λ-calculus, effects and call-by-push-value

Paul Blain Levy

University of Birmingham

December 1, 2021
We’re going to look at simply typed \(\lambda \)-calculus with arithmetic, including not just function types, but also sum and product types.

Here is the syntax of types:

\[
A ::= \text{bool} \mid \text{nat} \mid A \to A \mid 1 \mid A \times A \mid 0 \mid A + A \\
\mid \sum_{i \in \mathbb{N}} A_i \mid \prod_{i \in \mathbb{N}} A_i \quad \text{(optional extra)}
\]
We’re going to look at simply typed λ-calculus with arithmetic, including not just function types, but also sum and product types.

Here is the syntax of types:

\[
A ::= \text{bool} \mid \text{nat} \mid A \rightarrow A \mid 1 \mid A \times A \mid 0 \mid A + A \\
\mid \sum_{i \in \mathbb{N}} A_i \mid \prod_{i \in \mathbb{N}} A_i \quad \text{(optional extra)}
\]

Why no brackets?

- You might expect \(A ::= \cdots \mid (A) \).
- But our definition is abstract syntax.
- This means a type—or a term—is a tree of symbols, not a string of symbols.
Typing Judgement

Example

\[x : \text{nat}, \ y : \text{nat} \vdash \lambda z : \text{nat} \rightarrow \text{nat}. \ z(x + x) : (\text{nat} \rightarrow \text{nat}) \rightarrow \text{nat} \]

In English:

Given declarations of \(x : \text{nat} \) and \(y : \text{nat} \),

\(\lambda z : \text{nat} \rightarrow \text{nat}. \ z(x + x) \) is a term of type \((\text{nat} \rightarrow \text{nat}) \rightarrow \text{nat}\).

The typing judgement takes the form \(\Gamma \vdash M : A \).

- \(\Gamma \) is a typing context, a finite set of typed distinct identifiers.
- \(M \) is a term.
- \(A \) is a type.
Identifiers

The most basic typing rules, not associated with any particular type.

Free identifier

\[\Gamma \vdash x : A \in \Gamma \]

Multiple local declaration, e.g. of two identifiers

\[\Gamma \vdash M : A \quad \Gamma \vdash M' : B \quad \Gamma, x : A, y : B \vdash N : C \]

\[\Gamma \vdash \text{let (x be } M, \text{ y be } M'). N : C \]
Typing rules for $A \rightarrow B$

Introduction rule

\[
\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x_A. M : A \rightarrow B}
\]

Elimination rule

\[
\frac{\Gamma \vdash M : A \rightarrow B \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B}
\]

Type annotations in terms

- For Γ and M, there’s at most one A such that $\Gamma \vdash M : A$
- and at most one derivation of $\Gamma \vdash M : A$.
- This is because of our type annotations.
- Some formulations omit some or all of these.
Typing rules for bool

Two introduction rules:

\[
\Gamma \vdash \text{true} : \text{bool} \quad \Gamma \vdash \text{false} : \text{bool}
\]

Elimination rule

\[
\Gamma \vdash M : \text{bool} \quad \Gamma \vdash N : B \quad \Gamma \vdash N' : B \\
\Gamma \vdash \text{match } M \text{ as } \{\text{true. } N, \text{false. } N'\} : B
\]

It’s a pretentious notation for if M then N else N'.
Typing rules for arithmetic

These are *ad hoc* rules.

\[
\Gamma \vdash 17 : \text{nat} \\
\Gamma \vdash M : \text{nat} \quad \Gamma \vdash M' : \text{nat} \quad \Gamma \vdash M + M' : \text{nat}
\]
Typing rules for $A + B$

Two introduction rules

\[
\begin{align*}
\Gamma \vdash M : A & \quad \Rightarrow \quad \Gamma \vdash \text{inl}^{A,B} M : A + B \\
\Gamma \vdash M : B & \quad \Rightarrow \quad \Gamma \vdash \text{inr}^{A,B} M : A + B
\end{align*}
\]

Elimination rule

\[
\begin{align*}
\Gamma \vdash M : A + B & \quad \Gamma, x : A \vdash N : C \\
\Gamma, y : B \vdash N' : C
\end{align*}
\]

\[
\Gamma \vdash \text{match } M \text{ as } \{ \text{inl } x . N, \text{ inr } y . N' \} : C
\]
Typing rules for $A + B$

Two introduction rules

\[
\begin{align*}
\Gamma \vdash M : A & \quad \Rightarrow \quad \Gamma \vdash \text{inl}^{A,B} M : A + B \\
\Gamma \vdash M : B & \quad \Rightarrow \quad \Gamma \vdash \text{inr}^{A,B} M : A + B
\end{align*}
\]

Elimination rule

\[
\begin{align*}
\Gamma \vdash M : A + B & \quad \Rightarrow \quad \Gamma, x : A \vdash N : C \quad \Gamma, y : B \vdash N' : C \\
\Gamma \vdash \text{match} M \text{ as } \{\text{inl} \ x. \ N, \ \text{inr} \ y. \ N'\} : C
\end{align*}
\]

Likewise for $\sum_{i \in \mathbb{N}} A_i$.
Zero introduction rules

Elimination rule

\[\Gamma \vdash M : 0 \]

\[\Gamma \vdash \text{match } M \text{ as } \{\}^A : A \]
Typing rules for $A \times B$

Introduction rule

\[
\frac{\Gamma \vdash M : A \quad \Gamma \vdash N : B}{\Gamma \vdash \langle M, N \rangle : A \times B}
\]

Two options for elimination

- **Pattern-matching product.** Elimination rule

\[
\frac{\Gamma \vdash M : A \times B \quad \Gamma, x : A, y : B \vdash N : C}{\Gamma \vdash \text{match } M \text{ as } \langle x, y \rangle. \ N : C}
\]

- **Projection product.** Two elimination rules

\[
\begin{align*}
\Gamma \vdash M : A \times B \\
\Gamma \vdash M^l : A
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash M : A \times B \\
\Gamma \vdash M^r : B
\end{align*}
\]
Typing rules for $A \times B$

Introduction rule

$\Gamma \vdash M : A \quad \Gamma \vdash N : B$

$\Gamma \vdash \langle M, N \rangle : A \times B$

Two options for elimination

- **Pattern-matching product.** Elimination rule

 $\Gamma \vdash M : A \times B \quad \Gamma, x : A, y : B \vdash N : C$

 $\Gamma \vdash \text{match } M \text{ as } \langle x, y \rangle. \ N : C$

- **Projection product.** Two elimination rules

 $\Gamma \vdash M : A \times B$

 $\Gamma \vdash M^1 : A$

 $\Gamma \vdash M^r : B$

$\prod_{i \in \mathbb{N}} A_i$ is a projection product.
Typing rules for 1

Introduction rule

$$\Gamma \vdash \langle \rangle : 1$$

Two options for elimination

- **Pattern-match unit.** Elimination rule

 $$\Gamma \vdash M : 1 \quad \Gamma \vdash N : C

 \Gamma \vdash \text{match } M \text{ as } \langle \rangle \cdot N : C$$

- **Projection unit.** Zero elimination rules
Weakening is admissible

Theorem

If $\Gamma \vdash M : A$ and $\Gamma \subseteq \Gamma'$ then $\Gamma' \vdash M : A$.
Terms are α-equivalent when they have the same binding diagram.

$$M \equiv_\alpha N \iff \text{BD}(M) = \text{BD}(N)$$

The collection of binding diagrams forms an initial algebra [FPT; AR].

We’ll skate over this issue. It’s not specific to λ-calculus.
Substitution

Substitution is an operation on binding diagrams, not on terms.
Substitution is an operation on binding diagrams, not on terms.

Multiple substitution, e.g. for two identifiers

If $\Gamma \vdash M : A$ and $\Gamma \vdash M' : B$ and $\Gamma, x : A, y : B \vdash N : C$,

we define $\Gamma \vdash N[M/x, M'/y] : C$.

Example

\[
M = \lambda y_{\text{nat}}. y + 3 \\
M' = 7 \\
N = x(5 + y) \\
N[M/x, M'/y] = (\lambda z_{\text{nat}}. z + 3)(5 + 7)
\]
Every type A denotes a set $[A]$.

For example, $[\text{nat} \to \text{nat}]$ is the set of functions $\mathbb{N} \to \mathbb{N}$.

Types denote sets

- Every type A denotes a set $\llbracket A \rrbracket$.
- For example, $\llbracket \text{nat} \to \text{nat} \rrbracket$ is the set of functions $\mathbb{N} \to \mathbb{N}$.
- $\llbracket A \rrbracket$ is a semantic domain for terms of type A.
- This means: a closed term of type $\vdash M : A$ denotes an element of $\llbracket A \rrbracket$.
Types denote sets

- Every type A denotes a set $\llbracket A \rrbracket$.
- For example, $\llbracket \text{nat} \to \text{nat} \rrbracket$ is the set of functions $\mathbb{N} \to \mathbb{N}$.
- $\llbracket A \rrbracket$ is a semantic domain for terms of type A.
- This means: a closed term of type $\vdash M : A$ denotes an element of $\llbracket A \rrbracket$.
- For example, $\lambda x_{\text{nat}}. x + 3$ denotes $\lambda a \in \mathbb{N}. a + 3$.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value December 1, 2021 16 / 1
Semantics of types

Notation

For sets X and Y,

- $X \rightarrow Y$ is the set of functions from X to Y.
- $X \times Y$ is $\{\langle x, y \rangle \mid x \in X, y \in Y\}$.
- $X + Y$ is $\{\text{inl } x \mid x \in X\} \cup \{\text{inr } y \mid y \in Y\}$.

$\left[\text{bool}\right] = \mathbb{B} = \{\text{true, false}\}$
$\left[\text{nat}\right] = \mathbb{N}$
$\left[A \rightarrow B\right] = \left[A\right] \rightarrow \left[B\right]$
$\left[1\right] = 1 = \{\langle\rangle\}$
$\left[A + B\right] = \left[A\right] + \left[B\right]$
$\left[A \times B\right] = \left[A\right] \times \left[B\right]$
$\left[0\right] = \emptyset$
Let Γ be a typing context.

- A **semantic environment** ρ for Γ provides an element $\rho_x \in \llbracket A \rrbracket$ for each $(x : A) \in \Gamma$.
- $\llbracket \Gamma \rrbracket$ is the set of semantic environments for Γ.

$$\llbracket \Gamma \rrbracket \overset{\text{def}}{=} \prod_{(x : A) \in \Gamma} \llbracket A \rrbracket$$
Given a typing judgement $\Gamma \vdash M : A$, we shall define $\llbracket M \rrbracket$, or more precisely $\llbracket \Gamma \vdash M : A \rrbracket$. It's a function from $\llbracket \Gamma \rrbracket$ to $\llbracket A \rrbracket$.

Example

$x : \text{nat}, y : \text{nat} \vdash \lambda z : \text{nat} \to \text{nat}. z(x + y) : (\text{nat} \to \text{nat}) \to \text{nat}$

denotes the function

$$\llbracket x : \text{nat}, y : \text{nat} \rrbracket \longrightarrow (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$$

$$\rho \longmapsto \lambda z \in \mathbb{N} \to \mathbb{N}. z(\rho_x + \rho_y)$$
Semantics of terms

\[\Gamma \vdash 17 : \text{nat} \]

\[[[17]] : \rho \mapsto 17 \]

\[\Gamma \vdash M : \text{nat} \quad \Gamma \vdash M' : \text{nat} \]

\[\Gamma \vdash M + M' : \text{nat} \]

\[[[M + M']] : \rho \mapsto [[M]]\rho + [[M']]\rho \]
\[
\Gamma \vdash x : A \\
\Gamma \vdash \lambda x. M : A \rightarrow B \\
\Gamma \vdash [\lambda x_A. M] : \rho \mapsto \lambda a \in [A]. [M](\rho, x \mapsto a)
\]
More semantic equations

\[
\Gamma \vdash M : A \\
\Gamma \vdash \text{inl}^{A,B} M : A + B \\
[\text{inl}^{A,B} M] : \rho \mapsto \text{inl} [M] \rho
\]

\[
\Gamma \vdash M : A + B \quad \Gamma, x : A \vdash N : C \quad \Gamma, y : B \vdash N' : C \\
\Gamma \vdash \text{match } M \text{ as } \{\text{inl } x. N, \text{inr } y. N'\} : C
\]

\[
[\text{match } M \text{ as } \{\text{inl } x. N, \text{inr } y. N'\}] : \rho \mapsto \text{match } [M] \rho \text{ as } \{\text{inl } a. [N](\rho, x \mapsto a), \text{inr } b. [N'](\rho, y \mapsto b)\}
\]
Basic properties

Semantic Coherence

If type annotations are omitted, then $\Gamma \vdash M : A$ can have more than one derivation.

