Quantitative Abstraction Refinement

Dave Parker

Oxford University Computing Laboratory

Dagstuhl, July 2010

Joint work with: Marta Kwiatkowska, Gethin Norman, Mark Kattenbelt
Probabilistic model checking

System

Probabilistic model
e.g. Markov chain

0.5
0.4
0.1

Probabilistic model checker
e.g. PRISM

Result

Quantitative results

Counter-example

System requirements

Probabilistic temporal logic
specification
e.g. PCTL, CSL, LTL

P_{<0.1} [F \text{ err}]
Why probability?

- Why probability?
 - many systems we want to verify are inherently probabilistic

- Randomisation, e.g. in distributed coordination algorithms
 - random delays/back-off in Bluetooth, CSMA/CD, IEEE 802.11
 - randomised algorithms for anonymity, contract signing, ...

- Uncertainty or unreliable behaviour
 - e.g. messages losses/delays over wireless communication
 - e.g. component failures
 - e.g. reaction rates in biological systems

- Need formal techniques for quantitative guarantees of:
 - safety, reliability, performance, dependability, resource usage, security, privacy, trust, anonymity, fairness, ...
Probabilistic models

<table>
<thead>
<tr>
<th></th>
<th>Fully probabilistic</th>
<th>Nondeterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete time</td>
<td>Discrete-time Markov chains (DTMCs)</td>
<td>Markov decision processes (MDPs)</td>
</tr>
<tr>
<td></td>
<td>$S \times S \rightarrow [0,1]$</td>
<td>(probabilistic automata)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$S \times \text{Act} \rightarrow \text{Dist}(S)$</td>
</tr>
<tr>
<td>Continuous time</td>
<td>Continuous-time Markov chains (CTMCs)</td>
<td>CTMDPs/IMCs</td>
</tr>
<tr>
<td></td>
<td>$S \times S \rightarrow \mathbb{R}_{\geq 0}$</td>
<td>Probabilistic timed automata (PTAs)</td>
</tr>
</tbody>
</table>
Overview

• Probabilistic model checking
 – Markov decision processes (MDPs)
 – probabilistic timed automata (PTAs)

• Abstraction for probabilistic models
 – abstractions of MDPs (stochastic two-player games)

• Quantitative abstraction refinement
 – abstraction-refinement loop
 – probabilistic model checking for PTAs
 – also: verification of probabilistic software

• Conclusions & current/future work
Markov decision processes (MDPs)

• Model nondeterministic as well as probabilistic behaviour
 – e.g. concurrency, environmental factors, under-specification, ...

• Formally, an MDP is a tuple \((S, \text{Act}, \text{Steps})\) where:
 – \(S\) is a set of states
 – \(\text{Act}\) is a set of actions
 – \(\text{Steps} : S \times \text{Act} \rightarrow \text{Dist}(S)\) is the transition probability function

• An adversary (aka. “scheduler” or “policy”) of an MDP
 – is a resolution of the nondeterminism in the MDP
 – under a given adversary \(\sigma\) the behaviour is fully probabilistic
Probabilistic reachability for MDPs

- **Probabilistic reachability**
 - fundamental concept in the quantitative verification of MDPs
 - \(p_s^\sigma (F) = \text{probability of reaching } F \text{ starting from } s \text{ under } \sigma \)
 - consider the minimum/maximum values over all adversaries
 - \(p_s^{\min}(F) = \inf_\sigma p_s^\sigma (F) \) and \(p_s^{\max}(F) = \sup_\sigma p_s^\sigma (F) \)

 ![Diagram showing the range of probabilities from 0 to 1]

 - can be computed efficiently (and corresponding adversaries)

- **Allows reasoning about best/worst-case behaviour**
 - e.g. minimum probability of the protocol terminating correctly
 - e.g. maximum probability of a security breach
Probabilistic reachability for MDPs

- Often focus on **quantitative** properties:

CSMA/CD network protocol:
Maximum, average and minimum probability that a message is sent successfully by time T

