not provable in HAω but consistent and validated by the model of continuous
functionals, by realizability over K2, and by the topological topos. We have also construct-
ively developed a model analogous to the topological topos in [20].

By the above discussion, the above principle is equivalent to

Π(f : 2N → N). ‖Σ(n : N). Π(α, β : 2N). α =n β → fα = fβ‖.

We show that this, in turn, is logically equivalent to its untruncated version

Π(f : 2N → N). Σ(n : N). Π(α, β : 2N). α =n β → fα = fβ.

In particular, it follows that this object is inhabited (by a global point) in the topological
topos. Each inhabitant gives, by projection, a “fan functional” (2N → N)→ N that continu-
ously assigns a modulus of uniform continuity to its argument. There is a canonical one,
which assigns the least modulus of uniform continuity.

In order to establish the above logical equivalence, we prove the following general prin-
ciple for “exiting truncations”: If A is a family of types indexed by natural numbers such
that
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4 The inconsistency of a continuity principle with the Curry–Howard interpretation

1. A(n) is a proposition for every n : N, and
2. A(n) implies that A(m) is decidable for every m < n,
then

‖Σ(n :N).A(n)‖ → Σ(n :N).A(n).

From anonymous existence one gets explicit existence in this case.

1.3 A question regarding Church’s Thesis
Troelstra [18] also shows that extensionality, choice and Church’s Thesis (CT) are together
impossible, and Beeson [2, page 268] adapts this argument to conclude that extensional
Martin-Löf type theory refutes CT, with existence expressed by Σ. But CT with existence
expressed as the truncation of Σ is consistent with MLTT, and validated by Hyland’s effective
topos [8]. What seems to be open is whether CT formulated with Σ is already refuted by
intensional MLTT (including the ξ-rule). This question has been popularized by Maria
Emilia Maietti.

2 Continuity of functions NN → N

We reason informally, but rigorously, in type theory, where, as above, we use the equality
sign to denote identity types, unless otherwise indicated. A formal proof, written in Agda [3,
4, 16], is available at [6], but the development here is self-contained and doesn’t show Agda
code.

The following says that the Curry–Howard interpretation of “all functions NN → N are
continuous” is false.

I Theorem 1. If

Π(f : NN → N).Π(α : NN).Σ(n : N).Π(β : NN). α =n β → fα = fβ

then 0 = 1.

We take the conclusion to be 0 = 1 rather than the empty type because we are not assuming
a universe for the sake of generality. The argument below gives 0 = 1, and, as is well known,
to get to the empty type from 0 = 1 a universe is needed.

Proof. Let 0ω denote the infinite sequence of zeros, that is, λi.0, and let 0nkω denote the
sequence of n many zeros followed by infinitely many k’s. Then

(0nkω) =n 0ω and (0nkω)(n) = k.

Assume Π(f : NN → N).Π(α : NN).Σ(n : N).Π(β : NN).α =n β → fα = fβ. By projection,
with α = 0ω, this gives a modulus-of-continuity function

M : (NN → N)→ N

such that

Π(f : NN → N).Π(β : NN).0ω =Mf β → f(0ω) = fβ. (1)

We useM to define a function f : NN → N such thatM(f) cannot be a modulus of continuity
of f and hence get a contradiction. Let

m = M(λα.0),
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and define f : NN → N by

fβ = M(λα.β(αm)).

The crucial observation is that, by simply expanding the definitions, we have the judgemental
equalities

f(0ω) = M(λα.0ω(αm)) = M(λα.0) = m,

because 0ω(αm) = 0. By the defining property (1) of M , and the crucial observation,

Π(β : NN).0ω =Mf β → m = fβ. (2)

For any β : NN, by the continuity of λα.β(αm), by the definition of f , and by the defining
property (1) of M , we have that

Π(α : NN).0ω =fβ α→ β0 = β(αm).

If we choose β = 0Mf+11ω, we have 0ω =Mf+1 β, and so 0ω =Mf β, and hence f(β) = m

by (2). This gives

Π(α : NN).0ω =m α→ β0 = β(αm).

Considering α = 0m(Mf + 1)ω, we have 0ω =m α, and therefore

0 = β0 = β(αm) = β(Mf + 1) = 1.