We must prove that $\llbracket \Gamma \vdash M : A \rrbracket$ doesn’t depend on the derivation.
Basic properties

Semantic Coherence
If type annotations are omitted,
then $\Gamma \vdash M : A$ can have more than one derivation.

We must prove that $[[\Gamma \vdash M : A]]$ doesn’t depend on the derivation.

Weakening Lemma
If $\Gamma \vdash M : A$ and $\Gamma \subseteq \Gamma'$ then

$$[[\Gamma' \vdash M : A]]\rho = [[\Gamma \vdash M]](\rho \restriction \Gamma)$$
We can give denotational semantics of binding diagrams.

\[[\Gamma \vdash M : A] = [\Gamma \vdash \text{BD}(M) : A] \]

So α-equivalent terms have the same denotation.
We can give denotational semantics of binding diagrams.

\[[\Gamma \vdash M : A] = [\Gamma \vdash \text{BD}(M) : A] \]

So \(\alpha \)-equivalent terms have the same denotation.

For binding diagrams \(\Gamma \vdash M : A \) and \(\Gamma \vdash M' : B \) and \(\Gamma, x : A \vdash N : C \), we can recover \([N[M/x, M'/y]] \) from \([N] \) and \([M] \) and \([M'] \).

\[[N[M/x, M'/y]] : \rho \mapsto [N](\rho, x \mapsto [M]\rho, y \mapsto [M']\rho) \]
The β-law for $A \rightarrow B$

$$
\Gamma \vdash M : A \quad \Gamma, x : A \vdash N : B
$$

$$
\Gamma \vdash (\lambda x_A. N) M = N[M/x] : B
$$

Introduction inside an elimination may be removed.
The β-law for $A \rightarrow B$

\[
\Gamma \vdash M : A \quad \Gamma, x : A \vdash N : B \\
\Gamma \vdash (\lambda x_A. N) M = N[M/x] : B
\]

Introduction inside an elimination may be removed.

Two β-laws for projection product $A \times B$

\[
\Gamma \vdash M : A \quad \Gamma \vdash N : A' \\
\Gamma \vdash \langle M, N \rangle^1 = M : A
\]

Zero β-laws for projection unit 1
More β-laws

Two β-laws for bool

\[
\Gamma \vdash N : C \quad \Gamma \vdash N' : C
\]

\[
\Gamma \vdash \text{match true as } \{\text{true. } N, \text{ false. } N'\} = N : C
\]
More β-laws

Two β-laws for bool

\[
\Gamma \vdash N : C \quad \Gamma \vdash N' : C \\
\Gamma \vdash \text{match true as } \{\text{true.} N, \text{false.} N'\} = N : C
\]

Two β-laws for $A + B$

\[
\Gamma \vdash M : A \quad \Gamma, x : A \vdash N : C \quad \Gamma, y : B \vdash N' : C \\
\Gamma \vdash \text{match inl}^{A,B} M \text{ as } \{\text{inl} x. N, \text{inr} y. N'\} = N[M/x] : C
\]
More β-laws

Two β-laws for bool

$$
\Gamma \vdash N : C \quad \Gamma \vdash N' : C
$$

$$
\Gamma \vdash \text{match true as } \{ \text{true}.N, \text{false}.N' \} = N : C
$$

Two β-laws for $A + B$

$$
\Gamma \vdash M : A \quad \Gamma, x : A \vdash N : C \quad \Gamma, y : B \vdash N' : C
$$

$$
\Gamma \vdash \text{match } \text{inl}^{A,B} M \text{ as } \{ \text{inl} x.N, \text{inr} y.N' \} = N[M/x] : C
$$

Zero β-laws for 0
\[\begin{align*}
\Gamma \vdash M : A & \quad \Gamma \vdash M' : B & \quad \Gamma, x : A, y : B \vdash N : C \\
\Gamma \vdash \text{let (}x \text{ be } M, \ y \text{ be } M'). \ N = N[M/x, M'/y] : C
\end{align*} \]
\[\Gamma \vdash M : A \rightarrow B \]

\[\Gamma \vdash M = \lambda x_{A}. M\, x : A \rightarrow B \quad x \notin \Gamma \]

Introduction outside an elimination may be inserted.
η-laws

η-law for $A \rightarrow B$, everything is λ

\[
\frac{\Gamma \vdash M : A \rightarrow B}{\Gamma \vdash M = \lambda x_A. M \ x : A \rightarrow B} \quad x \notin \Gamma
\]

Introduction outside an elimination may be inserted.

η-law for projection product $A \times B$, everything is a tuple

\[
\frac{\Gamma \vdash M : A \times B}{\Gamma \vdash M = \langle M^l, M^r \rangle : A \times B}
\]

η-law for projection unit 1, everything is a tuple

\[
\frac{\Gamma \vdash M : 1}{\Gamma \vdash M = \langle \rangle : 1}
\]
More η-laws

η-law for bool, \textit{everything is true or false}

\[
\Gamma \vdash M : \text{bool} \quad \Gamma, z : \text{bool} \vdash N : C
\]

\[
\Gamma \vdash N[M/z] = \text{match } M \text{ as } \{\text{true.} N[\text{true}/z], \text{false.} N[\text{false}/z]\} : C
\]
More η-laws

η-law for bool, everything is true or false

\[
\Gamma \vdash M : \text{bool} \quad \Gamma, z : \text{bool} \vdash N : C
\]

\[
\Gamma \vdash N[M/z] = \text{match } M \text{ as } \{\text{true. } N[\text{true/z}], \text{false. } N[\text{false/z}]\} : C
\]

η-law for $A + B$, everything is inl or inr

\[
\Gamma \vdash M : A + B \quad \Gamma, z : A + B \vdash N : C
\]

\[
\Gamma \vdash N[M/z] = \text{match } M \text{ as } \{\text{inl } x. N[\text{inl } x/z], \text{inr } y. N[\text{inr } y/z]\} : C
\]
More η-laws

η-law for bool, everything is true or false

\[
\Gamma \vdash M : \text{bool} \quad \Gamma, z : \text{bool} \vdash N : C \\
\Gamma \vdash N[M/z] = \text{match } M \text{ as } \{ \text{true. } N[\text{true}/z], \text{false. } N[\text{false}/z] \} : C
\]

η-law for $A + B$, everything is inl or inr

\[
\Gamma \vdash M : A + B \quad \Gamma, z : A + B \vdash N : C \\
\Gamma \vdash N[M/z] = \text{match } M \text{ as } \{ \text{inl } x. N[\text{inl } x/z], \text{inr } y. N[\text{inr } y/z] \} : C
\]

η-law for 0, nothing exists

\[
\Gamma \vdash M : 0 \quad \Gamma, z : 0 \vdash N : C \\
\Gamma \vdash N[M/z] = \text{match } M \text{ as } \{ \} : C
\]
The $\beta\eta$-theory

We define $\Gamma \vdash M =_{\beta\eta} M' : A$ inductively as follows.

All the β- and η-laws are taken as axioms, and it is a congruence i.e. an equivalence relation preserved by each term constructor. For example:

$$\Gamma, x : A \vdash M = M' : B$$

$$\Gamma \vdash \lambda x_A. M = \lambda x_A. M' : A \rightarrow B$$
Properties of $\equiv_{\beta\eta}$

Closure Theorems

- $\equiv_{\beta\eta}$ is closed under weakening. But not conversely, e.g.

$$z:0 \vdash true \equiv_{\beta\eta} false : bool$$

but not

$$\vdash true \equiv_{\beta\eta} false : bool$$

- $\equiv_{\beta\eta}$ is closed under substitution.

Soundness theorem

If $\Gamma \vdash M \equiv_{\beta\eta} M' : A$ then $[M] = [M']$.

Follows from the weakening and substitution lemmas.
Reversible rule for $A \rightarrow B$

The connective \rightarrow is rightist: it has a reversible rule

\[
\frac{\Gamma, x : A \vdash B}{\Gamma \vdash A \rightarrow B}
\]

natural in Γ—we’ll skate over naturality.
The connective \rightarrow is rightist: it has a reversible rule

$$
\frac{\Gamma, x : A \vdash B}{\Gamma \vdash A \rightarrow B}
$$

natural in Γ—we’ll skate over naturality.

- Downwards, a term $\Gamma, x : A \vdash M : B$ is sent to $\lambda x_A. M$.
- Upwards, a term $\Gamma \vdash N : A \rightarrow B$ is sent to $N x$.
- These are inverse up to $=^{\beta\eta}$.
Reversible rule for $A \rightarrow B$

The connective \rightarrow is rightist: it has a reversible rule

$$\Gamma, x : A \vdash B \quad \Rightarrow \quad \Gamma \vdash A \rightarrow B$$

natural in Γ—we’ll skate over naturality.

- Downwards, a term $\Gamma, x : A \vdash M : B$ is sent to $\lambda x_A. M$.
- Upwards, a term $\Gamma \vdash N : A \rightarrow B$ is sent to $N \ x$.
- These are inverse up to $\equiv_{\beta\eta}$.

$A \rightarrow B$ appears on the right of \vdash in the conclusion.
Reversible rule for bool

The (nullary) connective `bool` is **leftist**. That means: it has a reversible rule

\[
\Gamma \vdash C \quad \Gamma \vdash C \\
\overline{\Gamma, z : \text{bool} \vdash C}
\]

natural in \(\Gamma\) and \(C\)—we’ll skate over naturality.

- **Downwards**, a pair \(\Gamma \vdash M : C\) and \(\Gamma \vdash M' : C\) is sent to match \(z\) as \(\{\text{true}.M, \text{false}.M'\}\).
- **Upwards**, a term \(\Gamma, z : \text{bool} \vdash N : C\) is sent to \(N[\text{true}/z]\) and \(N[\text{false}/z]\).
- These are inverse up to \(=_{\beta\eta}\).

`bool` appears on the **left** of \(\vdash\) in the conclusion.
The connective $+\,$ is leftist, having a reversible rule

\[
\Gamma, x : A \vdash C \quad \Gamma, y : B \vdash C
\]

\[
\Gamma, z : A + B \vdash C
\]

natural in Γ and C.
The connective $+$ is leftist, having a reversible rule

$$\Gamma, x : A \vdash C \quad \Gamma, y : B \vdash C$$

$$\frac{}{\Gamma, z : A + B \vdash C}$$

natural in Γ and C.

The (nullary) connective 0 is leftist, having a reversible rule

$$\frac{}{\Gamma, z : 0 \vdash C}$$

natural in Γ and C.
Bipartisan connectives

The connective \times has a reversible rule

$$
\Gamma \vdash A \quad \Gamma \vdash B \\
\hline
\Gamma \vdash A \times B
$$

natural in Γ, so it’s rightist.
The connective \times has a reversible rule

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \times B}$$

natural in Γ, so it’s rightist.

It also has a reversible rule

$$\frac{\Gamma, x : A, y : B \vdash C}{\Gamma, z : A \times B \vdash C}$$

natural in Γ and C, so it’s leftist.
Bipartisan connectives

The connective \times has a reversible rule

$$
\Gamma \vdash A \quad \Gamma \vdash B \\
\hline
\Gamma \vdash A \times B
$$

natural in Γ, so it’s rightist.

It also has a reversible rule

$$
\Gamma, x : A, y : B \vdash C \\
\hline
\Gamma, z : A \times B \vdash C
$$

natural in Γ and C, so it’s leftist.
Bipartisan connectives

The connective \times has a reversible rule

$$
\Gamma \vdash A \quad \Gamma \vdash B
\quad \quad
\frac{}{\Gamma \vdash A \times B}
$$

natural in Γ, so it’s rightist.

