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Path

Let x0 and x1 be points of a space X.

A path from x0 to x1 is a continuous map

f : [0,1]→ X

with

f(0) = x0 and f(1) = x1.
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Homotopy

Let f0, f1 : X → Y be continuous maps.

A homotopy from f0 to f1 is a continuous

map

H : [0,1]×X → Y

with

H(0, x) = f0(x) and H(1, x) = f1(x).
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Homotopies as paths

Let C(X,Y ) denote the set of continuous

maps from X to Y .

Then a homotopy

H : [0,1]×X → Y

can be seen as a path

H : [0,1]→ C(X,Y )

from f0 to f1.

A continuous deformation of f0 into f1.
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Really?

This would be true if one could topologize
C(X,Y ) in such a way that a function

H : [0,1]×X → Y

is continuous if and only if

H : [0,1]→ C(X,Y )

is continuous.

This is the question Hurewicz posed to Fox in
1930.

Is it possible to topologize C(X,Y ) in such a
way that H is continuous if and only if H̄ is
continuous?

We are interested in the more general case
when [0,1] is replaced by an arbitrary
topological space A.

Fox published a partial answer in 1945.
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The transpose of a function of two variables

The transpose of a function

g : A×X → Y

is the function

g : A→ C(X,Y )

defined by

g(a) = ga ∈ C(X,Y )

where

ga(x) = g(a, x).

More concisely,

g(a)(x) = g(a, x).
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Weak, strong and exponential topologies

A topology on the set C(X,Y ) is called

weak if g : A×X → Y continuous =⇒
g : A→ C(X,Y ) continuous,

strong if g : A→ C(X,Y ) continuous =⇒
g : A×X → Y continuous,

exponential if it is both weak and strong.

Thus a topology on C(X,Y ) is exponential if

and only if it makes transposition into a

well-defined bijection

C(A×X,Y ) → C(A,C(X,Y ))

g 7→ ḡ

More standard terminologies for weak and

strong are splitting and conjoining

respectively.
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Strong ⇐⇒ evaluation continuous

Lemma
A topology on C(X,Y ) is strong if and only if
it makes the evaluation map

εX,Y : C(X,Y )×X → Y
(f, x) 7→ f(x)

into a continuous function.

Proof. The transpose ε : C(X,Y )→ C(X,Y ) of the

evaluation map is continuous for any topology on

C(X,Y ) because ε(f)(x) = f(x) for all x and hence

ε(f) = f .

This shows that evaluation is continuous if the

topology on C(X,Y ) is strong.

Conversely, assume that evaluation is continuous for a

given topology on C(X,Y ) and let g : A×X → Y be a

map with a continuous transpose g : A→ C(X,Y ).

Then g is also continuous because

g(a, x) = g(a)(x) = ε(g(a), x) = ε ◦(g × idX)(a, x) and

hence g is a composition ε ◦(g × idX) of continuous

maps. Q.E.D.
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Justifying our terminology

Lemma

1. Any weak topology is weaker than any
strong topology.

2. Any topology weaker than a weak
topology is also weak.

3. Any topology stronger than a strong
topology is also strong.

In particular, there is at most one exponential
topology.

When it exists, it is the weakest strong
topology, or, equivalently, the strongest weak
topology.
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Proof. Only the fact that any weak topology is

weaker than any strong topology is not immediate.

Endow C(X,Y ) with a weak and a strong topology,

obtaining spaces W(X,Y ) and S(X,Y ) respectively.

Then the evaluation map ε : S(X,Y )×X → Y is

continuous

By definition of weak topology, its transpose

ε : S(X,Y )→W(X,Y ) is also continuous.

But we have seen that ε(f) = f . Therefore

O = ε−1(O) ∈ OS(X,Y ) for every O ∈ OW(X,Y ).

Q.E.D.
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Exponentiable space

A space X is called exponentiable if the set

C(X,Y ) admits an exponential topology for

every space Y .

In this case, the set C(X,Y ) endowed with

the exponential topology is usually denoted by

Y X

and referred to as an exponential.

The problem tackled in this talk is to develop

a criterion for exponentiability and an explicit

construction of exponential topologies.
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Topologies on lattices of open sets

We now reduce the exponentiability problem

to a simpler problem.

There is a single space S with the property

that X is exponentiable if and only if C(X, S)

has an exponential topology.

Moreover, in this case, the exponential

topology of C(X,Y ) is uniquely determined by

the exponential topology of C(X, S) and by

the topology of Y in a simple fashion.
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The Sierpinski space

The Sierpinski space is the space S with two

points 0 and 1 such that {1} is open but {0}
is not.

The map f 7→ f−1(1) is a bijection from

C(X, S) to OX.

