Probabilistic Verification of Concurrent Autonomous Systems

Dave Parker

University of Birmingham

EXPRESS–SOS, Aug 2021
Probabilistic Verification of Concurrent Autonomous Systems

Dave Parker
University of Birmingham

Joint work with:
Gabriel Santos, Gethin Norman, Marta Kwiatkowska, ...

ERC Advanced Grant FUN2MODEL
Veriﬁcation of stochastic systems

• Formal veriﬁcation needs stochastic modelling

faulty sensors/actuators

unpredictable/unknown environments

randomised protocols
Probabilistic model checking

System

High-level model/design

System requirements

Specification (temporal logic)

Probabilistic model checker

Result

P \geq 0.999 \ [F \leq 20 \ deploy]
Probabilistic model checking

Probabilistic model checking

Probabilistic model checker

Numerical results/analysis

Result

Strategies/policies/controllers

\(P \geq 0.999 \) [\(F^{\leq 20} \) deploy]
Verification with stochastic games

• How do we verify stochastic systems with...
 – multiple autonomous agents acting concurrently
 – competitive or collaborative behaviour between agents, possibly with differing/opposing goals
 – e.g. security protocols, algorithms for distributed consensus, energy management, autonomous robotics, auctions

• This talk: verification with stochastic multi-player games
 – verification (and synthesis) of strategies that are robust in adversarial settings and stochastic environments
 – models, logics, algorithms, tools, examples
Overview

• Markov decision processes
• Stochastic multi-player games
• Concurrent stochastic games
• Equilibria-based properties
• **Discrete–time Markov chains**
 – e.g. what is the probability of reaching state ✓?

• **Markov decision processes (MDPs)**
 – strategies (or policies) resolve actions based on history
 – e.g. what is the maximum probability of reaching ✓ achievable by any strategy σ?
 – and what is an optimal strategy?

• **Formally:**
 – we write: \(\sup_{\sigma} \Pr_s^\sigma(F✓) \)
 – where \(\Pr_s^\sigma \) denotes the probability from state \(s \) under strategy \(\sigma \)
Solving MDPs

• Various techniques exist to solve MDPs
 – (and to perform strategy synthesis)

• Here, we focus on value iteration
 – dynamic programming approach
 – common for probabilistic model checking

• For example:
 – maximum probability $p(s)$ to reach $✓$ from s
 – values $p(s)$ are the least fixed point of:

\[
p(s) = \begin{cases}
1 & \text{if } s \models ✓ \\
\max_a \sum s' \cdot \delta(s,a)(s') \cdot p(s') & \text{otherwise}
\end{cases}
\]

 – basis for iterative numerical computation

transition probabilities:
$\delta : S \times \text{Act} \rightarrow \text{Dist}(S)$

let $p(s) = \sup_{\sigma} \Pr_s^{\sigma}(F ✓)$
Stochastic games
Stochastic multi-player games

- **Stochastic multi-player games**
 - strategies + probability + multiple players
 - for now: turn-based (player i controls states S_i)

Markov decision processes (MDPs)

Turn-based stochastic games (TSGs)
Property specification: rPATL

- **rPATL** (reward probabilistic alternating temporal logic)
 - branching–time temporal logic for stochastic games
- **CTL, extended with:**
 - coalition operator $\langle\langle C \rangle\rangle$ of ATL
 - probabilistic operator P of PCTL
 - generalised (expected) reward operator R from PRISM
- **In short:**
 - zero-sum, probabilistic reachability + expected total reward
- **Example:**
 - $\langle\langle\{\text{robot}_1,\text{robot}_3\}\rangle\rangle \ P_{>0.99} \ [F_{\leq 10} (\text{goal}_1 \lor \text{goal}_3)]$
 - “robots 1 and 3 have a strategy to ensure that the probability of reaching the goal location within 10 steps is >0.99, regardless of the strategies of other players”
rPATL syntax/semantics

• Syntax:

\[\begin{align*}
\phi &::= \text{true} \mid a \mid \neg \phi \mid \phi \land \phi \mid \langle\langle C\rangle\rangle P_{\bowtie q}[\psi] \mid \langle\langle C\rangle\rangle R_{\bowtie x}^{r}[\rho] \\
\psi &::= X \phi \mid \phi U_{\leq k} \phi \mid \phi U \phi \\
\rho &::= I^{= k} \mid C_{\leq k} \mid F \phi
\end{align*} \]

• where:

- \(a \in \text{AP} \) is an atomic proposition, \(C \subseteq N \) is a coalition of players,
- \(\bowtie \in \{\leq, <, >, \geq\} \), \(q \in [0,1] \cap \mathbb{Q} \), \(x \in \mathbb{Q}_{\geq 0} \), \(k \in \mathbb{N} \)
- \(r \) is a reward structure

• Semantics:

• e.g. \(P \) operator: \(s \models \langle\langle C\rangle\rangle P_{\bowtie q}[\psi] \) iff:

 “there exist strategies for players in coalition \(C \) such that, for all strategies of the other players, the probability of path formula \(\psi \) being true from state \(s \) satisfies \(\bowtie q \)”
Model checking rPATL

• **Main task: checking individual P and R operators**
 - reduces to solving a (zero–sum) stochastic 2–player game
 - e.g. max/min reachability probability: \(\sup_{\sigma_1} \inf_{\sigma_2} \Pr_{s,_{\sigma_1,\sigma_2}} (F \checkmark) \)
 - complexity: \(\text{NP} \cap \text{coNP} \) (if we omit some reward operators)

• **We again use value iteration**
 - values \(p(s) \) are the least fixed point of:

\[
p(s) = \begin{cases}
 1 & \text{if } s \models \checkmark \\
 \max_a \Sigma_s \cdot \delta(s,a)(s') \cdot p(s') & \text{if } s \not\models \checkmark \text{ and } s \in S_1 \\
 \min_a \Sigma_s \cdot \delta(s,a)(s') \cdot p(s') & \text{if } s \not\models \checkmark \text{ and } s \in S_2
\end{cases}
\]

 - and more: graph–algorithms, sequences of fixed points, …
• **PRISM–games**: prismmodelchecker.org/games
 – extension of PRISM modelling language
 – explicit state (and prototype symbolic) implementation

• **Example application domains**
 – collective decision making and team formation protocols
 – security: attack–defence trees; network protocols
 – human–in–the–loop UAV mission planning
 – autonomous urban driving
 – self–adaptive software architectures
Concurrent stochastic games
Concurrent stochastic games

- Motivation:
 - more realistic model of components operating concurrently, making action choices without knowledge of others

Turn-based stochastic games (TSGs)
Concurrent stochastic games (CSGs)
Concurrent stochastic games

- **Concurrent stochastic games (CSGs)**
 - players choose actions concurrently & independently
 - jointly determines (probabilistic) successor state
 - $\delta : S \times (A_1 \cup \{\perp\}) \times \ldots \times (A_n \cup \{\perp\}) \rightarrow \text{Dist}(S)$
 - generalises turn–based stochastic games

- **We again use the logic rPATL for properties**

- **Same overall rPATL model checking algorithm [QEST’18]**
 - key ingredient is now solving (zero–sum) 2–player CSGs
 - this problem is in PSPACE
 - note that optimal strategies are now randomised
rPATL model checking for CSGs

- **We again use a value iteration based approach**
 - e.g. max/min reachability probabilities
 - \(\sup_{\sigma_1} \inf_{\sigma_2} \Pr_s^{\sigma_1,\sigma_2} (F \checkmark) \) for all states \(s \)
 - values \(p(s) \) are the least fixed point of:
 \[
 p(s) = \begin{cases}
 1 & \text{if } s \models \checkmark \\
 \text{val}(Z) & \text{if } s \not\models \checkmark
 \end{cases}
 \]
 - where \(Z \) is the matrix game with \(z_{ij} = \Sigma_s \delta(s,(a_i,b_j))(s') \cdot p(s') \)

- **So each iteration solves a matrix game for each state**
 - LP problem of size \(|A| \), where \(A \) = action set

![Diagram](image_url)
CSGs in PRISM–games

- CSG model checking implemented in PRISM–games 3.0
- Further extension of PRISM modelling language
- Explicit engine implementation
 - plus LP solvers for matrix game solution
 - this is the main bottleneck
 - experiments with CSGs up to ~3 million states
- Case studies:
 - future markets investor, trust models for user–centric networks, intrusion detection policies, multi–robot planning, ...
 - jamming radio systems
Example: Future markets investor

• Model of interactions between:
 – stock market, evolves stochastically
 – two investors i_1, i_2 decide when to invest
 – market decides whether to bar investors

• Modelled as a 3–player CSG
 – extends simpler model originally from [McIver/Morgan’07]
 – investing/barring decisions are simultaneous
 – profit reduced for simultaneous investments
 – market cannot observe investors’ decisions

• Analysed with rPATL model checking & strategy synthesis
 – distinct profit models considered: ‘normal market’, ‘later cash–ins’ and ‘later cash–ins with fluctuation’
 – comparison between TSG and CSG models
Example: Future markets investor

• Example rPATL query:
 - $\langle\langle\text{investor}_1,\text{investor}_2\rangle\rangle R_{\text{max}}^{\text{profit}_{1,2}} [F \text{ finished}_{1,2}]$
 - i.e. maximising joint profit

• Results: with (left) and without (right) fluctuations
 - optimal (randomised) investment strategies synthesised
 - CSG yields more realistic results (market has less power due to limited observation of investor strategies)