It also has a reversible rule

$$
\Gamma, x : A, y : B \vdash C
\quad \quad
\frac{}{\Gamma, z : A \times B \vdash C}
$$

natural in Γ and C, so it’s leftist.

In summary, the connective \times is bipartisan.
Likewise the (nullary) connective 1.
The variant tuple type $\sum \{ 0 \ A, A'; \ 1 \ B, B', B'' \}$ denotes a sum of products

$([A] \times [A']) + ([B] \times [B'] \times [B''])$

This gives a leftist connective.

$$\Gamma, A, A' \vdash C \quad \Gamma, B, B', B'' \vdash C$$

$$\Gamma, \sum \{ 0 \ A, A'; \ 1 \ B, B', B'' \} \vdash C$$
Most general leftist connective

The variant tuple type \[\sum \{ 0 \ A, A'; \ 1 \ B, B', B'' \} \] denotes a sum of products
\[([A] \times [A']) + ([B] \times [B'] \times [B'']) \]
This gives a leftist connective.

\[\Gamma, A, A' \vdash C \quad \Gamma, B, B', B'' \vdash C \]
\[\Gamma, \sum \{ 0 \ A, A'; \ 1 \ B, B', B'' \} \vdash C \]

Here is its term syntax:

\[\text{in}_0(M, M') \]
\[\text{in}_1(M, M', M'') \]
match \(M \) as \{ \text{in}_0(x, x'). N, \text{in}_1(y, y', y''). N' \} \]
The variant function type $\prod \{ \begin{array}{1} 0 & A, A' \vdash B; \\ 1 & C, C', C'' \vdash D \end{array} \}$ denotes a product of multi-ary function types

$$(\square [A] \times [A']) \rightarrow [B]) \times ((\square [C] \times [C'] \times [C'']) \rightarrow [D])$$

This gives a rightist connective.

$$\Gamma, A, A' \vdash B \quad \Gamma, C, C', C'' \vdash D$$

$$\Gamma \vdash \prod \{ \begin{array}{1} 0 & A, A' \vdash B; \\ 1 & C, C', C'' \vdash D \end{array} \}$$
Most general rightist connective

The variant function type $\prod \{^0 A, A' \vdash B; ^1 C, C', C'' \vdash D \}$ denotes a product of multi-ary function types

$$((\Gamma \times [A'] \times [B]) \times (\Gamma \times [C] \times [C'] \times [C'']) \times [D])$$

This gives a rightist connective.

$$\Gamma, A, A' \vdash B \Gamma, C, C', C'' \vdash D \Gamma \vdash \prod \{^0 A, A' \vdash B; ^1 C, C', C'' \vdash D \}$$

Here is its term syntax:

$$\lambda \{^0 (x, x').M, ^1 (y, y', y'').M'\}
M^0 (N, N')
M^1 (N, N', N'')$$
Jumbo λ-calculus

Type syntax

$$A ::= \sum \{ \vec{A}_i \}_{i<n} \mid \prod \{ \vec{A}_i \vdash B_i \}_{i<n} \quad (n \in \mathbb{N} \text{ or } n = \infty)$$

Term syntax, with type annotations omitted

$$M ::= x \mid \text{let } (\vec{x} \text{ be } M). M \mid \text{in}_i(M) \mid \text{match } M \text{ as } \{ \text{in}_i(\vec{x}). M_i \}_{i<n} \mid \lambda^{i}(\vec{x}). M_i \}_{i<n} \mid M^i(M)$$

Includes both pattern-match product $A \times B$ and projection product $A \Pi B$.

Paul Blain Levy (University of Birmingham)
λ-calculus, effects and call-by-push-value
December 1, 2021 38 / 1
Type syntax

\[A ::= \sum \{ \overrightarrow{A_i} \}_{i<n} \mid \prod \{ \overrightarrow{A_i} \vdash B_i \}_{i<n} \quad (n \in \mathbb{N} \text{ or } n = \infty) \]

Term syntax, with type annotations omitted

\[M ::= x \mid \text{let } (x \text{ be } \overrightarrow{M}). \ M \]
\[\quad \mid \text{in}_i(\overrightarrow{M}) \]
\[\quad \mid \text{match } M \text{ as } \{\text{in}_i(\overrightarrow{x}). \ M_i\}_{i<n} \]
\[\quad \mid \lambda\{i(\overrightarrow{x}). \ M_i\}_{i<n} \]
\[\quad \mid M^i(\overrightarrow{M}) \]

Includes both pattern-match product \(A \times B \) and projection product \(A \sqpi B \).
Jumbo λ-calculus is the most expressive form of simply typed λ-calculus: it contains all leftist and rightist connectives as primitives.
Jumbo λ-calculus is the most expressive form of simply typed λ-calculus: it contains all leftist and rightist connectives as primitives.

Modulo $=_{\beta\eta}$ it is no more expressive than the non-jumbo version.
Jumbo λ-calculus is the most expressive form of simply typed λ-calculus: it contains all leftist and rightist connectives as primitives.

Modulo $=_{\beta\eta}$ it is no more expressive than the non-jumbo version.

But the β- and η-laws are not going to survive.
We want to evaluate every closed term $\vdash M : A$ to a terminal term.

We want $\lambda x_A. M$ to be terminal, since M is not closed.

But there are many options.
Three decisions we must make

1. To evaluate \texttt{let (x be } M, \texttt{ y be } M'). N, do we
 \begin{itemize}
 \item evaluate \(M\) to \(T\) and \(M'\) to \(T'\), then evaluate \(N[T/x, T'/y]\)?
 \item just evaluate \(N[M/x, M'/y]\)?
 \end{itemize}
Three decisions we must make

1. To evaluate let (x be M, y be M'). N, do we
 - evaluate M to T and M' to T', then evaluate $N[T/x, T'/y]$?
 - just evaluate $N[M/x, M'/y]$?

2. To evaluate $M\ N$, we must evaluate M to $\lambda x_A. P$. Do we
 - evaluate N to T (before or after evaluating M), then evaluate $P[T/x]$?
 - just evaluate $P[N/x]$?
Three decisions we must make

1. To evaluate `let (x be M, y be M'). N`, do we
 - evaluate `M` to `T` and `M'` to `T'`, then evaluate `N[T/x, T'/y]`?
 - just evaluate `N[M/x, M'/y]`?

2. To evaluate `MN`, we must evaluate `M` to `λx_A. P`. Do we
 - evaluate `N` to `T` (before or after evaluating `M`), then evaluate `P[T/x]`?
 - just evaluate `P[N/x]`?

3. Any terminal term of type `A + B` must be `inl M` or `inr M`. Do we
 - deem `inl T` and `inr T` terminal only if `T` is terminal?
 - always deem `inl M` and `inr M` terminal?
One fundamental decision

Do we substitute *terminal* terms, or *unevaluated* terms?
One fundamental decision

Do we substitute terminal terms, or unevaluated terms?

Substituting terminal terms gives call-by-value or eager evaluation.

Substituting unevaluated terms gives call-by-name.
One fundamental decision

Do we substitute *terminal* terms, or *unevaluated* terms?

Substituting terminal terms gives *call-by-value* or *eager* evaluation.

Substituting unevaluated terms gives *call-by-name*.

Terminology: lazy and call-by-name

- “Lazy” evaluation usually means *call-by-need*, except in Abramsky’s “lazy λ-calculus”.

- In the untyped literature, “call-by-name” evaluation means reduction to head normal form.
Evaluation order for \texttt{let}

To evaluate \texttt{let} \((x \text{ be } M, \ y \text{ be } M'). \ N\), do we

- evaluate \(M\) to \(T\) and \(M'\) to \(T'\), then evaluate \(N[T/x, T'/y]\)? \textbf{Call-by-value}

- just evaluate \(N[M/x, M'/y]\)? \textbf{Call-by-name}
Evaluation order for application

To evaluate MN, we must evaluate M to $\lambda x_A. P$. Do we

- evaluate N to T (before or after evaluating M), then evaluate $P[T/x]$? **Call-by-value**
- just evaluate $P[N/x]$? **Call-by-name**
Terminal terms of type $A + B$

Any terminal term of type $A + B$ must be $\text{inl } M$ or $\text{inr } M$. Do we

- deem $\text{inl } T$ and $\text{inr } T$ terminal only if T is terminal? **Call-by-value**
- always deem $\text{inl } M$ and $\text{inr } M$ terminal? **Call-by-name**

Consider evaluation of match P as $\{\text{inl } x. N, \text{inr } y. N'\}$ to see this.
Definitional interpreter for call-by-value

CBV terminals $T ::= \text{true} \mid \text{false} \mid \text{inl } T \mid \text{inr } T \mid \lambda x . M$

To evaluate

- **true**: return **true**.

- **$M + N$**: evaluate M. If this returns m, evaluate N. If this returns n, return $m + n$.

- **$\lambda x . M$**: return $\lambda x . M$.

- **inl M**: evaluate M. If this returns T, return inl T.

- **let (x be M, y be M'). N**: evaluate M. If this returns T, evaluate M'. If this returns T', evaluate $N[T/x, T'/y]$.

- **match M as \{true. N, false. N'\}**: evaluate M. If this returns true, evaluate N, but if it returns false, evaluate N'.

- **match M as \{inl x. N, inr x. N'\}**: evaluate M. If this returns inl T, evaluate $N[T/x]$, but if it returns inr T, evaluate $N'[T/x]$.

- **MN**: evaluate M. If this returns $\lambda x . P$, evaluate N. If this returns T, evaluate $P[T/x]$.
Definitional interpreter for call-by-name

In CBN the terminals are true, false, inl M, inr M, $\lambda x.M$

To evaluate

- **true**: return true.
- $M + N$: evaluate M. If this returns m, evaluate N. If this returns n, return $m + n$.
- $\lambda x.M$: return $\lambda x.M$.
- inl M: return inl M.
- let (x be M, y be M'). N: evaluate $N[M/x, M'/y]$.
- match M as {true. N, false. N'}: evaluate M. If this returns true, evaluate N, but if it returns false, evaluate N'.
- MN: evaluate M. If this returns $\lambda x.P$, evaluate $P[N/x]$.
Big-step semantics for call-by-value

We write $M \Downarrow T$ to mean that M evaluates to T.

This is defined inductively, for example

\[
\frac{M \Downarrow \lambda x_A. P \quad N \Downarrow T \quad P[T/x] \Downarrow T'}{M \, N \Downarrow T'}
\]
We write $M \Downarrow T$ to mean that M evaluates to T.

This is defined inductively, for example

\[
\begin{array}{c}
M \Downarrow \lambda x_A. P \quad N \Downarrow T \quad P[T/x] \Downarrow T' \\
\hline
MN \Downarrow T'
\end{array}
\]

If $\vdash M : A$ then $M \Downarrow T$ for unique T.

Moreover $\vdash T : A$ and $[M] = [T]$.
We write $M \Downarrow T$ to mean that M evaluates to T. This is defined inductively, for example

$$
\begin{align*}
M \Downarrow \lambda x_A. P & \quad P[N/x] \Downarrow T \\
M N & \Downarrow T
\end{align*}
$$
Big-step semantics for call-by-name

We write $M \Downarrow T$ to mean that M evaluates to T. This is defined inductively, for example

$$M \Downarrow \lambda x_A. P \quad P[N/x] \Downarrow T$$

$$\frac{}{MN \Downarrow T}$$

If $\vdash M : A$ then $M \Downarrow T$ for unique T.

Moreover $\vdash T : A$ and $[M] = [T]$.
The experiment

- Add effects to (jumbo) λ-calculus, with CBV or CBN evaluation.
- See what equations and isomorphisms survive.
- Seek a denotational semantics for each language.
Long story

The experiment

- Add effects to (jumbo) λ-calculus, with CBV or CBN evaluation.
- See what equations and isomorphisms survive.
- Seek a denotational semantics for each language.

Analyzing CBV with a microscope

- Look closely at the CBV models: there’s a pattern.
- CBV contains particles of meaning, constituting fine-grain call-by-value.
The experiment

- Add effects to (jumbo) λ-calculus, with CBV or CBN evaluation.
- See what equations and isomorphisms survive.
- Seek a denotational semantics for each language.