A topology on OX is exponential if it is

induced by an exponential topology on

C(X, S) via the bijection.
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Exponential topologies on lattices of open sets

Explicitly, a topology on OX is

strong: The graph

εX = {(U, x) ∈ OX ×X | x ∈ U}

of the membership relation is open.

weak: For each

W ∈ O (A×X),

the function

W : A→ OX

defined by

W(a) = {x ∈ X | (a, x) ∈W}

is continuous.
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Induced topology

Let T be a topology on OX.

The induced topology on C(X,Y ) is

generated by the subbasic open sets

NT (O, V ) = {f ∈ C(X,Y ) | f−1(V ) ∈ O},

where

O ranges over T

V ranges over O Y .
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Example Let T be topology on OX whose

subbasic open sets are of the form

OQ = {U ∈ OX | Q ⊆ U}

for Q ⊆ X compact.

Then the induced topology is the compact

open topology:

f ∈ NT (OQ, V )

⇐⇒ f−1(V ) ∈ OQ

⇐⇒ Q ⊆ f−1(V )

⇐⇒ f(Q) ⊆ V .
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Exponentiality of the induced topology

Lemma
Let X be a topological space and T be a
topology on OX.

1. T is weak if and only if it induces a weak
topology on C(X,Y ) for every Y .

2. T is strong if and only if induces a strong
topology on C(X,Y ) for every Y .

3. T is exponential if and only if it induces
an exponential topology on C(X,Y ) for
every Y .

Proof. (1)(⇐) and (2)(⇐): Take Y = S and observe

that C(X, S) endowed with the topology induced by T

is homeomorphic to OX endowed with T .

(1)(⇒) and (2)(⇒): Routine calculations.

(3): Immediate consequence of (1) and (2). Q.E.D.
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Reduction of the problem

Corollary

A space X is exponentiable if and only if OX
has an exponential topology.

In this case, the exponential topology of

C(X,Y ) is the topology induced by the

exponential topology of OX.

Thus,

In order to know how to topologize

C(X,Y ) for arbitrary Y ,

it suffices to know how to topologize

C(X, S) ∼= OX.

This reduction is usually performed using

injective spaces, combining ideas from

domain theory and category theory.
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Spaces with exponential topologies on the opens

The discrete and indiscrete topologies of OX
are strong and weak respectively.

We begin by improving these bounds.
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A strong topology

A set O ⊆ OX is called Alexandroff open if

the conditions U ∈ O and U ⊆ V ∈ OX
together imply that V ∈ O.

Lemma

The Alexandroff topology is strong.

In particular, any open set in a weak topology

is Alexandroff open.

Proof. We have to show that the membership relation

εX ⊆ OX ×X is open.

Let (U, x) ∈ εX. Then (U, x) ∈ {V ∈ OX | U ⊆ V } × U ,

which is a product of an Alexandroff open subset of

OX with an open subset of X and hence is an open

rectangle.

This product is contained in εX, which shows that εX

is open, as required. Q.E.D.
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A weak topology

An Alexandroff open set O ⊆ OX is called

Scott open if every open cover of a member

of O has a finite subcover of a member of O.

Example For any Q ⊆ X, the Alexandroff

open set {V ∈ OX | Q ⊆ V } is Scott open if

and only if Q is compact.

(For many spaces, in fact, the Scott topology

of the opens is generated by these subbasic

opens. This is the case, for example, for

Hausdorff spaces.)

Lemma

The Scott topology is weak.

20



Proof. Let W ⊆ A×X be open. We have to show

that W : A→ OX is continuous.

Let a ∈ A and let O ⊆ OX be a Scott open

neighbourhood of W(a).

For each x ∈ W(a), that is, (x, a) ∈W , there are

Ux ∈ OA and Vx ∈ OX with (a, x) ∈ Ux × Vx ⊆W , by

openness of W in the product topology.

Since W(a) is the union of the sets Vx and since O is

Scott open, the union V of finitely many such Vx

belongs to O.

Let U be the intersection of the corresponding open

sets Ux. Clearly, U is a neighbourhood of a.

To conclude the proof, we show that W(u) ∈ O for

each u ∈ U .

To this end, it is enough to show that V ⊆ W(u),

because O is Alexandroff open and we know that

V ∈ O.

Let v ∈ V . Then v ∈ Vx for some x ∈ W(a). Since

u ∈ Ux, we have that (u, v) ∈ Ux × Vx ⊆W .

Therefore v ∈ W(u), as required. Q.E.D.
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Bound situation so far

discrete (strong)

d

Alexandroff (strong)

d

exponential (if it exists)

d

Scott (weak)

d

indiscrete (weak)
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Closer look at strong topologies

Let T be a topology on OX.

Let U, V ∈ OX.

↑U def
= {W ∈ OX | U ⊆W}.

