\begin{code}
module Space-cantor where
open import MiniLibrary
open import Sequence
open import Inequality
open import UniformContinuity
open import Space
open import Space-discrete
open import Space-exponential
open import not-not
\end{code}
\begin{code}
Lemma[₂ℕ→₂ℕ-to-₂ℕ→ℕ⇒₂] : (r : ₂ℕ → ₂ℕ) → r ∈ C →
∃ \(φ : ₂ℕ → U (ℕSpace ⇒ ₂Space)) → φ ∈ Probe (ℕSpace ⇒ ₂Space)
Lemma[₂ℕ→₂ℕ-to-₂ℕ→ℕ⇒₂] r ucr = ∃-intro φ prf
where
φ : ₂ℕ → U (ℕSpace ⇒ ₂Space)
φ α = r α , Lemma[discrete-ℕSpace] {₂Space} (r α)
prf : ∀(p : ₂ℕ → ℕ) → p ∈ LC → ∀(t : ₂ℕ → ₂ℕ) → t ∈ C →
(λ α → (π₀ ∘ φ)(t α)(p α)) ∈ LC
prf p ucp t uct = Lemma[LM-₂-least-modulus] q l pr
where
q : ₂ℕ → ₂
q α = (π₀ ∘ φ)(t α)(p α)
m : ℕ
m = ∃-witness ucp
f : ₂Fin m → ℕ
f s = p (cons s 0̄)
eq : ∀(α : ₂ℕ) → p α ≡ f (take m α)
eq α = ∧-elim₀ (∃-elim ucp) α (cons (take m α) 0̄) (Lemma[cons-take-≣[]] m α 0̄)
k' : ℕ
k' = ∃-witness (max-fin f)
k'-max : ∀(α : ₂ℕ) → p α ≤ k'
k'-max α = transport {ℕ} {λ i → i ≤ k'} (sym (eq α)) (∃-elim (max-fin f) (take m α))
k : ℕ
k = succ k'
k-max : ∀(α : ₂ℕ) → p α < k
k-max α = ≤-succ (k'-max α)
ucrt : uniformly-continuous-₂ℕ (r ∘ t)
ucrt = Lemma[∘-UC] r ucr t uct
n : ℕ
n = ∃-witness (ucrt k)
l : ℕ
l = maximum m n
m≤l : m ≤ l
m≤l = ∧-elim₀ (Lemma[≤-max] m n)
n≤l : n ≤ l
n≤l = ∧-elim₁ (Lemma[≤-max] m n)
pr : ∀(α β : ₂ℕ) → α ≣[ l ] β → r(t α)(p α) ≡ r(t β)(p β)
pr α β awl = transport {ℕ} {λ i → r(t α)(p α) ≡ r(t β) i} eqp subgoal
where
awm : α ≣[ m ] β
awm = Lemma[≣[]-≤] awl m≤l
eqp : p α ≡ p β
eqp = ∧-elim₀ (∃-elim ucp) α β awm
awn : α ≣[ n ] β
awn = Lemma[≣[]-≤] awl n≤l
awk : r (t α) ≣[ k ] r (t β)
awk = ∧-elim₀ (∃-elim (ucrt k)) α β awn
subgoal : r(t α)(p α) ≡ r(t β)(p α)
subgoal = Lemma[≣[]-<] awk (p α) (k-max α)
\end{code}
\begin{code}
ID : ₂ℕ → U(ℕSpace ⇒ ₂Space)
ID = ∃-witness (Lemma[₂ℕ→₂ℕ-to-₂ℕ→ℕ⇒₂] id Lemma[id-UC])
Lemma[ID-[≡]] : ∀(α : U (ℕSpace ⇒ ₂Space)) → [ α ≡ ID (π₀ α) ]
Lemma[ID-[≡]] α = Lemma[Map-₂] ℕSpace α (ID (π₀ α)) (λ n → refl)
ID-is-a-probe : ID ∈ Probe(ℕSpace ⇒ ₂Space)
ID-is-a-probe = ∃-elim (Lemma[₂ℕ→₂ℕ-to-₂ℕ→ℕ⇒₂] id Lemma[id-UC])
\end{code}
\begin{code}
Lemma[Yoneda] : ∀{X : Space} → Map (ℕSpace ⇒ ₂Space) X →
∃ \(p : ₂ℕ → U X) → p ∈ Probe X
Lemma[Yoneda] (f , cts) = (f ∘ ID) , (cts ID ID-is-a-probe)
\end{code}