Analyzing CBV with a microscope

- Look closely at the CBV models: there’s a pattern.
- CBV contains particles of meaning, constituting fine-grain call-by-value.

Increasing the magnification

- Look very closely at the CBN and fine-grain CBV models: there’s a pattern.
- Both contain tiny particles of meaning, constituting call-by-push-value.
Both fine-grain call-by-value and call-by-push-value are obtained empirically, by observing particles of meaning within a range of denotational models.
Where this story comes from

- Plotkin: semantics of recursion for call-by-name (PCF) and call-by-value (FPC)
- Moggi: list of monads for denotational semantics
- Moggi: monadic metalanguage
- Power and Robinson: Freyd categories
- Plotkin and Felleisen: call-by-value continuation semantics
- Reynolds’ Idealized Algol, a call-by-name language with state
- O’Hearn: semantics of type identifiers in such a language
- Streicher and Reus: call-by-name continuation semantics
- Filinski: Effect-PCF
Adding computational effects

Errors
Let $E = \{\text{CRASH, BANG}\}$ be a set of “errors”. We add

$$\Gamma \vdash \text{error}^B e : B$$

$e \in E$

To evaluate $\text{error}^B e$: halt with error message e.

Printing
Let $A = \{a, b, c, d, e\}$ be a set of “characters”. We add

$$\Gamma \vdash M : B$$

$$\Gamma \vdash \text{print } c.\ M : B$$

$c \in A$

To evaluate $\text{print } c.\ M$: print c and then evaluate M.
1. Evaluate

\[
\text{let } (x \text{ be error CRASH}). 5
\]

in CBV and CBN.

2. Evaluate

\[
(\lambda x.(x + x))(\text{print } "hello". 4)
\]

in CBV and CBN.

3. Evaluate

\[
\text{match } (\text{print } "hello". \text{inr error CRASH})\text{ as } \{\text{inl x. } x + 1, \text{ inr y. } 5\}
\]

in CBV and CBN.
Big-step semantics for errors

For call-by-value, we inductively define two big-step relations:

- $M \Downarrow T$ means M evaluates to T.
- $M \downarrow e$ means M raises error e.

Here are the rules for application:

\[
\begin{align*}
\frac{M \downarrow e}{M \circ N \downarrow e} & & \frac{M \downarrow \lambda x. P \quad N \downarrow e}{M \circ N \downarrow e} \\
\frac{M \downarrow \lambda x. P \quad N \downarrow T \quad P[T/x] \downarrow e}{M \circ N \downarrow e} & & \frac{M \downarrow \lambda x. P \quad N \downarrow T \quad P[T/x] \Downarrow T'}{M \circ N \Downarrow T'}
\end{align*}
\]

Likewise for call-by-name.
A program is a closed term of type \texttt{nat} or \texttt{bool}.

Two terms $\Gamma \vdash M, M' : B$ are observationally equivalent when $C[M]$ and $C[M']$ have the same behaviour for every program with a hole $C[\cdot]$.

Same behaviour means: print the same string, raise the same error, return the same boolean.

We write $M \simeq_{\text{CBV}} M'$ and $M \simeq_{\text{CBN}} M'$.
The η-law for boolean type: has it survived?

\textbf{η-law for bool}

Any term $\Gamma, z : \text{bool} \vdash M : B$ can be expanded as

$$\text{match } z \text{ as } \{ \text{true. } M[\text{true}/z], \text{false. } M[\text{false}/z] \}$$

Anything of boolean type is a boolean.

This holds in CBV, because z can only be replaced by true or false. But it's broken in CBN, because z might raise an error. For example,

$$\text{true } \not\sim_{\text{CBN}} \text{ match } z \text{ as } \{ \text{true. true, false. true} \}$$

because we can apply the context

$$\text{let (z be error CRASH). [\cdot]}$$

Similarly the η-law for sum types is valid in CBV but not in CBN.
The η-law for functions: has it survived?

η-law for $A \rightarrow B$ and $A \Pi B$

Any term $\Gamma \vdash M : A \rightarrow B$ can be expanded as $\lambda x. M x$.

Any term $\Gamma \vdash M : A \Pi B$ can be expanded as $\lambda \{^l. M^l, ^r. M^r \}$.

Although these fail in CBV, they hold in CBN. Consequences:

\[
\begin{align*}
\text{error } e & \approx_{\text{CBN}} \lambda x. \text{error } e \\
\text{error } e & \approx_{\text{CBN}} \lambda \{^l. \text{error } e, ^r. \text{error } e \} \\
\text{print } c. \lambda x. M & \approx_{\text{CBN}} \lambda x. \text{print } c. M \\
\text{print } c. \lambda \{^l. M, ^r. N \} & \approx_{\text{CBN}} \lambda \{^l. \text{print } c. M, ^r. \text{print } c. N \}
\end{align*}
\]

Yet the two sides have different operational behaviour! What’s going on?

In CBN, a function gets evaluated only by being applied.
The pure λ-calculus satisfies all the β- and η-laws.

With computational effects,

- CBV satisfies η for leftist connectives (tuple types), but not rightist ones (function types)
- CBN satisfies η for rightist connectives (function types), but not leftist ones (tuple types).
The pure \(\lambda \)-calculus satisfies all the \(\beta \)- and \(\eta \)-laws.

With computational effects,

- CBV satisfies \(\eta \) for leftist connectives (tuple types), but not rightist ones (function types).
- CBN satisfies \(\eta \) for rightist connectives (function types), but not leftist ones (tuple types).

Similarly for isomorphisms:

- \((A + B) + C \cong A + (B + C)\) survives in CBV but not CBN.
- \(A \times B \cong A \Pi B\) survives in neither CBV nor CBN.
- \(A \rightarrow (B \rightarrow C) \cong (A \Pi B) \rightarrow C\) survives in CBN but not CBV.
Naive CBV semantics

Our first attempt.

Each type A denotes a set, a semantic domain for terms.

\[
\begin{align*}
[\text{bool}]^* &= \mathbb{B} + E \\
[\text{bool} + \text{bool}]^* &= (\mathbb{B} + \mathbb{B}) + E \\
[\text{bool} \times \text{bool}]^* &= (\mathbb{B} \times \mathbb{B}) + E
\end{align*}
\]
Naive CBV semantics

Our first attempt.

Each type A denotes a set, a semantic domain for terms.

\[
\begin{align*}
[\text{bool}]_* &= B + E \\
[\text{bool} + \text{bool}]_* &= (B + B) + E \\
[\text{bool} \times \text{bool}]_* &= (B \times B) + E
\end{align*}
\]

Not easy to make this compositional, so we abandon it.
CBV denotational semantics

Each type denotes a set, a **semantic domain for terminals**.

\[
\begin{align*}
[\text{bool}] & = \mathbb{B} \\
[A + B] & = [A] + [B] \\
[A \to B] & = [A] \to ([B] + E) \\
[() \to B] & = [B] + E \\
[\Gamma] & = \prod_{(x:A) \in \Gamma} [A]
\end{align*}
\]
CBV denotational semantics

Each type denotes a set, a **semantic domain for terminals**.

\[
\begin{align*}
\mathbb{[bool]} &= \mathbb{B} \\
\mathbb{[A + B]} &= \mathbb{[A]} + \mathbb{[B]} \\
\mathbb{[A \rightarrow B]} &= \mathbb{[A]} \rightarrow (\mathbb{[B]} + E) \\
\mathbb{[() \rightarrow B]} &= \mathbb{[B]} + E \\
\mathbb{[\Gamma]} &= \prod_{(x:A) \in \Gamma} \mathbb{[A]} \nend{align*}
\]

Each term \(\Gamma \vdash M : B \) denotes a function \(\mathbb{[M]} : \mathbb{[\Gamma]} \rightarrow (\mathbb{[B]} + E) \).
Semantics of term constructors

\[
\Gamma, x : A \vdash M : B \\
\Gamma \vdash \lambda x \in A. M : A \rightarrow B
\]

\[
[\lambda x_A. M] : \rho \mapsto \text{inl } \lambda a \in [A]. [M](\rho, x \mapsto a)
\]

\[
\Gamma \vdash M : A \rightarrow B \quad \Gamma \vdash N : A \\
\Gamma \vdash MN : B
\]

\[
[MN] : \rho \mapsto \text{match } [M]_\rho \text{ as } \left\{ \begin{array}{l}
\text{inl } f. \text{ match } [N]_\rho \text{ as } \left\{ \begin{array}{l}
\text{inl } x. f(x) \\
\text{inr } e. \text{ inr } e
\end{array} \right. \\
\text{inr } e. \text{ inr } e
\end{array} \right.
\]

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value December 1, 2021 62 / 1
More term constructors

\[\Gamma \vdash M : A \]

\[\Gamma \vdash \text{inl}^{A,B} M : A + B \]

\[[\text{inl}^{A,B} M] : \rho \mapsto \text{match } [M]_{\rho} \text{ as } \begin{cases} \text{inl } a. & \text{inl inl } a \\ \text{inr } e. & \text{inr } e \end{cases} \]
More term constructors

\[\Gamma \vdash M : A \]
\[\Gamma \vdash \text{inl}^{A, B} M : A + B \]

\[
\begin{array}{l}
\left[\text{inl}^{A, B} M \right] : \rho \quad \text{match} \quad \left[M \right] \rho \quad \text{as}
\end{array}
\begin{array}{ll}
\left\{ \begin{array}{ll}
\text{inl} \ a. & \text{inl} \ \text{inl} \ a \\
\text{inr} \ e. & \text{inr} \ e \\
\end{array} \right. \\
\end{array}
\]

To prove the soundness of the denotational semantics, we need a substitution lemma.
Can we obtain $[N[M/x]]$ from $[M]$ and $[N]$?
Can we obtain \([N[M/x]]\) from \([M]\) and \([N]\)? Not in CBV.
Can we obtain $\sem{N[M/x]}$ from \sem{M} and \sem{N}? Not in CBV.

Example that rules out a general substitution lemma

Define $\vdash M : \text{bool}$ and $x : \text{bool} \vdash N, N' : \text{bool}$.

\[
M \overset{\text{def}}{=} \text{error CRASH} \\
N \overset{\text{def}}{=} \text{true} \\
N' \overset{\text{def}}{=} \text{match } x \text{ as } \{ \text{true.true, false.true} \} \\
\sem{N} = \sem{N'} \quad \text{because } N =_{\eta \text{bool}} N' \\
\sem{N[M/x]} \neq \sem{N'[M/x]}\
\]
Can we obtain $[N[M/x]]$ from $[M]$ and $[N]$? Not in CBV.

Example that rules out a general substitution lemma

Define $\vdash M : \text{bool}$ and $x : \text{bool} \vdash N, N' : \text{bool}$.

\[
\begin{align*}
M & \overset{\text{def}}{=} \text{error CRASH} \\
N & \overset{\text{def}}{=} \text{true} \\
N' & \overset{\text{def}}{=} \text{match } x \text{ as } \{ \text{true.true, false.true} \} \\
[N] & = [N'] \quad \text{because } N =_{\eta \text{bool}} N' \\
[N[M/x]] & \neq [N'[M/x]]
\end{align*}
\]

But we can give a lemma for the substitution of values.
The following terms are called values.

\[V ::= \text{true} \mid \text{false} \mid \text{inl} \ V \mid \text{inr} \ V \mid \lambda \ x. \ M \mid x \]

The closed values are just the terminals: we don’t allow “complex values” such as

\[\text{match true as \{true.\text{false}, \text{false}.true\}} \]
Denotational semantics of values

Each value $\Gamma \vdash V : A$ denotes a function $[V]^\text{val} : [\Gamma] \to [A]$.

- $[x]^\text{val} : \rho \mapsto \rho_x$
- $[\text{true}]^\text{val} : \rho \mapsto \text{true}$
- $[\text{inl } V]^\text{val} : \rho \mapsto \text{inl } [V]^\text{val} \rho$
- $[\lambda x:A. M]^\text{val} : \rho \mapsto \lambda a \in [A]. [M](\rho, x \mapsto [a])$

We can recover $[V]$ from $[V]^\text{val}$.