U ≺T V
def⇐⇒ V ∈ intT ↑U .

“U is a T -approximant of V .”

T is approximating if every open is the union

of its T -approximants.

Lemma

A topology on OX is strong if and only if it is

approximating.

Proof. A routine (un)folding of definitions! What is

difficult about this step is to come up with the notion

of approximating topology.

23



The strongest weak topology

We use this in order to prove the following.
Lemma

The Scott topology is the intersection of the
strong topologies.

Before giving the proof, let’s summarize the
situation so far:

exponential ⇐⇒ both weak and strong

Scott is weak

strong ⇐⇒ approximating

Scott = intersection of strong.

Scott = strongest weak topology

Corollary

OX has an exponential topology if and only if
its Scott topology is approximating.

In this case, the exponential topology is the
Scott topology.
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Main theorem

Combining the previous corollary with the

reduction performed before, we arrive at our

main theorem.

The topology on C(X,Y ) induced by the

Scott topology of OX is known as the Isbell

topology.

Theorem

A space is exponentiable if and only if the

Scott topology of its lattice of open sets is

approximating.

Moreover, the topology of an exponential is

the Isbell topology.
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Observation

The definition of exponentiability quantifies

over all topological spaces.

The criterion provided by this theorem

reduces exponentiability of a space X to an

intrinsic property of X.

Namely the approximation property of the

Scott topology of OX.

A related criterion, which avoids considering a

topology on the topology OX of X, will be

sketched soon.
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We need to prove the last lemma that gave
rise to the main theorem.

Proof. Being weak, the Scott topology is contained in

the intersection of the strong topologies.

Conversely, for each C ⊆ OX, let TC be the set of all

Alexandroff open subsets O of OX with the property

that if C covers a member of O then C has a finite

subcover of a member of O.

This is easily seen to be a topology on OX, and, by

construction, the Scott topology is the intersection of

all such topologies.

To conclude the proof, it suffices to show that they

are strong. We use the approximation criterion.

Assume that x ∈ U ∈ OX. We show that there is some

V ∈ OX with x ∈ V ≺TC U .

If x 6∈
⋃
C, then ↑U = {V ∈ OX | U ⊆ V } ∈ TC, and so

x ∈ U ≺TC U . Hence we can take V = U

If, on the other hand, x ∈ U ′ for some U ′ ∈ C, then

{V ∈ OX | U ′ ∩ U ⊆ V } ∈ TC, whence x ∈ (U ′ ∩ U) ≺TC U .

Hence we can take V = U ′ ∩ U , and the proof is

concluded. Q.E.D.
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Core-compact spaces

We now avoid the use of topologies on a

topology. We shall be rather brief.

Let U, V ∈ OX.

U � V
def⇐⇒ every open cover of V has a

finite subcover of U .

“U is way below V ”

Example U � V if there is a compact

set Q ⊆ X with U ⊆ Q ⊆ V .

X is called core-compact if every open is the

union of the opens way below it.
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Local versus core compactness

This generalizes the notion of local

compactness.

For every neighbourhood V of a point x of X

there is a compact neighbourhood Q of x

with Q ⊆ V .

In order to see this, notice that

core-compactness can be formulated as:

For every neighbourhood V of a point x of X

there is a neighbourhood U of x such that

every open cover of V has a finite subcover

of U .

For Hausdorff (and more generally for sober)

spaces, the two notions coincide.

Moreover, in the Hausdorff case, they further coincide

with: Every point has a compact neighbourhood.
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Approximation via way below

The relations U ≺Scott V and U � V don’t
coincide in general, but they do for
exponentiable spaces.

Moreover,

Lemma
The Scott topology of OX is approximating
if and only if X is core-compact.

This result belongs to domain-theory land:

A complete lattice is continuous

⇐⇒ its Scott topology is approximating

⇐⇒ its way-below relation is approximating.

What is interesting here is that

(1) Scott is strong iff the lattice OX is continuous.

(2) Scott is always weak.

30



Main theorem, second version

Theorem

A space is exponentiable if and only if it is

core-compact.

Moreover, if X is a core-compact space

and Y is any space then the topology of the

exponential Y X is generated by the sets

N(U, V )
def
= {f ∈ Y X | U � f−1(V )},

where U and V range over OX and O Y
respectively.

Compare this to the compact-open topology:

N(Q,V )
def
= {f ∈ Y X | Q ⊆ f−1(V )},

where Q and V range over compact and

opens of X and Y respectively.
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What is not new

The result itself.

The ingredients in general.

What is new

Their organization.

The purely topological exposition.

The idea of using the generalized Isbell

topology.

The idea of using approximating topologies.

(The latter, we found, occurs in disguise in

Day and Kelly’s paper after all.)

The End
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