Probabilistic Model Checking for Safety and Performance Guarantees

Dave Parker

University of Birmingham

Dagstuhl seminar "Analysis of Autonomous Mobile Collectives in Complex Physical Environments", October 2019
Probabilistic model checking

- Probabilistic model checking
 - formal construction/analysis of probabilistic models
 - “correctness” properties expressed in temporal logic
 - e.g. trigger → P_{\geq 0.999} [F_{\leq 20} \text{ deploy}]
 - mix of exhaustive & numerical/quantitative reasoning

- Typically focus on numerical/quantitative results
 - analyse trends, look for system flaws, anomalies

- Wide range of quantitative properties expressible
 - probabilities, timing, energy, costs, rewards, ...
 - reason about safety, reliability, performance, timeliness, ...
PRISM (and extensions)

- **PRISM model checker**: www.prismmodelchecker.org
- **Wide range of probabilistic models**
 - Discrete states & probabilities: *Markov chains*
 - + Nondeterminism: *Markov decision processes* (MDPs)
 - + Real-time clocks: *probabilistic timed automata* (PTAs)
 - + Partial observability: *POMDPs* and *POPTAs*
 - + Multiple players: *(turn-based)* stochastic games
 - + Concurrency: *concurrent stochastic games*
- **Unified modelling language/approach**
- **Various verification engines**: symbolic, explicit-state, exact, parametric, statistical model checking, abstraction, …
- **Many application domains**: network/comm. protocols, security, biology, robotics & planning, power management, scheduling, …
Probabilistic models

• Discrete–time Markov chains (DTMCs)
 – e.g. what is the probability of reaching state t?
 – e.g. $P_{<0.0001} [F t]$

• Markov decision processes (MDPs)
 – mix nondeterministic and probabilistic choice
 – strategies (or policies) resolve actions based on history
 – e.g. what is the maximum probability of reaching t achievable by any strategy?

• Either:
 – adversarial view, i.e. verify against any possible strategy
 – or control view, i.e. synthesise a safe/optimal strategy
Application: Mobile robot navigation

- **Robot navigation planning**: [IROS'14, IJCAI’15, ICAPS’17, IJRR’19]
 - synthesis of plans for tasks with **probabilistic guarantees**
 - **MDP** models navigation through uncertain environment
 - stochastic time delays due to obstacles (typically human traffic)
 - MDP parameters/distributions learnt from logs of previous exploration
Application: Mobile robot navigation

- **Formal task description using co-safe LTL**
 - flexible, unambiguous specification
 - e.g. $\neg \text{zone}_3 \ U (\text{zone}_1 \land (F \text{zone}_4))$ – “patrol zones 1 then 4, without passing through zone 3”

- **Meaningful guarantees on performance**
 - probability of successful task completion (within deadline)
 - optimal strategies for timely task completion
 - c.f. ad-hoc reward structures, e.g. with discounting
 - QoS guarantees fed into task planning

- **Implementation and evaluation**
 - finite-memory MDP strategies converted to navigation controllers
 - ROS module based on PRISM
 - 100s of hrs of autonomous deployment
Application: UUV mission plans

- **PRINCESS**: Developing verified adaptive software systems
 - for operation in dynamic and uncertain environments
 - focus: autonomous underwater vehicle navigation
 - DARPA-funded project, under the BRASS program

- Adaptations are verified at runtime
 - produce probabilistic guarantees of correctness/safety
 - mission (path) plans for ocean search operations

- Verification tasks
 - ensure low probability of mission failure
 - (vehicle loss due to excessive power consumption)
 - inputs: battery usage + failure models, ocean/tide models
 - Markov chain models constructed
Application challenge: Smart farm

- **What level of abstraction?**
 - “farm-level”: navigation grid (+ robot state: cargo, failures, ...)

- **Uncertainty/probability**
 - stochastic travel delays due to humans/vehicles
 - failures of individual robots

- **Verification/guarantees**
 - robot task sequence completed within time T with probability p?
 - how does this vary as the underlying failures change?
 - can we synthesise a time-optimal plan?
 - how do we ensure a repair robot is always available?
More probabilistic model checking…

- **Multi-objective model checking** [TACAS’11], [ICAPS’17]
 - investigate trade-offs between conflicting objectives
 - e.g., strategy to minimises expected task time,
 while ensuring probability of task success is > p
 - ...and while ensuring location can always be reached within time T with probability q
 - multi-objective analysis via Pareto curves

- **Partially observable MDPs (POMDPs)** [RTS’17]
 - strategy sees only observations, not full state
 - strategy maintains belief state about the true state of the MDP
 - e.g. localisation error, sensor noise; uncertainty about state of robot 2
 - verification tool support in e.g. PRISM-pomdps
More probabilistic model checking...

- **Stochastic game model checking**
 - multiple agents/components with differing objectives
 - e.g., controller vs. environment; system vs. attacker
 - control + adversarial aspects combined

- **PRISM-games model checker**
 - probabilistic model checking of rPATL
 - “can robots 1,2 collaborate so that the probability of task completion within T is at least 0.95, whatever robots 3,4 do?”
 - turn-based and concurrent stochastic games [QEST’19]
 - Nash equilibria based properties [FM’19]

- **Multi-robot systems [IROS’18]**
 - combined task allocation and planning
 - performed on a sequential abstraction; probabilistic guarantees then computed on a product model fragment
Challenges

- **Scalability**
 - how to tackle state-space blow-up, especially for multi-robot

- **Further models/properties**
 - e.g. partial observability + stochastic games

- **Uncertainty**
 - how to represent/reason about model imprecision?
 - accuracy vs efficiency trade-offs

- **Machine learning**
 - how to reason about the integration of learning?