$[V] : \rho \mapsto \text{inl } [V]^\text{val} \rho$
Substitution Lemma For Values

Given values $\Gamma \vdash V : A$ and $\Gamma \vdash W : B$ and a term $\Gamma, x : A, y : B \vdash M : C$ we can obtain $\llbracket M[V/x, W/y] \rrbracket$ from $\llbracket V \rrbracket^{val}$ and $\llbracket W \rrbracket^{val}$ and $\llbracket M \rrbracket$.

$$\llbracket M[V/x, W/y] \rrbracket : \rho \longmapsto \llbracket M \rrbracket(\rho, x \longmapsto \llbracket V \rrbracket^{val}\rho, y \longmapsto \llbracket W \rrbracket^{val}\rho)$$

Likewise for substitution of values into values.
If $M \downarrow V$ then $\llbracket M \rrbracket \varepsilon = \text{inl} (\llbracket V \rrbracket^{\text{val}} \varepsilon)$.

If $M \not\downarrow e$ then $\llbracket M \rrbracket \varepsilon = \text{inr} e$.

Proof by induction, using the substitution lemma.
Fine-grain call-by-value has two judgements:

- A value $\Gamma \vdash^v V : A$ denotes a function $[V] : [\Gamma] \rightarrow [A]$.

Key typing rules

$$
\frac{
\Gamma \vdash^v V : A
}{
\Gamma \vdash^c \text{return } V : A
}
\quad
\frac{
\Gamma \vdash^c M : A \quad \Gamma, x : A \vdash^c N : B
}{
\Gamma \vdash^c M \text{ to } x. \ N : B
}
$$

Corresponds to Power and Robinson's notion of a Freyd category.
Semantics of returning and sequencing

\[\Gamma \vdash^v V : A \]
\[
\Gamma \vdash^c \text{return } V : A
\]
\[
[\text{return } V] \quad : \quad \rho \mapsto \text{inl } [V]\rho
\]
\[
\Gamma \vdash^c M : A \quad \Gamma, x : A \vdash^c N : B
\]
\[
\Gamma \vdash^c M \text{ to } x. N : B
\]
\[
[M \text{ to } x. N] \quad : \quad \rho \mapsto \text{match } [M]\rho \text{ as } \begin{cases} \text{inl } a. \quad [N](\rho, x \mapsto a) \\ \text{inr } e. \quad \text{inr } e \end{cases}
\]
For connectives `bool`, `+`, `→` the syntax is as follows.

\[
V ::= x \mid \text{true} \mid \text{false} \\
 \mid \text{inl } V \mid \text{inr } V \mid \lambda x. M
\]

\[
M ::= M \text{ to } x. M \mid \text{return } V \\
 \mid \text{let } (x \leftarrow V). M \mid V \, V \\
 \mid \text{match } V \text{ as } \{ \text{true. } M, \text{false. } M \} \\
 \mid \text{match } V \text{ as } \{ \text{inl } x. M, \text{inr } x. M \} \\
 \mid \text{error } e
\]
Syntax

For connectives `bool`, `+`, `→` the syntax is as follows.

\[V ::= x \mid \text{true} \mid \text{false} \]
\[\quad \mid \text{inl} \, V \mid \text{inr} \, V \mid \lambda x. \, M \]
\[M ::= M \, \text{to} \, x. \, M \mid \text{return} \, V \]
\[\quad \mid \text{let} \, (x \, \text{be} \, V). \, M \mid V \, V \]
\[\quad \mid \text{match} \, V \, \text{as} \, \{ \text{true.} \, M, \, \text{false.} \, M \} \]
\[\quad \mid \text{match} \, V \, \text{as} \, \{ \text{inl} \, x. \, M, \, \text{inr} \, x. \, M \} \]
\[\quad \mid \text{error} \, e \]

We don’t allow “complex values” such as

\[\text{match true as} \, \{ \text{true.} \, \text{false}, \, \text{false.} \, \text{true} \} \]

These would complicate the operational semantics.
We evaluate a closed computation $\vdash^c M : A$ to a closed value $\vdash^v V : A$. To evaluate

- **return V:** return V.
- **M to x. N,** evaluate M. If this returns V, evaluate $N[V/x]$.
- **let (x be V, y be W). M,** evaluate $M[V/x, W/y]$.
- **($\lambda x. M$) V,** evaluate $M[V/x]$.
- **match inl V as {inl x. N, inr x. N'}:** evaluate $N[V/x]$.
Equational theory

\(\beta\)-laws

\[
\text{match } (\text{inl } V) \text{ as } \{\text{true. } M, \text{false. } M'\} = M[V/x] \\
(\lambda x. M) V = M[V/x] \\
\text{let } (x \text{ be } V, \ y \text{ be } W). \ M = M[V/x, W/y]
\]

\(\eta\)-laws

\[
M[V/z] = \text{match } V \text{ as } \{\text{inl } x. M[\text{inl } x/z], \text{inr } y. M[\text{inr } x/z]\} \\
V = \lambda x. \ V x
\]

Sequencing laws

\[
(\text{return } V) \text{ to } x. \ M = M[V/x] \\
M = M \text{ to } x. \ \text{return } x \\
(M \text{ to } x. \ N) \text{ to } y. \ P = M \text{ to } x. (N \text{ to } y. \ P)
\]
CBV to fine-grain call-by-value

Term $\Gamma \vdash M : A$ to computation $\Gamma \vdash^c \hat{M} : A$.

$$
\begin{align*}
x & \mapsto \text{return } x \\
\lambda x. M & \mapsto \text{return } \lambda x. \hat{M} \\
inl M & \mapsto \hat{M} \text{ to } x. \text{return } \text{inl } x \\
M N & \mapsto \hat{M} \text{ to } x. \hat{N} \text{ to } y. x y \\
\text{let } (x \text{ be } M, \ y \text{ be } M') \text{. } N & \mapsto \hat{M} \text{ to } x. \hat{M'} \text{ to } y. \hat{N}
\end{align*}
$$

Value $\Gamma \vdash V : A$ to value $\Gamma \vdash^v \check{V} : A$.

$$
\begin{align*}
x & \mapsto x \\
\lambda x. M & \mapsto \lambda x. \hat{M} \\
inl V & \mapsto \text{inl } \check{V}
\end{align*}
$$
Nullary functions

Call-by-value programmers use nullary functions to delay evaluation, and call them thunks.

\[\text{TA} \overset{\text{def}}{=} () \rightarrow A \quad [\text{TA}] = [A] + E \]

\[\text{thunk } M \overset{\text{def}}{=} \lambda().M \quad [\text{thunk } M] = [M] \]

\[\text{force } V \overset{\text{def}}{=} V() \quad [\text{force } V] = [V] \]
Nullary functions

Call-by-value programmers use nullary functions to delay evaluation, and call them *thunks*.

\[
\begin{align*}
TA & \overset{\text{def}}{=} () \rightarrow A & [TA] &= [A] + E \\
\text{thunk } M & \overset{\text{def}}{=} \lambda(). M & [\text{thunk } M] &= [M] \\
\text{force } V & \overset{\text{def}}{=} V () & [\text{force } V] &= [V]
\end{align*}
\]

The type \(TA \) has a reversible rule

\[
\Gamma \vdash^c A \\
\vdash^v TA
\]
Nullary functions

Call-by-value programmers use nullary functions to delay evaluation, and call them *thunks*.

\[
TA \overset{\text{def}}{=} () \rightarrow A \\
\text{thunk } M \overset{\text{def}}{=} \lambda(). M \\
\text{force } V \overset{\text{def}}{=} V() \\
\text{[}TA\text{]} = [A] + E \\
\text{[thunk } M\text{]} = [M] \\
\text{[force } V\text{]} = [V]
\]

The type \(TA \) has a reversible rule

\[
\frac{\Gamma \vdash^c A}{\Gamma \vdash^v TA}
\]

Fine-grain CBV (unlike the monadic metalanguage) distinguishes computations from thunks.
Naive CBN semantics of errors

Each type denotes a set, a **semantic domain for terms**. For example:

\[
\begin{align*}
\mathbb{[bool \to (bool \to bool)]}_* &= (\mathbb{B} + \mathbb{E}) \to ((\mathbb{B} + \mathbb{E}) \to (\mathbb{B} + \mathbb{E})) \\
\mathbb{[bool + bool]}_* &= ((\mathbb{B} + \mathbb{E}) + (\mathbb{B} + \mathbb{E})) + \mathbb{E} \\
\mathbb{[bool \Pi bool]}_* &= (\mathbb{B} + \mathbb{E}) \times (\mathbb{B} + \mathbb{E})
\end{align*}
\]

Thus we define

\[
\begin{align*}
\mathbb{[bool]}_* &= \mathbb{B} + \mathbb{E} \\
\mathbb{[A + B]}_* &= ([A]_* + [B]_*) + \mathbb{E} \\
\mathbb{[A \to B]}_* &= [A]_* \to [B]_* \\
\mathbb{[A \Pi B]}_* &= [A]_* \times [B]_* \\
\mathbb{[\Gamma]} &= \prod_{(x:A)\in\Gamma} [A]_*
\end{align*}
\]

Each term \(\Gamma \vdash M : B \) should denote a function \([M] : [\Gamma] \to [B]_* \).
Naive semantics: what goes wrong

\[\Gamma \vdash \text{error CRASH} : B \]

denotes \(\rho \mapsto ? \)

Example:

Suppose \(B = \text{bool} \rightarrow (\text{bool} \rightarrow \text{bool}) \) then \(B \) denotes \((B + E) \rightarrow ((B + E) \rightarrow (B + E))\)

and \(\text{error CRASH} \simeq \text{CBN} \lambda x. \lambda y. \text{error CRASH} \)

so the answer should be \(\lambda x. \lambda y. \text{inr CRASH} \).

Intuition: go down through the function types until we hit a tuple type.

A similar problem arises with \(\text{match} \).
Naive semantics: what goes wrong

\[\Gamma \vdash \text{error CRASH} : B \]

denotes \(\rho \mapsto ? \)

Example:

- suppose \(B = \text{bool} \to (\text{bool} \to \text{bool}) \)
- then \(B \) denotes \((\mathbb{B} + E) \to ((\mathbb{B} + E) \to (\mathbb{B} + E)) \)
- and \(\text{error CRASH} \simeq_{\text{CBN}} \lambda x. \lambda y. \text{error CRASH} \)
- so the answer should be \(\lambda x. \lambda y. \text{inr CRASH} \).

Intuition: go down through the function types until we hit a tuple type.
Naive semantics: what goes wrong

\[\Gamma \vdash \text{error CRASH} : B \]

denotes \(\rho \mapsto ? \)

Example:

- Suppose \(B = \text{bool} \rightarrow (\text{bool} \rightarrow \text{bool}) \)
- Then \(B \) denotes \((\mathbb{B} + E) \rightarrow ((\mathbb{B} + E) \rightarrow (\mathbb{B} + E)) \)
- And \(\text{error CRASH} \simeq_{\text{CBN}} \lambda x. \lambda y. \text{error CRASH} \)
 - So the answer should be \(\lambda x. \lambda y. \text{inr CRASH} \).

Intuition: go down through the function types until we hit a tuple type. A similar problem arises with \text{match}.
Solution: E-pointed sets

Definition

An E-pointed set is a set X with two distinguished elements $c, b \in X$.

A type should denote an E-pointed set, a semantic domain for terms.
Solution: E-pointed sets

Definition

An E-pointed set is a set X with two distinguished elements $c, b \in X$.

A type should denote an E-pointed set, a semantic domain for terms.