FireWire protocol:
Worst case (minimum) probability of electing a leader by time T for various coin biases
Probabilistic timed automata (PTAs)
- Markov decision processes + real-valued clocks
- or: timed automata + discrete probabilistic choice
- models timed, probabilistic and nondeterministic behaviour
- essential e.g. for communication protocols such as Zigbee, Bluetooth, which feature delays, randomisation, failures and concurrency

PTA model checking
- infinite-state MDP semantics
- probabilistic (timed) reachability
Overview

• Probabilistic model checking
 – Markov decision processes (MDPs)
 – probabilistic timed automata (PTAs)

• Abstraction for probabilistic models
 – abstractions of MDPs (stochastic two-player games)

• Quantitative abstraction refinement
 – abstraction-refinement loop
 – probabilistic model checking for PTAs
 – also: verification of probabilistic software

• Conclusions & current/future work
Abstraction

- **Very successful in (non-probabilistic) formal methods**
 - essential for verification of large/infinite-state systems
 - hide details irrelevant to the property of interest
 - yields smaller/finite model which is easier/feasible to verify
 - loss of precision: verification can return “don’t know”

- **Construct abstract model of a concrete system**
 - e.g. based on a partition of the concrete state space
 - an abstract state represents a set of concrete states
Abstraction refinement (CEGAR)

- Counterexample-guided abstraction refinement
 - (non-probabilistic) model checking of reachability properties
Abstraction refinement (CEGAR)

- Counterexample-guided abstraction refinement
 - (non-probabilistic) model checking of reachability properties

 initialise

 Partition/predicates

 [yes] refine

 Abstraction (existential)

 [false] check counterexample

 Spurious?

 True/false + counterexample

 [true]

 Return true

 Quantitative results?

 How to abstract probabilistic models?

 What is a counterexample?

 Return false
Abstraction of MDPs

- **Abstraction increases degree of nondeterminism**
 - i.e. minimum probabilities are lower and maximums higher

 ![Diagram showing probability ranges for abstraction]

- **But what form does the abstraction of an MDP take?**

 (i) an MDP [D’Argenio et al.’01]
 - probabilistic simulation relates concrete/abstract models

 (ii) a stochastic two-player game [QEST'06]
 - separates nondeterminism from abstraction and from MDP
 - yields separate lower/upper bounds for min/max

 ![Diagram showing separate bounds for abstraction]
Stochastic two–player games

• **Subclass of simple stochastic games** [Shapley, Condon]
 – two nondeterministic players (1 and 2) and probabilistic choice

• **Resolution of the nondeterminism in a game**
 – corresponds to a pair of strategies for players 1 and 2: \((\sigma_1, \sigma_2)\)
 – \(p_{a}^{\sigma_1,\sigma_2}(F)\) probability of reaching \(F\) from \(a\) under \((\sigma_1, \sigma_2)\)
 – can compute, e.g. : \(\sup_{\sigma_1} \inf_{\sigma_2} p_{a}^{\sigma_1,\sigma_2}(F)\)
 – informally: “the maximum probability of reaching \(F\) that player 1 can guarantee no matter what player 2 does”

• **Abstraction of an MDP as a stochastic two–player game:**
 – player 1 controls the nondeterminism of the abstraction
 – player 2 controls the nondeterminism of the MDP
Game abstraction (by example)

- Player vertices are partition elements (abstract states)
- (Sets of) distributions are lifted to the abstract state space
- States with same (sets of) choices form player vertices

![MDP (fragment)](image1)

![Stochastic game (fragment)](image2)
Properties of the abstraction

- Analysis of game yields lower/upper bounds:
 - for target $F \in A$, $s \in S$ and $a \in A$ with $s \in a$

\[
\inf_{\sigma_1, \sigma_2} p_{a}^{\sigma_1, \sigma_2}(F) \leq p_s^{\min}(F) \leq \sup_{\sigma_1} \inf_{\sigma_2} p_{a}^{\sigma_1, \sigma_2}(F)
\]
\[
\inf_{\sigma_1} \sup_{\sigma_2} p_{a}^{\sigma_1, \sigma_2}(F) \leq p_s^{\max}(F) \leq \sup_{\sigma_1, \sigma_2} p_{a}^{\sigma_1, \sigma_2}(F)
\]
Properties of the abstraction

