\begin{code}
module Space where
open import MiniLibrary
open import Sequence
open import Inequality
open import UniformContinuity
open import not-not
open import not-not-funext
\end{code}
\begin{code}
C : Subset(₂ℕ → ₂ℕ)
C = uniformly-continuous-₂ℕ
\end{code}
\begin{code}
Axiom[coverage] : ∀(m : ℕ) → ∀(t : ₂ℕ → ₂ℕ) → t ∈ C →
∃ \(n : ℕ) → ∀(s : ₂Fin n) →
∃ \(s' : ₂Fin m) → ∃ \(t' : ₂ℕ → ₂ℕ) →
(t' ∈ C) ∧ [ t ∘ (cons s) ≡ (cons s') ∘ t' ]
Axiom[coverage] m t uct = ∃-intro n prf
where
n : ℕ
n = ∃-witness (uct m)
prf : ∀(s : ₂Fin n) → ∃ \(s' : ₂Fin m) → ∃ \(t' : ₂ℕ → ₂ℕ) →
(t' ∈ C) ∧ [ t ∘ (cons s) ≡ (cons s') ∘ t' ]
prf s = ∃-intro s' (∃-intro t' (∧-intro c₀ c₁))
where
s' : ₂Fin m
s' = take m (t (cons s (λ i → ₀)))
t' : ₂ℕ → ₂ℕ
t' α = drop m (t (cons s α))
c₀ : t' ∈ C
c₀ k = Lemma[LM-₂ℕ-least-modulus] t' l prt'
where
ucts : uniformly-continuous-₂ℕ (t ∘ (cons s))
ucts = Lemma[∘-UC] t uct (cons s) (Lemma[cons-UC] s)
l : ℕ
l = ∃-witness (ucts (k + m))
prts : ∀(α β : ₂ℕ) → α ≣[ l ] β → t (cons s α) ≣[ k + m ] t (cons s β)
prts = ∧-elim₀ (∃-elim (ucts (k + m)))
eq : ∀(α : ₂ℕ) → ∀(i : ℕ) → t' α i ≡ t (cons s α) (i + m)
eq α i = Lemma[drop+] m (t (cons s α)) i
claim₀ : ∀(α β : ₂ℕ) → α ≣[ l ] β → t (cons s α) ≣[ k + m ] t (cons s β) →
∀(i : ℕ) → i < k → t' α i ≡ t' β i
claim₀ α β el ekm i i<k = transport {₂} {λ b → t' α i ≡ b} (sym(eq β i)) sclaim₂
where
sclaim₀ : ∀(i : ℕ) → i < (k + m) → t (cons s α) i ≡ t (cons s β) i
sclaim₀ = Lemma[≣[]-<] ekm
sclaim₁ : t (cons s α) (i + m) ≡ t (cons s β) (i + m)
sclaim₁ = sclaim₀ (i + m) (Lemma[a<b→a+c<b+c] i k m i<k)
sclaim₂ : t' α i ≡ t (cons s β) (i + m)
sclaim₂ = transport {₂} {λ b → b ≡ t (cons s β) (i + m)} (sym(eq α i)) sclaim₁
claim₁ : ∀(α β : ₂ℕ) → α ≣[ l ] β → t (cons s α) ≣[ k + m ] t (cons s β) → t' α ≣[ k ] t' β
claim₁ α β el ekm = Lemma[<-≣[]] (claim₀ α β el ekm)
prt' : ∀(α β : ₂ℕ) → α ≣[ l ] β → t' α ≣[ k ] t' β
prt' α β el = claim₁ α β el (prts α β el)
c₁ : [ t ∘ (cons s) ≡ (cons s') ∘ t' ]
c₁ = funext² claim
where
claim : ∀(α : ₂ℕ) → ∀(i : ℕ) → t (cons s α) i ≡ cons s' (t' α) i