J

I Remark (Thomas Streicher, personal communication). The conversion

f(0ω) = M(λα.0ω(αm)) = M(λα.0) = m

in the above proof relies on the ξ-rule (reduction under λ), which is not available in a
system based on the combinators S and K rather than the λ-calculus. Usually HAω is
taken in combinatory form, in which case one needs some form of extensionality to conclude
that f(0ω) = m, and this explains how we avoid the extensionality hypothesis in Kreisel’s
original argument. But notice that the ξ-rule holds in categorical models.
Therefore the argument of the above proof shows that:

I Theorem 2. In HAω, the ξ-rule, the axiom of choice, and the continuity of all functions
NN → N are together impossible.

Another observation, offered independently by Thorsten Altenkirch, Thierry Coquand
and Per Martin-Löf (personal communication), is that the continuity of a function NN → N
implies that it is extensional in the sense that it maps pointwise equal arguments to equal
values, and so the continuity axiom has some amount of extensionality built into it.

The above formulation and proof of Theorem 1 assumes natural numbers, identity types,
Π and Σ types, and no universes. But it uses only the identity type of the natural numbers.
If we assume a universe U , this identity type doesn’t need to be assumed, because it can
be defined by induction. We first define a U -valued equality relation, where O is the empty
type and 1 is the unit type with element ?,

(0 = 0) = 1, (m+ 1 = 0) = (0 = n+ 1) = O, (m+ 1 = n+ 1) = (m = n).

TLCA’15



6 The inconsistency of a continuity principle with the Curry–Howard interpretation

Then we define refl : Π(n : N).n = n by induction as

refl(0) = ?, refl(n+ 1) = refl(n),

and J : Π(A : Π(m,n).m = n→ U).(Πn.Ann (refl(n)))→ Πm,n, p.Amnp by

J A r 0 0 ? = r 0,
J A r (m+ 1) 0 p = O-rec (A (m+ 1) 0) p,
J A r 0 (n+ 1) p = O-rec (A 0 (n+ 1)) p,
J A r (m+ 1) (n+ 1) p = J (λmn.A(m+ 1)(n+ 1)) (λn.r(n+ 1))mnp.

where O-rec : Π(X : U).O → X is the recursion combinator of the empty type. The usual
computation rule, or judgemental equality, for J when it is given as primitive doesn’t hold
here, but the above J is enough to define transport (substitution) and hence symmetry,
transitivity and application (congruence), which are enough to carry out the above proof
formally (and we have checked this in Agda [6]). Hence the theorem and its proof can be
expressed in a type theory without a primitive equality type. All is needed to formulate and
prove Theorem 1 is a type theory with O,1,N,Π,Σ, U .

3 Propositional truncation and existential quantification

We recall the notion of propositional truncation from the HoTT book and use it to define the
quantifiers ∃,∀, in a slightly different way from that in the HoTT book, so that they satisfy
the Lawvere’s adjointness conditions that correspond to their intuitionistic introduction and
elimination rules. Another difference is that, instead of adding propositional truncations for
all types to our type theory, we define what a propositional truncation for a given type is.
For some types, their propositional truncation already exist, including the types needed in
our discussion of uniform continuity in Section 4.

3.1 Propositional truncation
We adopt the terminology of the HoTT book, which clashes with the terminology of the
Curry–Howard interpretation of (syntactical) propositions as types. For us, a proposition is
a subsingleton, or a type whose elements are all equal, in the sense of the identity type, here
written “=” again as in the HoTT book:

isPropX = Π(x, y : X).x = y.

Perhaps a better terminology, compatible with that of topos theory, would be truth value, in
order to avoid the clash. But we will stick to the terminology proposition, and occasionally
use truth value synonymously, for emphasis.

A propositional truncation of a type X, if it exists, is a proposition ‖X‖ together with
a map |−| : X → ‖X‖ such that for any proposition P and f : X → P we can find
f̄ : ‖X‖ → P . Because P is a proposition, this map f̄ is automatically unique up to
pointwise equality, and we have f̄ |x| = f(x), and hence a propositional truncation is a
reflection in the categorical sense, giving a universal map of X into a proposition. This can
also be understood as a recursion principle, or elimination rule,

isPropP → (X → P )→ ‖X‖ → P,

for any types P and X. The induction principle, in this case, can be derived from the
recursion principle, but in practice it is seldom needed.
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In HoTT, propositional truncations for all types are given as higher-inductive types,
with the judgemental equality f̄ |x| = f(x). From the existence of the truncation of the
two-point type 2 with this judgemental equality, one can prove function extensionality (any
two pointwise equal functions are equal) [11]. The assumption that ‖X‖ → X for every
type X gives a constructive taboo (and also contradicts univalence) [10].