Examples:

\[
\left[\text{bool} \rightarrow (\text{bool} \rightarrow \text{bool}) \right] = ((\mathbb{B} + E) \rightarrow ((\mathbb{B} + E) \rightarrow (\mathbb{B} + E))), \\
\lambda x.\lambda y.\text{inr} \text{ CRASH}, \\
\lambda x.\lambda y.\text{inr} \text{ BANG})
\]

\[
\left[\text{bool} + \text{bool} \right] = (((\mathbb{B} + E) + (\mathbb{B} + E)) + E, \\
\text{inr} \text{ CRASH}, \\
\text{inr} \text{ BANG})
\]

\[
\left[\text{bool} \Pi \text{bool} \right] = ((\mathbb{B} + E) \times (\mathbb{B} + E), \\
(\text{inr} \text{ CRASH}, \text{inr} \text{ CRASH}), \\
(\text{inr} \text{ BANG}, \text{inr} \text{ BANG}))
\]
CBN semantics of errors

\[\textbf{[bool]} = (\mathbb{B} + E, \text{inr CRASH}, \text{inr BANG}) \]

If \(\textbf{[A]} = (X, c, b) \) and \(\textbf{[B]} = (Y, c', b') \)

then \(\textbf{[A + B]} = ((X + Y) + E, \text{inr CRASH}, \text{inr BANG}) \)

and \(\textbf{[A \rightarrow B]} = (X \rightarrow Y, \lambda x. c', \lambda x. b') \)

and \(\textbf{[A \Pi B]} = (X \times Y, (c, c'), (b, b')) \)
CBN semantics of errors

\[\text{[bool]} = (\mathbb{B} + E, \text{inr CRASH}, \text{inr BANG})\]

If \([A] = (X, c, b)\) and \([B] = (Y, c', b')\)

then \([A + B] = ((X + Y) + E, \text{inr CRASH}, \text{inr BANG})\)

and \([A \rightarrow B] = (X \rightarrow Y, \lambda x. c', \lambda x. b')\)

and \([A \Pi B] = (X \times Y, (c, c'), (b, b'))\)

\[\text{[\Gamma]} = \prod_{(x:A) \in \Gamma} X\]

\([A] = (X, c, b)\)

A term \(\Gamma \vdash M : B\) denotes a function \([M] : [\Gamma] \rightarrow [B]\).
Semantics of term constructors

\[\Gamma \vdash \text{true} : \text{bool} \]

\[[[\text{true}]] : \rho \mapsto \text{inl true} \]

\[\frac{\Gamma \vdash M : \text{bool} \quad \Gamma \vdash N : B \quad \Gamma \vdash N' : B}{\Gamma \vdash \text{match } M \text{ as } \{\text{true. } N, \text{ false. } N'\} : B} \]

\[[[\text{match } M \text{ as } \{\text{true. } N, \text{ false. } N'\}]] : \rho \mapsto \]

\[\text{match } [[M]]\rho \text{ as } \left\{ \begin{array}{ll}
\text{inl true.} & [[N]]\rho \\
\text{inl false.} & [[N']]\rho \\
\text{inr CRASH.} & c \\
\text{inr BANG.} & b \\
\end{array} \right. \]

where \[[[B]] = (Y, c, b) \]
More term constructors

\[
\begin{align*}
\llbracket \lambda x. M \rrbracket & : \rho \mapsto \lambda a. \llbracket M \rrbracket (\rho, x \mapsto a) \\
\llbracket M \ N \rrbracket & : \rho \mapsto \llbracket M \rrbracket \llbracket N \rrbracket \\
\llbracket x \rrbracket & : \rho \mapsto \rho_x \\
\text{error CRASH} & : \rho \mapsto c
\end{align*}
\]

Soundness/adequacy

- If \(M \downarrow T \) then \(\llbracket M \rrbracket \varepsilon = \llbracket T \rrbracket \varepsilon \).
- If \(M \notin \text{CRASH} \) then \(\llbracket M \rrbracket \varepsilon = c \).
- If \(M \notin \text{BANG} \) then \(\llbracket M \rrbracket \varepsilon = b \).

Proved by induction, using the substitution lemma.
Notation for E-pointed sets

- Free E-pointed set on a set X.
 \[F^E X \overset{\text{def}}{=} (X + E, \text{inr CRASH, inr BANG}) \]

- Product of two E-pointed sets.
 \[(X, c, b) \times (Y, c', b') \overset{\text{def}}{=} (X \times Y, (c, c'), (b, b')) \]

- Unit E-pointed set.
 \[1_{\Pi} \overset{\text{def}}{=} (1, (), ()) \]

- Product of a family of E-pointed sets.
 \[\prod_{i \in I} (X_i, c_i, b_i) \overset{\text{def}}{=} (\prod_{i \in I} X_i, \lambda i. c_i, \lambda i. b_i) \]

- Exponential E-pointed set.
 \[X \to (Y, c, b) \overset{\text{def}}{=} \prod_{x \in X} (Y, c, b) \]
 \[= (X \to Y, \lambda x. c, \lambda x. b) \]

- Carrier of an E-pointed set.
 \[U^E(X, c, b) \overset{\text{def}}{=} X \]
A type denotes an E-pointed set.

\[
\begin{align*}
\llbracket \text{bool} \rrbracket & = F^E(1 + 1) \\
\llbracket A + B \rrbracket & = F^E(U^E[A] + U^E[B]) \\
\llbracket A \rightarrow B \rrbracket & = U^E[A] \rightarrow \llbracket B \rrbracket \\
\llbracket A \Pi B \rrbracket & = \llbracket A \rrbracket \Pi \llbracket B \rrbracket
\end{align*}
\]

A typing context denotes a set.

\[
\llbracket \Gamma \rrbracket = \prod_{(x:A) \in \Gamma} U^E[A]
\]

A term $\Gamma \vdash M : B$ denotes a function $\llbracket \Gamma \rrbracket \rightarrow \llbracket B \rrbracket$.
Summary of call-by-value semantics

A type denotes a set.

\[[\text{bool}]\] = \(1 + 1\)
\[[A + B]\] = \[[A]\] + \[[B]\]
\[[A \rightarrow B]\] = \(U^E([A] \rightarrow F^E[B])\)
\[[TB]\] = \(U^E F^E[B]\)

A typing context denotes a set.

\[[\Gamma]\] = \(\prod_{(x:A)\in\Gamma} [A]\)

A computation \(\Gamma \vdash^c M : B\) denotes a function \([\Gamma] \rightarrow F^E[B]\).
Two kinds of type:

- A **value type** denotes a set.
- A **computation type** denotes an E-pointed set.
Two kinds of type:

- A **value type** denotes a set.
- A **computation type** denotes an E-pointed set.

value type

\[A ::= UB \mid 1 \mid A \times A \mid 0 \mid A + A \mid \sum_{i \in \mathbb{N}} A_i \]

computation type

\[B ::= FA \mid A \rightarrow B \mid 1_{\Pi} \mid B \Pi B \mid \prod_{i \in \mathbb{N}} B_i \]
Two kinds of type:

- A **value type** denotes a set.
- A **computation type** denotes an E-pointed set.

For value types, we have:

\[A ::= \text{UB} \mid 1 \mid A \times A \mid 0 \mid A + A \mid \sum_{i \in \mathbb{N}} A_i \]

For computation types, we have:

\[B ::= FA \mid A \to B \mid 1_{\Pi} \mid B \Pi B \mid \Pi_{i \in \mathbb{N}} B_i \]

Strangely, function types are computation types, and $\lambda x.M$ is a computation.
An identifier gets bound to a value, so it has value type.
An identifier gets bound to a value, so it has value type.

A context Γ is a finite set of identifiers with associated value type

$$x_0 : A_0, \ldots, x_{m-1} : A_{m-1}$$
An identifier gets bound to a value, so it has value type.

A context Γ is a finite set of identifiers with associated value type

$$x_0 : A_0, \ldots, x_{m-1} : A_{m-1}$$

Two judgements:

- A value $\Gamma \vdash^v V : A$ denotes a function $\llbracket V \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket A \rrbracket$.
- A computation $\Gamma \vdash^c M : B$ denotes a function $\llbracket M \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket B \rrbracket$.
The type FA

A computation in FA aims to return a value in A.

$$
\Gamma \vdash^v V : A \quad \Gamma \vdash^c M : FA \quad \Gamma, x : A \vdash^c N : B
$$

Sequencing in the style of Filinski’s “Effect-PCF”.

The type FA

A computation in FA aims to return a value in A.

A computation in FA aims to return a value in A.

$\Gamma \vdash^v V : A \quad \Gamma \vdash^c M : FA \quad \Gamma, x : A \vdash^c N : B$

$\Gamma \vdash^c \text{return } V : FA \quad \Gamma \vdash^c \text{M to x. N} : B$

Sequencing in the style of Filinski’s “Effect-PCF”.

\[[\text{return } V] : \rho \longmapsto \text{inl } [V] \rho\]

\[[\text{M to x. N}] : \rho \longmapsto\]

\begin{align*}
\text{match } [M] \rho \text{ as } & \begin{cases}
\text{inl } a. & [N](\rho, x \mapsto a) \\
\text{inr CRASH. } c & \\
\text{inr BANG. } b &
\end{cases} \\
\text{where } [B] = (Y, c, b)
\end{align*}
The type UB

A value in UB is a thunk of a computation in B.

\[
\begin{align*}
\Gamma \vdash^c M : B & \Rightarrow \Gamma \vdash^v \text{thunk } M : UB \\
\Gamma \vdash^v V : UB & \Rightarrow \Gamma \vdash^c \text{force } V : B
\end{align*}
\]
The type UB

A value in UB is a thunk of a computation in B.

\[
\frac{\Gamma \vdash^c M : B}{\Gamma \vdash^v \text{thunk } M : UB} \quad \frac{\Gamma \vdash^v V : UB}{\Gamma \vdash^c \text{force } V : B}
\]

\[
[\text{thunk } M] = [M]
\]

\[
[\text{force } V] = [V]
\]
An identifier is a value.

\[
\Gamma \vdash^\nu x : A \quad \rightarrow \quad (x : A) \in \Gamma
\]

\[
\Gamma \vdash^\nu V : A \quad \Gamma \vdash^\nu W : B \quad \Gamma, x : A, y : B \vdash^c M : C
\]

\[
\Gamma \vdash^c \text{let (x be } V, \text{y be } W). \ M : C
\]
Tuples

\[
\frac{\Gamma \vdash^v V : A}{\Gamma \vdash^v \text{inl } V : A + A'} \quad \frac{\Gamma \vdash^v V : A'}{\Gamma \vdash^v \text{inr } V : A + A'}
\]

\[
\frac{\Gamma \vdash^v V : A + A' \quad \Gamma, x : A \vdash^c M : B \quad \Gamma, y : A \vdash^c M' : B}{\Gamma \vdash^c \text{match } V \text{ as } \{\text{inl } x. M, \text{inr } y. M'\} : B}
\]

\[
\frac{\Gamma \vdash^v V : A \quad \Gamma \vdash^v V' : A'}{\Gamma \vdash^v \langle V, V' \rangle : A \times A'} \quad \frac{\Gamma \vdash^v V : A \times A' \quad \Gamma, x : A, y : A' \vdash^c M : B}{\Gamma \vdash^c \text{match } V \text{ as } \langle x, y \rangle. M : B}
\]

The rules for 1 are similar.
Functions

\[
\frac{\Gamma, x : A \vdash^c M : B}{\Gamma \vdash^c \lambda x. M : A \to B}
\]
\[
\frac{\Gamma \vdash^c M : A \to B}{\Gamma \vdash^c MV : B}
\]
\[
\frac{\Gamma \vdash^c M : B}{\Gamma \vdash^c \lambda ({}^1M, {}^rM') : B \bowtie B'}
\]
\[
\frac{\Gamma \vdash^c M : B \bowtie B'}{\Gamma \vdash^c M^1 : B}
\]
\[
\frac{\Gamma \vdash^c M : B \bowtie B'}{\Gamma \vdash^c M^r : B'}
\]

It is often convenient to write applications operand-first, as \(V'M\) and \(l'M\) and \(r'M\).