- Analysis of game yields lower/upper bounds:
 - for target $F \in A$, $s \in S$ and $a \in A$ with $s \in a$

\[
\inf_{\sigma_1, \sigma_2} p_a^{\sigma_1, \sigma_2}(F) \leq p_s^{\text{min}}(F) \leq \sup_{\sigma_1} \inf_{\sigma_2} p_a^{\sigma_1, \sigma_2}(F)
\]

\[
\inf_{\sigma_1} \sup_{\sigma_2} p_a^{\sigma_1, \sigma_2}(F) \leq p_s^{\text{max}}(F) \leq \sup_{\sigma_1, \sigma_2} p_a^{\sigma_1, \sigma_2}(F)
\]

min/max reachability probabilities for original MDP
Properties of the abstraction

• Analysis of game yields lower/upper bounds:
 – for target $F \in A$, $s \in S$ and $a \in A$ with $s \in a$

$$\inf_{\sigma_1, \sigma_2} p_a^{\sigma_1, \sigma_2}(F) \leq p_s^{\text{min}}(F) \leq \sup_{\sigma_1} \inf_{\sigma_2} p_a^{\sigma_1, \sigma_2}(F)$$

$$\inf_{\sigma_1} \sup_{\sigma_2} p_a^{\sigma_1, \sigma_2}(F) \leq p_s^{\text{max}}(F) \leq \sup_{\sigma_1, \sigma_2} p_a^{\sigma_1, \sigma_2}(F)$$

optimal probabilities for player 1, player 2 in game
Properties of the abstraction

- Analysis of game yields lower/upper bounds:
 - for target $F \in A$, $s \in S$ and $a \in A$ with $s \in a$

 $$\inf_{\sigma_1, \sigma_2} p_{a}^{\sigma_1, \sigma_2}(F) \leq p_s^{\min}(F) \leq \sup_{\sigma_1} \inf_{\sigma_2} p_{a}^{\sigma_1, \sigma_2}(F)$$

 $$\inf_{\sigma_1} \sup_{\sigma_2} p_{a}^{\sigma_1, \sigma_2}(F) \leq p_s^{\max}(F) \leq \sup_{\sigma_1, \sigma_2} p_{a}^{\sigma_1, \sigma_2}(F)$$

min/max reachability probabilities, treating game as MDP
(i.e. assuming that players 1 and 2 cooperate)
$$p_s^{\text{max}}(F) = 1 \in [0.8, 1]$$

$$\inf_{\sigma_1} \sup_{\sigma_2} p_{a^{\sigma_1,\sigma_2}}(F) = 0.8$$

$$\sup_{\sigma_1,\sigma_2} p_{a^{\sigma_1,\sigma_2}}(F) = 1$$
Abstraction: Example results

- Israeli & Jalfon’s Self Stabilisation [IJ90]
 - protocol for obtaining a stable state in a token ring
 - minimum probability of reaching a stable state by time T

![Graph showing the minimum probability stabilised by time T](image)

Concrete states: 1,048,575
Abstract states: 627
Nondeterministic abstractions

- We can consider a general class of “nondeterministic” abstractions for probabilistic models

<table>
<thead>
<tr>
<th>Concrete model:</th>
<th>Abstraction:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTMC</td>
<td>MDP</td>
</tr>
<tr>
<td>MDP</td>
<td>STPG</td>
</tr>
<tr>
<td>CTMC</td>
<td>CTMDP</td>
</tr>
<tr>
<td>CTMDP</td>
<td>CTSTPG</td>
</tr>
</tbody>
</table>

- CTMDP = continuous–time Markov decision process
- CTSTPG = continuous–time stochastic two–player game
Overview

• Probabilistic model checking
 – Markov decision processes (MDPs)
 – probabilistic timed automata (PTAs)

• Abstraction for probabilistic models
 – abstractions of MDPs (stochastic two-player games)

• Quantitative abstraction refinement
 – abstraction–refinement loop
 – probabilistic model checking for PTAs
 – also: verification of probabilistic software