However, for some types X, not only can a propositional truncation ‖X‖ be constructed
in MLTT, but also there is a map ‖X‖ → X:
1. If P = O or P = 1, or more generally if P is any proposition, we can take ‖P‖ = P , of

course. In particular, if X → O, we can take ‖X‖ = X; but also we can take ‖X‖ = O,
even though we can’t say X = O without univalence.

2. If we have an inhabitant of X then we can take ‖X‖ = 1. The map ‖X‖ → X simply
picks the given inhabitant.

3. More generally, ifX is logically equivalent to a proposition P , then we can take ‖X‖ = P ,
and we make profitable use of this simple fact.

4. If X is any type and g : X → X is a constant map in the sense that any two of its
values are equal, we can take ‖X‖ to be the type Σ(x : X).g(x) = x of fixed points of g,
together with the function X → ‖X‖ that maps x to (g(x), p), where p is an inhabitant
of the type g(g(x)) = g(x) coming from the constancy witness [10]. In this case the first
projection gives a map ‖X‖ → X. Given a map f : X → P into a proposition, we let
f̄ : ‖X‖ → P be the first projection followed by f : X → P (and we don’t use the fact
that P is a proposition).

5. For any f : N → N, the type Σ(n : N).f(n) = 0, which may well be empty, has a
constant endomap that sends (n, p) to (n′, p′), where we take the least n′ ≤ n with
p′ : f(n′) = 0, using the decidability of equality of N and bounded search. Hence not
only ‖Σ(n : N).f(n) = 0‖ exists, but also ‖Σ(n : N).f(n) = 0‖ → Σ(n : N).f(n) = 0.

3.2 Quantification
For a universe U , let Prop be the type of propositions in U :

Prop = Σ(X : U). isPropX.

If we assume that all types in U come with designated propositional truncations, then we
have a reflection

r : U → Prop

that sends X : U to the pair (‖X‖, p) with p : isProp ‖X‖ coming from the assumption. In
the other direction, we have an embedding

s : Prop→ U,

given by the projection. For X : U we have

s(r(X)) = ‖X‖.

(We also have that s is a section of r if propositional univalence holds.) For a fixed type
X : U , the type constructors Σ and Π can be regarded as having type

Σ,Π : (X → U)→ U.

TLCA’15



8 The inconsistency of a continuity principle with the Curry–Howard interpretation

We define

∃,∀ : (X → Prop)→ Prop,

by, for any A : X → Prop,

∃(A) = r(Σ(s ◦A)), ∀(A) = r(Π(s ◦A)),

which we also write more verbosely as

(∃(x : X).A(x)) = r(Σ(x : X).s(A(x))),
(∀(x : X).A(x)) = r(Π(x : X).s(A(x))).

This is essentially the same as the definition in the HoTT book, except that we give different
types to ∃,∀. With the type given in the book, ∀ gets confused with Π, because, with
function extensionality, a product of propositions is a proposition, and so there is no need
to distinguish ∀ from Π in the book.

The point of choosing the above types is that now it is easy to justify that these quantifiers
do satisfy the intuitionistic rules for quantification. It is enough to show that they satisfy
Lawvere’s adjointness conditions. For P,Q : Prop, define

(P ≤ Q) = (s(P )→ s(Q)).

This is a pre-order (and a partial order if propositional univalence holds). Now endow
the function type (X → Prop) with the pointwise order (using Π to define it). Then the
quantifiers ∃,∀ : (X → Prop) → Prop are the left and right adjoints to the exponential
transpose Prop→ (X → Prop) of the projection

Prop×X → Prop,

using the universal property of truncation. The exponential transpose maps P to λx.P .
Hence the adjointness condition for the existential quantifier amounts to

∃(A) ≤ P ⇐⇒ A ≤ λx.P.

Expanding the definitions, this amounts to

‖Σ(x : X).s(A(x))‖ → s(P ) ⇐⇒ Π(x : X).s(A(x))→ s(P ),
⇐⇒ (Σ(x : X).s(A(x)))→ s(P ).