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value December 1, 2021 91 / 1
Functions

\[\Gamma, x : A \vdash^c M : B \quad \frac{\Gamma \vdash^c M : B}{\Gamma \vdash^c \lambda x. M : A \rightarrow B} \]

\[\Gamma \vdash^c M : A \rightarrow B \quad \Gamma \vdash^v V : A \]

\[\Gamma \vdash^c MV : B \]

\[\Gamma \vdash^c M : B \quad \Gamma \vdash^c M' : B' \]

\[\frac{\Gamma \vdash^c \lambda\{^{1}.M, \; ^{r}.M'\} : B \land B'}{\Gamma \vdash^c \lambda\{^{1}.M, \; ^{r}.M'\} : B \land B'} \]

\[\Gamma \vdash^c M : B \land B' \]

\[\frac{\Gamma \vdash^c M : B \land B'}{\Gamma \vdash^c M^{1} : B} \]

\[\Gamma \vdash^c M : B \land B' \]

\[\frac{\Gamma \vdash^c M : B \land B'}{\Gamma \vdash^c M^{r} : B'} \]

It is often convenient to write applications operand-first, as \(V^{1} M \) and \(^{1}.M\) and \(^{r}.M\).
The terminals are **computations**:

- `\text{return } V`
- `\lambda x. M`
- `\lambda \{^l M, ^r M' \}`
The terminals are **computations**: \(\text{return } V \quad \lambda x. M \quad \lambda \{^1. M, \stackrel{r}{.} M'\} \)

To evaluate

- **return \(V \)**: return \(\text{return } V \).
- **\(M \) to \(x. N \)**: evaluate \(M \). If this returns \(\text{return } V \), then evaluate \(N[V/x] \).
- **\(\lambda x. N \)**: return \(\lambda x. N \).
- **\(MV \)**: evaluate \(M \). If this returns \(\lambda x. N \), evaluate \(N[V/x] \).
- **\(\lambda \{^1. M, \stackrel{r}{.} M'\} \)**: return \(\lambda \{^1. M, \stackrel{r}{.} M'\} \).
- **\(M^1 \)**: evaluate \(M \). If this returns \(\lambda \{^1. N, \stackrel{r}{.} N'\} \), evaluate \(N \).
- **let (\(x \) be \(V \), \(y \) be \(W \)). \(M \)**: evaluate \(M[V/x, W/y] \).
- **force thunk \(M \)**: evaluate \(M \).
- **match \(\text{inl } V \) as \(\{\text{inl } x. M, \text{inr } y. M'\} \)**: evaluate \(M[V/x] \).
- **match \(\langle V, V' \rangle \) as \(\langle x, y \rangle. M \)**: evaluate \(M[V/x, V'/y] \).
- **error \(e \)**, print error message \(e \) and stop.
Equational theory

\(\beta \)-laws

\[
\text{force thunk } M = M \\
\text{match (inl } V) \text{ as } \{ \text{true. } M, \text{false. } M' \} = M[V/x] \\
(\lambda x. M)V = M[V/x] \\
\text{let (x be } V, \text{ y be } W). M = M[V/x, W/y]
\]

\(\eta \)-laws

\[
V = \text{thunk force } V \\
M[V/z] = \text{match } V \text{ as } \{ \text{inl } x. M[\text{inl } x/z], \text{inr } y. M[\text{inr } x/z] \} \\
M = \lambda x. Mx
\]

Sequencing laws

\[
(\text{return } V) \text{ to } x. M = M[V/x] \\
M = M \text { to } x. \text{return } x \\
(M \text{ to } x. N) \text{ to } y. P = M \text{ to } x. (N \text{ to } y. P)
\]
Decomposing CBV into CBPV

A CBV type translates into a value type.

\[A \to B \iff U(A \to FB) \]

\[TB \iff UFB \]
Decomposing CBV into CBPV

A CBV type translates into a value type.

\[
A \to B \longmapsto U(A \to FB) \\
TB \longmapsto UFB
\]

A fine-grain CBV computation \(x : A, y : B \vdash^c M : C\) translates as \(x : A, y : B \vdash^c M : FC\).
Decomposing CBV into CBPV

A CBV type translates into a value type.

\[A \to B \mapsto U(A \to FB) \]
\[TB \mapsto UFB \]

A fine-grain CBV computation \(x : A, y : B \vdash M : C \) translates as \(x : A, y : B \vdash M : FC \).

\[\lambda x. M \mapsto \text{thunk } \lambda x. M \]
\[VW \mapsto (\text{force } V) W \]
Decomposing CBV into CBPV

A CBV type translates into a value type.

\[
A \rightarrow B \quad \mapsto \quad U(A \rightarrow FB) \\
TB \quad \mapsto \quad UFB
\]

A fine-grain CBV computation \(x : A, y : B \vdash^c M : C \) translates as \(x : A, y : B \vdash^c M : FC \).

\[
\lambda x. M \quad \mapsto \quad \text{thunk } \lambda x. M \\
V W \quad \mapsto \quad (\text{force } V) W
\]

Therefore a CBV term \(x : A, y : B \vdash M : C \) translates as \(x : A, y : B \vdash^c M : FC \)

\[
x \quad \mapsto \quad \text{return } x \\
\lambda x. M \quad \mapsto \quad \text{return thunk } \lambda x. M \\
M N \quad \mapsto \quad M \text{ to } f. \ N \text{ to } y. \ ((\text{force } f) y)
\]
Decomposing CBN into CBPV

A CBN type translates into a computation type.

\[
\begin{align*}
\text{bool} & \mapsto F(1 + 1) \\
A + B & \mapsto F(UA + UB) \\
A \rightarrow B & \mapsto UA \rightarrow B
\end{align*}
\]
Decomposing CBN into CBPV

A CBN type translates into a computation type.

\[
\begin{align*}
\text{bool} & \mapsto F(1 + 1) \\
A + B & \mapsto F(UA + UB) \\
A \to B & \mapsto UA \to B
\end{align*}
\]

A CBN term \(x : A, y : B \vdash M : C\) translates as \(x : UA, y : UB \vdash^c M : C\).

\[
\begin{align*}
x & \mapsto \text{force } x \\
\text{let } (x \text{ be } M, y \text{ be } M') . N & \mapsto \text{let } (x \text{ be thunk } M, y \text{ be thunk } M') . N \\
\lambda x . M & \mapsto \lambda x . M \\
M N & \mapsto M \text{ (thunk } N) \\
inl M & \mapsto \text{return inl thunk } M
\end{align*}
\]
We’ve seen

- the call-by-push-value calculus
- its operational semantics
- denotational semantics for errors.
We’ve seen

- the call-by-push-value calculus
- its operational semantics
- denotational semantics for errors.

The translations from CBV and CBN into CBPV preserve these semantics.
We’ve seen
- the call-by-push-value calculus
- its operational semantics
- denotational semantics for errors.

The translations from CBV and CBN into CBPV preserve these semantics.

Moggi’s TA is UFA.
We’ve seen

- the call-by-push-value calculus
- its operational semantics
- denotational semantics for errors.

The translations from CBV and CBN into CBPV preserve these semantics.

Moggi’s TA is UFA.

But
We’ve seen
- the call-by-push-value calculus
- its operational semantics
- denotational semantics for errors.

The translations from CBV and CBN into CBPV preserve these semantics.

Moggi’s TA is UFA.

But
- our error semantics makes thunk and force invisible
We’ve seen
- the call-by-push-value calculus
- its operational semantics
- denotational semantics for errors.

The translations from CBV and CBN into CBPV preserve these semantics.

Moggi’s TA is UFA.

But
- our error semantics makes thunk and force invisible
- we still don’t understand why a function is a computation.
CK-machine

An operational semantics due to Felleisen and Friedman (1986). And Landin, Krivine, Streicher and Reus, Bierman, Pitts, . . .

It is suitable for **sequential** languages whether CBV, CBN or CBPV.

At any time, there’s a **computation** (C) and a **stack of contexts** (K).

Initially, K is empty.

Some authors make K into a single context, called an “evaluation context”.
Transitions for sequencing

To evaluate $M \text{ to } x. \; N$: evaluate M. If this returns return V, then evaluate $N[V/x]$.

\[
\begin{array}{c}
M \text{ to } x. \; N \\
\Downarrow
\end{array}
\begin{array}{c}
K \\
M \text{ to } x. \; N :: K \\
\end{array}
\]

\[
\begin{array}{c}
\text{return } V \\
\Downarrow
\end{array}
\begin{array}{c}
to \ x. \ N :: K \\
N[V/x] \\
\Downarrow
\end{array}
\begin{array}{c}
K \\
\end{array}
\]
To evaluate $V'M$: evaluate M. If this returns $\lambda x.N$, evaluate $N[V/x]$.

\[
\begin{array}{c|c|c}
V'M & K & \leadsto \\
M & V :: K & \\
\hline
\lambda x.N & V :: K & \leadsto \\
N[V/x] & K & \\
\end{array}
\]
Those function rules again

\[
\begin{align*}
V' M & \quad K \quad \leadsto \\
M & \quad V :: K
\end{align*}
\]

\[
\begin{align*}
\lambda x. N & \quad V :: K \quad \leadsto \\
N[V/x] & \quad K
\end{align*}
\]

We can read V' as an instruction "push V".

We can read λ as an instruction "pop x".

Revisiting some equations:

$V' \lambda x. M = M[V/x]$

$M = \lambda x. x'$

$M(x \text{ fresh})$

$\text{error} e = \lambda x. \text{error} e$

$\text{print} c. \lambda x. M = \lambda x. \text{print} c. M$
Those function rules again

\[V' M \quad K \quad \rightsquigarrow \]
\[M \quad V :: K \]

\[\lambda x. N \quad V :: K \quad \rightsquigarrow \]
\[N[V/x] \quad K \]

We can read \(V' \) as an instruction “push \(V \)”. We can read \(\lambda x \) as an instruction “pop \(x \)”.
Those function rules again

\[
\begin{array}{c}
V M & K \\ M & V :: K \\
\end{array}
\]

\[
\begin{array}{c}
\lambda x. N & V :: K \\ N[V/x] & K \\
\end{array}
\]

We can read \(V' \) as an instruction “push \(V \)”.

We can read \(\lambda x \) as an instruction “pop \(x \)”.

Revisiting some equations:

\[V' \lambda x. M = M[V/x] \]

\[M = \lambda x. x' M \quad (x \text{ fresh}) \]

\[\text{error } e = \lambda x. \text{error } e \]

\[\text{print } c. \lambda x. M = \lambda x. \text{print } c. M \]
A value is, a computation does.

- A value of type UB is a thunk of a computation of type B.
- A value of type $A + A'$ is a tagged value $\text{inl } V$ or $\text{inr } V$.
- A value of type $A \times A'$ is a pair $\langle V, V' \rangle$.

- A computation of type FA aims to return a value of type A.
- A computation of type $A \rightarrow B$ aims to pop a value of type A and then behave in B.
- A computation of type $B \sqcap B'$ aims to pop the tag l and then behave in B or pop the tag r and then behave in B'.
What’s in a stack?

A stack consists of

- **arguments** that are values
- **arguments** that are tags
- **frames** taking the form $\text{to } x. \, N$.

Example program of type $F\text{nat}$ (with complex values)

print "hello0".
let (x be 3,
 y be thunk (
 print "hello1".
 λz.
 print "we just popped " + z.
 return x + z
)).
print "hello2".
(print "hello3".
 7'
 print "we just pushed 7".
 force y
) to w.
print "w is bound to " + w.
return w + 5
Typing the CK-machine

Initial configuration to evaluate $\Gamma \vdash^c P : C$

\[
\begin{array}{cccc}
\Gamma & P & C & \text{nil} & C \\
\end{array}
\]

Transitions

\[
\begin{array}{cccc}
\Gamma & M \to x. N & B & K & C \\
\Gamma & M & FA & \text{to x.} & N :: K & C \\
\end{array}
\]

\[
\begin{array}{cccc}
\Gamma & \text{return} V & FA & \text{to x.} & N :: K & C \\
\Gamma & N[V/x] & B & K & C \\
\end{array}
\]

Typically Γ would be empty and $C = F\text{bool}$.
Typing the CK-machine

Initial configuration to evaluate $\Gamma \vdash^c P : C$

<table>
<thead>
<tr>
<th>Γ</th>
<th>P</th>
<th>C</th>
<th>nil</th>
<th>C</th>
</tr>
</thead>
</table>

Transitions

<table>
<thead>
<tr>
<th>Γ</th>
<th>M to x. N</th>
<th>B</th>
<th>K</th>
<th>C</th>
<th>\Rightarrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ</td>
<td>M</td>
<td>FA</td>
<td>to x. $N :: K$</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Γ</th>
<th>return V</th>
<th>FA</th>
<th>to x. $N :: K$</th>
<th>C</th>
<th>\Rightarrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ</td>
<td>$N[V/x]$</td>
<td>B</td>
<td>K</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Typically Γ would be empty and $C = F \text{ bool}$.