![Graphs showing comparison of CSG and TSG profit over number of months]
Equilibria–based properties
Equilibria–based properties

- **Motivation:**
 - players/components may have distinct objectives but which are not directly opposing (non zero–sum)

- **We use Nash equilibria (NE)**
 - no incentive for any player to unilaterally change strategy
 - actually, we use ε–NE, which always exist for CSGs
 - a strategy profile $\sigma=(\sigma_1,\ldots,\sigma_n)$ for a CSG is an ε–NE for state s and objectives X_1,\ldots,X_n iff:
 - $\Pr_s^{\sigma}(X_i) \geq \sup \{ \Pr_s^{\sigma'}(X_i) \mid \sigma' = \sigma_{-i}[\sigma_i'] \text{ and } \sigma_i' \in \Sigma_i \} - \varepsilon$ for all i

$\langle \langle \text{robot}_1 \rangle \rangle \max=? P \left[F \leq k \text{ goal}_1 \right]$

$\langle \langle \text{robot}_1: \text{robot}_2 \rangle \rangle \max=? \left(P \left[F \leq k \text{ goal}_1 \right] + P \left[F \leq k \text{ goal}_2 \right] \right)$
Social-welfare Nash equilibria

• **Key idea:** formulate model checking (strategy synthesis) in terms of social–welfare Nash equilibria (SWNE)
 - these are NE which maximise the sum $E_{s\sigma}(X_1) + \ldots E_{s\sigma}(X_n)$
 - i.e., optimise the players combined goal

• **We extend rPATL accordingly**

 Zero–sum properties

 $\langle\langle \text{robot}_1 \rangle\rangle_{\text{max}=?} P[F^\leq k \text{ goal}_1]$

 find a robot 1 strategy which maximises the probability of it reaching its goal, regardless of robot 2

 Equilibria–based properties

 $\langle\langle \text{robot}_1:\text{robot}_2 \rangle\rangle_{\text{max}=?} (P[F^\leq k \text{ goal}_1] + P[F^\leq k \text{ goal}_2])$

 find (SWNE) strategies for robots 1 and 2 where there is no incentive to change actions and which maximise joint goal probability
Model checking for extended rPATL

- Model checking for CSGs with equilibria
 - first: 2–coalition case [FM’19]
 - needs solution of bimatrix games
 - (basic problem is EXPTIME)
 - we adapt a known approach using labelled polytopes, and implement with an SMT encoding

- We further extend the value iteration approach:

\[
p(s) = \begin{cases}
(1,1) & \text{if } s \models \checkmark_1 \land \checkmark_2 \\
(p_{\max}(s, \checkmark_2),1) & \text{if } s \models \checkmark_1 \land \neg \checkmark_2 \\
(1,p_{\max}(s, \checkmark_1)) & \text{if } s \models \neg \checkmark_1 \land \checkmark_2 \\
\text{val}(Z_1,Z_2) & \text{if } s \models \neg \checkmark_1 \land \neg \checkmark_2
\end{cases}
\]

- where \(Z_1 \) and \(Z_2 \) encode matrix games similar to before
PRISM–games support

• **Implementation in PRISM–games 3.0**
 – bimatrix games solved using Z3/Yices encoding
 – optimised filtering of dominated strategies
 – scales up to CSGs with ~2 million states
 – extended to n–coalition case in [QEST’20]

• **Applications & results**
 – robot navigation in a grid, medium access control, Aloha communication protocol, power control
 – SWNE strategies outperform those found with rPATL
 – ϵ–Nash equilibria found typically have $\epsilon=0$
Example: multi-robot coordination

• 2 robots navigating an $l \times l$ grid
 – start at opposite corners, goals are to navigate to opposite corners
 – obstacles modelled stochastically: navigation in chosen direction fails with probability q

• We synthesise SWNEs to maximise the average probability of robots reaching their goals within time k
 – $\langle\langle\text{robot}1:\text{robot}2\rangle\rangle_{\text{max}} = \text{?} \cdot \left(P \left[F_{\leq k} \text{ goal}_1 \right] + P \left[F_{\leq k} \text{ goal}_2 \right]\right)$

• Results (10 x 10 grid)
 – better performance obtained than using zero-sum methods, i.e., optimising for robot 1, then robot 2
Future challenges
Challenges

- **Partial information/observability**
 - we need realisable strategies
 - leverage progress on POMDPs?

- **Managing model uncertainty**
 - integration with learning
 - robust verification

- **Accuracy of model checking results**
 - value iteration improvements; exact methods

- **Scalability & efficiency**
 - e.g. symbolic methods, abstraction, symmetry reduction
 - sampling–based strategy synthesis methods
• See the PRISM–games website for more info
 – prismmodelchecker.org/games/
 – documentation, examples, case studies, papers
 – downloads: 🍎 🐧 🍒 + CAV’20 artefact VM
 – open source (GPLV2): 🐧