claim α i = transport {₂Fin m} {λ x → t (cons s α) i ≡ cons x (t' α) i} sclaim₂ sclaim₀
where
sclaim₀ : t (cons s α) i ≡ cons (take m (t (cons s α))) (t' α) i
sclaim₀ = sym (Lemma[cons-take-drop] m (t (cons s α)) i)
sclaim₁ : t (cons s α) ≣[ m ] t (cons s 0̄)
sclaim₁ = ∧-elim₀ (∃-elim (uct m)) (cons s α) (cons s 0̄) (Lemma[cons-≣[]] s α 0̄)
sclaim₂ : take m (t (cons s α)) ≡ s'
sclaim₂ = Lemma[≣[]-take] sclaim₁
\end{code}
\begin{code}
probe-axioms : (X : Set) → Subset(₂ℕ → X) → Set
probe-axioms X P =
(∀(p : ₂ℕ → X) → constant p → p ∈ P)
∧ (∀(t : ₂ℕ → ₂ℕ) → t ∈ C → ∀(p : ₂ℕ → X) → p ∈ P → p ∘ t ∈ P)
∧ (∀(p : ₂ℕ → X) → (∃ \(n : ℕ) → ∀(s : ₂Fin n) → (p ∘ (cons s)) ∈ P) → p ∈ P)
∧ (∀(p p' : ₂ℕ → X) → p ∈ P → (∀(α : ₂ℕ) → [ p α ≡ p' α ]) → p' ∈ P)
TopologyOn : Set → Set₁
TopologyOn X = Σ \(P : Subset(₂ℕ → X)) → probe-axioms X P
Space : Set₁
Space = Σ \(X : Set) → TopologyOn X
U : Space → Set
U = π₀
Probe : (X : Space) → Subset(₂ℕ → U X)
Probe X = π₀ (π₁ X)
cond₀ : (X : Space) →
∀(p : ₂ℕ → U X) → constant p → p ∈ Probe X
cond₀ (_ , _ , c₀ , _) = c₀
cond₁ : (X : Space) →
∀(t : ₂ℕ → ₂ℕ) → t ∈ C → ∀(p : ₂ℕ → U X) → p ∈ Probe X →
p ∘ t ∈ Probe X
cond₁ (_ , _ , _ , c₁ , _) = c₁
cond₂ : (X : Space) →
∀(p : ₂ℕ → U X) → (∃ \(n : ℕ) → ∀(s : ₂Fin n) → p ∘ (cons s) ∈ Probe X) →
p ∈ Probe X
cond₂ (_ , _ , _ , _ , c₂ , _) = c₂
cond₃ : (X : Space) →
∀(p p' : ₂ℕ → U X) → p ∈ Probe X → (∀(α : ₂ℕ) → [ p α ≡ p' α ]) → p' ∈ Probe X
cond₃ (_ , _ , _ , _ , _ , c₃) = c₃
\end{code}
\begin{code}
continuous : {X Y : Space} → (U X → U Y) → Set
continuous {X} {Y} f = ∀ p → p ∈ Probe X → f ∘ p ∈ Probe Y
Map : Space → Space → Set
Map X Y = Σ \(f : U X → U Y) → continuous {X} {Y} f
Mapto : (Y : Space) → Set₁
Mapto Y = Σ \(X : Space) → Map X Y
id-is-continuous : ∀{X : Space} → continuous {X} {X} id
id-is-continuous p pinP = pinP
∘-preserves-continuity : {X Y Z : Space} →
∀(f : U X → U Y) → continuous {X} {Y} f →
∀(g : U Y → U Z) → continuous {Y} {Z} g →
continuous {X} {Z} (g ∘ f)