• Conclusions & current/future work
Abstraction refinement

- Consider (max) difference between lower/upper bounds
 - gives a quantitative measure of the abstraction’s precision

- If the difference (“error”) is too great, refine the abstraction
 - a finer partition yields a more precise abstraction
 - lower/upper bounds can tell us where to refine (which states)
 - (memoryless) strategies can tell us how to refine
Example

$p_s^{\text{max}}(F) = 1 \in [0.8,1]$
“error” = 0.2

$p_s^{\text{max}}(F) = 1 \in [1,1]$
“error” = 0

refine
• Quantitative abstraction–refinement loop for MDPs
Abstraction–refinement loop

- Quantitative abstraction–refinement loop for MDPs

- Refinements yield strictly finer partition

- Guaranteed to converge for finite models

- Guaranteed to converge for infinite models with finite bisimulation
Abstraction–refinement loop

- Implementations of quantitative abstraction refinement...

- Verification of probabilistic timed automata [FORMATS’09]
 - zone–based abstraction/refinement using DBMs
 - implemented in (next release of) PRISM
 - outperforms existing PTA verification techniques

- Verification of probabilistic software [VMCAI’09]
 - predicate abstraction/refinement using SAT solvers
 - implemented in tool qprover: components of PRISM, SATABS
 - analysed real network utilities (ping, tftp) – approx 1KLOC

- Verification of concurrent PRISM models [Wachter/Zhang’10]
 - implemented in tool PASS; infinite–state PRISM models
Verification of PTAs

• Probabilistic model checking of PTAs

Initial partition

Abstraction

Bounds and strategies

Return bounds

New partition

Initial abstraction from forwards reachability

Abstraction computed and stored using zones (DBMs)

Splitting of zones (DBMs)

Guaranteed convergence for any $\epsilon \geq 0$

[error $\geq \epsilon$]

model check

refine

abstract

abstract

[error $\leq \epsilon$]
Verification of probabilistic software

- Probabilistic program
- Boolean probabilistic program
- Abstraction (game)
- Predicates
- Bounds and strategies
- Return bounds

- Model extraction
- Abstraction (based on SAT)
- Model construction
- Model checking
- [error ≥ ε]
- Refinement (weakest precondition)
- [error < ε]

- Sequential ANSI C + probabilistic/nondet. function calls
Overview

• Probabilistic model checking
 – Markov decision processes (MDPs)
 – probabilistic timed automata (PTAs)

• Abstraction for probabilistic models
 – abstractions of MDPs (stochastic two–player games)

• Quantitative abstraction refinement
 – abstraction–refinement loop
 – probabilistic model checking for PTAs
 – also: verification of probabilistic software

• Conclusions & current/future work
Related work

• **Abstraction for Markov chains:**
 – DTMCs: probability intervals (MDPs) [Fecher/Leucker/Wolf] [Huth]
 – CTMCs: using CTMDPs [Katoen/Klink/Leucker/Wolf]
 – CTMCs: sliding window abstraction [Henzinger/Mateescu/Wolf]
 – and more…

• **Abstraction refinement for MDPs:**
 – RAPTURE [D’Argenio/Jeannet/Jensen/Larsen]
 – probabilistic CEGAR [Hermanns/Wachter/Zhang]
 – magnifying lens abstraction [de Alfaro/Roy]
 – MDP–based abstractions [Chadha/Viswanathan]
 – and more…
Conclusions

• **Abstraction for probabilistic models**
 – MDPs (and PTAs) abstracted as stochastic two-player games
 – abstraction yields lower/upper bounds on probabilities

• **Quantitative abstraction refinement**
 – bounds give quantitative measure of utility of abstraction
 – bounds/strategies can be used to guide refinement
 – quantitative abstraction–refinement loop (for error $< \varepsilon$)
 – fully automatic generation of abstraction
 – works in practice: probabilistic timed automata & software

• **Current & future work**
 – improved refinement heuristics, imprecise abstractions
 – software + time + probabilities
 – CTMCs, timed properties
 – probabilistic/stochastic hybrid systems