So we need to check that

‖Σ(x : X).s(A(x))‖ → s(P ) ⇐⇒ (Σ(x : X).s(A(x)))→ s(P )

holds, but this is the case by the defining property of propositional truncation. For the sake
of completeness, we also check the adjointness condition

P ≤ ∀(A) ⇐⇒ λx.P ≤ A.

For this we need function extensionality (which follows from the assumption of truncations
supporting the judgemental equality discussed above). By definition, this amounts to

s(P )→ ‖Π(x : X).s(A(x))‖ ⇐⇒ Π(x : X).s(P )→ s(A(x)).

But

Π(x : X).s(P )→ s(A(x)) ⇐⇒ s(P )→ Π(x : X).s(A(x)),
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and so the above is equivalent to

s(P )→ ‖Π(x : X).s(A(x))‖ ⇐⇒ s(P )→ Π(x : X).s(A(x)).

But this again holds by the defining property of truncation, because, by function extension-
ality, a product of propositions is a proposition, and each s(A(x)) is a proposition. This
explains why ∀ is identified with Π in the HoTT book.

Having established that the quantifiers ∃,∀ : (X → Prop) → Prop defined from Σ and
Π with truncation (via the reflection r : U → Prop) do satisfy the adjointness conditions
corresponding to the introduction and elimination rules of intuitionistic logic, in practice we
prefer to use the notation of the HoTT book, with ∃(x : X).A(x) defined as ‖Σ(x : X).A(x)‖
for propositionally-valued A : X → U , or even avoid ∃ altogether, and just use truncation
explicitly, as in the next section.

4 Uniform continuity of functions 2N → N

We now compare the untruncated formulation of the uniform continuity principle

Π(f : 2N → N). Σ(n : N). Π(α, β : 2N). α =n β → fα = fβ

with its truncated version

Π(f : 2N → N). ‖Σ(n : N). Π(α, β : 2N). α =n β → fα = fβ‖.

A formal counter-part in Agda of this section is available at [6].
We work in a type theory with O,1,2,N,Π,Σ, Id. This time, identity types for types

other than N are needed, but universes are not. But we need more:
1. In principle, we would have to assume the presence of truncations, for example as defined

in the HoTT book and explained in the previous section, from which function extension-
ality follows [11].

2. However, in turns out that function extensionality alone suffices, because it implies the
existence of the propositional truncation mentioned above, and hence we can omit pro-
positional truncations from our type theory. (But it doesn’t seem to be possible to
remove the assumption of function extensionality in the theorem proved here.)

Hence we don’t assume propositional truncations in our type theory.

I Theorem 3. Assuming function extensionality, for every f : 2N → N the type

Σ(n : N). Π(α, β : 2N). α =n β → fα = fβ

has a propositional truncation, and the proposition

Π(f : 2N → N). ‖Σ(n : N). Π(α, β : 2N). α =n β → fα = fβ‖

is logically equivalent to the type

Π(f : 2N → N). Σ(n : N). Π(α, β : 2N). α =n β → fα = fβ.

I Lemma 4. Function extensionality implies that, for any f : 2N → N, the type family

A(n) = Π(α, β : 2N). α =n β → fα = fβ

satisfies the following conditions:

TLCA’15



10 The inconsistency of a continuity principle with the Curry–Howard interpretation

1. A(n) is a proposition for every n : N, and
2. A(n) implies that A(m) is decidable for every m < n,

Proof. By Hedberg’s Theorem [7], equality of natural numbers is a proposition. Hence
so is A(n), because, by function extensionality, a product of a family of propositions is a
proposition. To conclude that for all n, if A(n) holds then A(m) is decidable for all m < n,
it is enough to show that for all n, (1) ¬A(n+ 1) implies ¬A(n), and (2) if A(n+ 1) holds
then A(n) is decidable. (1) This follows from A(n)→ A(n+1), which says that any number
bigger than a modulus of uniform continuity is also a modulus, which is immediate. (2):
For every n, the type

B(n) = Π(s : 2n). f(s0ω) = f(s1ω),

is decidable, because N has decidable equality and finite products of decidable types are
also decidable. Now let n : N and assume A(n + 1). To show that A(n) is decidable, it is
enough to show that A(n) is logically equivalent to B(n), because then B(n) → A(n) and
¬B(n)→ ¬A(n) and hence we can decide A(n) by reduction to deciding B(n).