∘-preserves-continuity f fcts g gcts p pinP = gcts(f ∘ p)(fcts p pinP)
⟪_,_,_⟫_○_ : (X Y Z : Space) → Map Y Z → Map X Y → Map X Z
⟪ X , Y , Z ⟫ g ○ f = (π₀ g ∘ π₀ f) , ∘-preserves-continuity {X} {Y} {Z} (π₀ f) (π₁ f) (π₀ g) (π₁ g)
Subspace : (X : Space) → (U X → Set) → Space
Subspace X Prp = A , R , rc₀ , rc₁ , rc₂ , rc₃
where
A : Set
A = Σ \(x : U X) → Prp x
R : Subset (₂ℕ → A)
R r = π₀ ∘ r ∈ Probe X
rc₀ : ∀(r : ₂ℕ → A) → constant r → r ∈ R
rc₀ r cr = cond₀ X (π₀ ∘ r) (Lemma[∘-constant] r π₀ cr)
rc₁ : ∀(t : ₂ℕ → ₂ℕ) → t ∈ C → ∀(r : ₂ℕ → A) → r ∈ R → r ∘ t ∈ R
rc₁ t uc r rR = cond₁ X t uc (π₀ ∘ r) rR
rc₂ : ∀(r : ₂ℕ → A) → (∃ \(n : ℕ) → ∀(s : ₂Fin n) → (r ∘ (cons s)) ∈ R) → r ∈ R
rc₂ r pr = cond₂ X (π₀ ∘ r) pr
rc₃ : ∀(r r' : ₂ℕ → A) → r ∈ R → (∀(α : ₂ℕ) → [ r α ≡ r' α ]) → r' ∈ R
rc₃ r r' rR ex = cond₃ X (π₀ ∘ r) (π₀ ∘ r') rR (λ α → [ap] π₀ (ex α))
cts-incl : (X : Space) → (Prp : U X → Set) → Map (Subspace X Prp) X
cts-incl X Prp = π₀ , (λ r rR → rR)
\end{code}
\begin{code}
∅Space : Space
∅Space = ∅ , P , c₀ , c₁ , c₂ , c₃
where
P : Subset (₂ℕ → ∅)
P p = ∅
c₀ : ∀(p : ₂ℕ → ∅) → constant p → p ∈ P
c₀ p _ = p 0̄
c₁ : ∀(t : ₂ℕ → ₂ℕ) → t ∈ C → ∀(p : ₂ℕ → ∅) → p ∈ P → p ∘ t ∈ P
c₁ _ _ p _ = p 0̄
c₂ : ∀(p : ₂ℕ → ∅) → (∃ \(n : ℕ) → ∀(s : ₂Fin n) → (p ∘ (cons s)) ∈ P) → p ∈ P
c₂ p _ = p 0̄
c₃ : ∀(p p' : ₂ℕ → ∅) → p ∈ P → ((α : ₂ℕ) → [ p α ≡ p' α ]) → p' ∈ P
c₃ _ _ z _ = z
continuous-empty : {A : Space} →
Σ \(u : ∅ → U A) → continuous {∅Space} {A} u
continuous-empty = (λ ()) , (λ p → λ ())
\end{code}
\begin{code}
⒈Space : Space
⒈Space = ⒈ , P , c₀ , c₁ , c₂ , c₃
where
P : Subset (₂ℕ → ⒈)
P p = ⒈
c₀ : ∀(p : ₂ℕ → ⒈) → constant p → p ∈ P
c₀ _ _ = ⋆
c₁ : ∀(t : ₂ℕ → ₂ℕ) → t ∈ C → ∀(p : ₂ℕ → ⒈) → p ∈ P → p ∘ t ∈ P
c₁ _ _ _ _ = ⋆
c₂ : ∀(p : ₂ℕ → ⒈) → (∃ \(n : ℕ) → ∀(s : ₂Fin n) → (p ∘ (cons s)) ∈ P) → p ∈ P
c₂ _ _ = ⋆
c₃ : ∀(p p' : ₂ℕ → ⒈) → p ∈ P → ((α : ₂ℕ) → [ p α ≡ p' α ]) → p' ∈ P
c₃ _ _ _ _ = ⋆
continuous-unit : {A : Space} →
Σ \(u : U A → ⒈) → continuous {A} {⒈Space} u
continuous-unit = unit , (λ p _ → ⋆)
\end{code}