The implication A(n) → B(n) holds without considering the assumption A(n + 1). To
see this, assume A(n) and let s : 2n. Taking α = s0ω and β = s1ω, we conclude from A(n)
that f(s0ω) = f(s1ω), which is the conclusion of B(n).

Now assume A(n+ 1) and B(n). To establish A(n), let α, β : 2N with α =n β. We need
to conclude that f(α) = f(β). By the decidability of equality of 2, either α(n) = β(n) or
not. If α(n) = β(n), then α =n+1 β, and hence f(α) = f(β) by the assumption A(n + 1).
If α(n) 6= β(n) , we can assume w.l.o.g. that α(n) = 0 and β(n) = 1. Now take the finite
sequence s = α(0), α(1), . . . , α(n − 1)(= β(0), β(1), . . . , β(n − 1)). Then α =n+1 s0ω and
s1ω =n+1 β, which together with A(n + 1) imply f(α) = f(s0ω) and f(s1ω) = f(β). But
f(s0ω) = f(s1ω) by B(n), and hence f(α) = f(β) by transitivity. J

I Lemma 5. If a type X is logically equivalent to a proposition Q, then
1. X has the propositional truncation ‖X‖ = Q, and
2. ‖X‖ → X.

Proof. We have X → ‖X‖ because this is the assumption X → Q. If X → P for some
proposition P , then also ‖X‖ → P , because this means Q → P , which follows from the
assumption Q → X and transitivity of implication. This shows that our definition of
‖X‖ has the required property for truncations. And ‖X‖ → X is the assumption that
Q→ X. J

I Lemma 6. Function extensionality implies that for any family A of types indexed by
natural numbers such that
1. A(n) is a proposition for every n : N, and
2. A(n) implies that A(m) is decidable for every m < n,
the type Σ(n : N).A(n) is logically equivalent to the proposition

P = Σ(k : N).B(k)

where

B(k) = A(k)×Π(i : N).A(i)→ k ≤ i.
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Proof. By function extensionality, the product of a family of propositions is a proposition,
and hence the type Π(n : N).A(n) → k ≤ n is a proposition, because the type k ≤ n is
a proposition. Because the product of two propositions is a proposition, the type B(k)
is a proposition. But now if B(k) and B(k′) then, by construction, k = k′. Hence any
two inhabitants of P are equal, using the fact that B(k) is a proposition, which means
that P is indeed a proposition. By projection, P → Σ(n : N).A(n). Conversely, if we
have (n, a) : Σ(n : N).A(n), then we can find, by the decidability of A(m) for m < n, the
minimal k such that there is b : A(k), by search bounded by n, and this gives an element
(k, b, µ) : P where µ : Π(i : N).A(i) → k ≤ i is the minimality witness. This shows that
Σ(n : N).A(n)→ P and concludes the proof. J

I Remark. Function extensionality in the above lemma can be avoided using the fact that the
type of fixed points of a constant endomap is a proposition [10], where a map is constant if
any two of its values are equal. Given (n, a) : Σ(n :N).A(n), we know that A(m) is decidable
for all m < n and thus can find the minimal m such that A(m), by search bounded by n,
which gives an endomap of Σ(n :N).A(n). This map is constant, because any two minimal
witnesses are equal, and because A(n) is a proposition. Then we instead take P to be the
type of fixed points of this constant map.

By Lemmas 4, 5, and 6, for any f : 2N → N, the truncation of the type

UC(f) = Σ(n : N). Π(α, β : 2N). α =n β → fα = fβ

exists and implies UC(f), which establishes Theorem 3. J
Unfolding the above construction of the truncation, the truncated version of uniform

continuity says that there is, using Σ to express existence, a minimal modulus of uniform
continuity, making this use of Σ into a proposition, and, by function extensionality, the
statement of uniform continuity into a proposition too. Then the theorem says that this
proposition is logically equivalent to the existence, using Σ again, of some modulus of uniform
continuity. This statement is not a proposition, because any number bigger than a modulus
of uniform continuity is itself a modulus of uniform continuity.

The situation here is analogous to that of quasi-inverses and equivalences in the sense of
the HoTT book. The type expressing that a function has a quasi-inverse is not a proposition
in general, but it is equivalent to the type expressing that the function is an equivalence,
which is always a proposition. Hence being an equivalence is the propositional truncation
of having a quasi-inverse.
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