We write $\Gamma \vdash^k K : B \Rightarrow C$ to mean that K can accompany a computation of type B during evaluation.
Typing rules, read off from the CK-machine

Typing a stack

\[
\begin{align*}
\Gamma \vdash^k \text{nil} : C & \rightarrow C \\
\Gamma \vdash^k K : B & \rightarrow C \\
\Gamma \vdash^k \bot \{ K : B \Pi B' \} & \rightarrow C \\
\Gamma, x : A \vdash^c M : B & \quad \Gamma \vdash^k K : B \rightarrow C \\
\Gamma \vdash^k \text{to } x. M :: K : FA & \rightarrow C \\
\Gamma \vdash^v V : A & \quad \Gamma \vdash^k K : B \rightarrow C \\
\Gamma \vdash^k V :: K : A \rightarrow B & \rightarrow C
\end{align*}
\]
Typing rules, read off from the CK-machine

Typing a stack

\[
\Gamma \vdash^k \text{nil} : C \implies C \\
\Gamma \vdash^k K : B \implies C \\
\Gamma \vdash^1 \text{to } x. M :: K : FA \implies C
\]

\[
\Gamma, x : A \vdash^c M : B \\
\Gamma \vdash^k K : B \implies C \\
\Gamma \vdash^v V : A \\
\Gamma \vdash^k V :: K : A \to B \implies C
\]

Typing a CK-configuration

\[
\Gamma \vdash^c M : B \\
\Gamma \vdash^k K : B \implies C \\
\Gamma \vdash^{ck} (M, K) : C
\]
1. Given a stack $\Gamma \vdash^k K : B \Rightarrow C$, we can weaken it or substitute values.
Operations on Stacks

1. Given a stack $\Gamma \vdash^k K : B \Rightarrow C$, we can weaken it or substitute values.

2. A stack $\Gamma \vdash^k K : B \Rightarrow C$ can be dismantled onto a computation $\Gamma \vdash^c M : B$, giving a computation $\Gamma \vdash^c M \bullet K : C$.
1. Given a stack $\Gamma \vdash^k K : B \Rightarrow C$, we can weaken it or substitute values.

2. A stack $\Gamma \vdash^k K : B \Rightarrow C$ can be dismantled onto a computation $\Gamma \vdash^c M : B$, giving a computation $\Gamma \vdash^c M \bullet K : C$.

3. Stacks $\Gamma \vdash^k K : B \Rightarrow C$ and $\Gamma \vdash^k L : C \Rightarrow D$ can be concatenated to give $\Gamma \vdash^k K \uplus L : B \Rightarrow D$.
Continuations

A **continuation** is a stack from an F type, e.g. $\text{to } \text{x. } M :: K$. It describes everything that will happen once a value is supplied.
Continuations

A *continuation* is a stack from an \(F \) type, e.g. \(\text{to } x. \; M :: K \). It describes everything that will happen once a value is supplied.

In CBV, all computations have \(F \) type, so all stacks are continuations.
Special Stacks

Continuations

A continuation is a stack from an F type, e.g. $\text{to } x. \ M :: K$. It describes everything that will happen once a value is supplied. In CBV, all computations have F type, so all stacks are continuations.

Top-Level Stack

The top-level stack is $\Gamma \vdash^k \text{nil} : C \Rightarrow C$. The top-level type is C.
Continuations

A **continuation** is a stack from an F type, e.g. $\text{to } x. \ M :: K$. It describes everything that will happen once a value is supplied.

In CBV, all computations have F type, so all stacks are continuations.

Top-Level Stack

The **top-level stack** is $\Gamma \vdash^k \text{nil} : C \Rightarrow C$.

The **top-level type** is C.

If C is $F\text{bool}$ (the usual situation), then nil is the **top-level continuation**:

it receives a boolean and returns it to the user.
Stacks denote homomorphisms

Consider a stack $\Gamma \vdash^k K : B \implies C$

where $[B] = (X, c, b)$ and $[C] = (Y, c', b')$.

What should K denote?
Stacks denote homomorphisms

Consider a stack $\Gamma \vdash^k K : B \to C$

where $[B] = (X, c, b)$ and $[C] = (Y, c', b')$.

What should K denote?

It acts on computations by $M \mapsto M \cdot K$.

So we want $[K] : [\Gamma] \times X \to Y$.
Stacks denote homomorphisms

Consider a stack \(\Gamma \vdash^k K : B \rightarrow C \)

where \(\llbracket B \rrbracket = (X, c, b) \) and \(\llbracket C \rrbracket = (Y, c', b') \).

What should \(K \) denote?

It acts on computations by \(M \mapsto M \cdot K \).

So we want \(\llbracket K \rrbracket : \llbracket \Gamma \rrbracket \times X \rightarrow Y \).

This function should be homomorphomic in its second argument:

\[
\begin{align*}
\llbracket K \rrbracket (\rho, c) & = c' \\
\llbracket K \rrbracket (\rho, b) & = b'
\end{align*}
\]

because if \(M \) throws an error then so does \(M \cdot K \).
Stacks denote homomorphisms

Consider a stack \(\Gamma \vdash^k K : B \rightarrow C \)

where \([B] = (X, c, b)\) and \([C] = (Y, c', b')\).

What should \(K\) denote?

It acts on computations by \(M \mapsto M \cdot K \).

So we want \([K] : [\Gamma] \times X \rightarrow Y\).

This function should be homomorphic in its second argument:

\[
[K](\rho, c) = c' \\
[K](\rho, b) = b'
\]

because if \(M\) throws an error then so does \(M \cdot K\).

We assume there's no exception handling.
Operations on stacks

We define $\lbrack K \rbrack$ by induction on K.

Then we prove

- a weakening lemma
- a substitution lemma
- a dismantling lemma
- a concatenation lemma

providing a semantic counterpart for each operation on stacks.
Soundness of CK-machine

What should a CK-configuration $\Gamma \vdash_{ck} (M, K) : C$ denote?
Soundness of CK-machine

What should a CK-configuration $\Gamma \vdash^\text{ck} (M, K) : C$ denote?

$$\llbracket (M, K) \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket C \rrbracket$$

$$\rho \mapsto \llbracket K \rrbracket (\rho, \llbracket M \rrbracket \rho)$$

Properties:

1. If $(M, K) \rightsquigarrow (M', K')$ then $\llbracket (M, K) \rrbracket = \llbracket (M', K') \rrbracket$.
2. $\llbracket \text{(error CRASH}, K) \rrbracket \rho = c'$.
3. $\llbracket \text{(error BANG}, K) \rrbracket \rho = b'$.
Adjunction between values and stacks

We have an adjunction between the category of values (sets and functions) and the category of stacks (E-pointed sets and homomorphisms).

$$\begin{align*}
\text{Set} & \xleftarrow{U^E} \xrightarrow{F^E} E/\text{Set} \\
\downarrow & \quad \downarrow
\end{align*}$$

This resolves the exception monad $X \mapsto X + E$ on Set.
Consider CBPV extended with two storage cells: l stores a natural number, and l' stores a boolean.
Consider CBPV extended with two storage cells: l stores a natural number, and l' stores a boolean.

$$
\frac{\Gamma \vdash^v V : \text{nat} \quad \Gamma \vdash^c M : B}{\Gamma \vdash^c l := V. M : B}
\quad
\frac{\Gamma \vdash^c M : B}{\Gamma, x : \text{nat} \vdash^c \text{read } l \text{ as } x. M : B}
$$
Consider CBPV extended with two storage cells:
\(\mathbf{l} \) stores a natural number, and \(\mathbf{l}' \) stores a boolean.

\[
\Gamma \vdash V : \text{nat} \quad \Gamma \vdash M : B
\]

\[
\Gamma \vdash \mathbf{l} := V. M : B
\]

\[
\Gamma, x : \text{nat} \vdash M : B
\]

\[
\Gamma \vdash \text{read } \mathbf{l} \text{ as } x. M : B
\]

A state is \(\mathbf{l} \mapsto n, \mathbf{l}' \mapsto b \).

The set of states is \(S \cong \mathbb{N} \times \mathbb{B} \).
The big-step semantics takes the form \(s, M \Downarrow s', T \).

A pair \((s, M)\) is called an **SC-configuration**.

We can type these using

\[
\frac{\Gamma \vdash^c M : B}{\Gamma \vdash^{sc} (s, M) : B} \quad s \in S
\]
Denotational semantics of state

How can we give a denotational semantics for call-by-push-value with state?

- Algebra semantics.
- Intrinsic semantics.
Moggi’s monad for state is \(S \rightarrow (S \times -) \).
Its Eilenberg-Moore algebras were characterized by Plotkin and Power.
Moggi’s monad for state is $S \rightarrow (S \times -)$. Its Eilenberg-Moore algebras were characterized by Plotkin and Power.

A value type A denotes a set $[[A]]$, a **semantic domain for values**.

A computation type B denotes an Eilenberg-Moore algebra $[[B]]_{\text{alg}}$, a **semantic domain for computations**.
Moggi’s monad for state is \(S \to (S \times -) \).
Its Eilenberg-Moore algebras were characterized by Plotkin and Power.

A value type \(A \) denotes a set \([A]\), a **semantic domain for values**.

A computation type \(B \) denotes an Eilenberg-Moore algebra \([B]_{\text{alg}}\),
a **semantic domain for computations**.

We complete the story with an adequacy theorem:

If \(s, M \Downarrow s', T \) then \([s, M] \varepsilon = [s', T] \varepsilon\)

This requires an SC-configuration to have a denotation.
A value type A denotes a set $[A]$, a semantic domain for values.

A computation type B denotes a set $[B]$, a semantic domain for SC-configurations.
Intrinsic semantics of state

A value type A denotes a set $[[A]]$, a semantic domain for values.

A computation type B denotes a set $[[B]]$, a semantic domain for SC-configurations.

The behaviour of an SC-configuration $\Gamma \vdash^{sc} (s, M) : B$ depends on the environment:

$$[[s, M]] : [\Gamma] \rightarrow [B]$$
A value type A denotes a set $[A]$, a semantic domain for values.

A computation type B denotes a set $[B]$, a semantic domain for SC-configurations.

The behaviour of an SC-configuration $\Gamma \vdash^{sc} (s, M) : B$ depends on the environment:

$$([s, M]) : \llbracket \Gamma \rrbracket \rightarrow [B]$$

The behaviour of a computation $\Gamma \vdash^{c} M : B$ depends on the state and environment:

$$[M] : S \times \llbracket \Gamma \rrbracket \rightarrow [B]$$
State: semantics of types

An SC-configuration of type FA will terminate as s, return V.

$$[FA] = S \times [A]$$

An SC-configuration of type $A \rightarrow B$ will pop $x : A$ and then behave in B.

$$[A \rightarrow B] = [A] \rightarrow [B]$$

An SC-configuration of type $B \Pi B'$ will pop l and then behave in B, or pop r and then behave in B'.

$$[B \Pi B'] = [B] \times [B']$$

A value $\Gamma \vdash^V V : U\overline{B}$ can be forced in any state s, giving an SC-configuration s, force V.

$$[U\overline{B}] = S \rightarrow [B]$$
State: the value/stack adjunction

Consider a stack $\Gamma \vdash^k K : B \Rightarrow C$

What should K denote?
State: the value/stack adjunction

Consider a stack $\Gamma \vdash^k K : B \Rightarrow C$

What should K denote?

It acts on SC-configurations by $s, M \mapsto s, M \cdot K$.

So we want $[K] : \lbrack \Gamma \rbrack \times \lbrack B \rbrack \rightarrow \lbrack C \rbrack$.
State: the value/stack adjunction

Consider a stack $\Gamma \vdash^k K : B \Rightarrow C$

What should K denote?

It acts on SC-configurations by $s, M \mapsto s, M \cdot K$.

This gives an adjunction

$$\begin{array}{ccc}
Set & \xrightarrow{S \times -} & Set \\
\downarrow & & \downarrow \\
S \mapsto - & & S \mapsto -
\end{array}$$

between values and stacks.
State in call-by-value and call-by-name

For call-by-value we recover

\[
\begin{align*}
[\text{bool}_{\text{CBV}}] &= 1 + 1 \\
[A \rightarrow_{\text{CBV}} B] &= [U(A \rightarrow FB)] \\
&= S \rightarrow ([A] \rightarrow (S \times [B]))
\end{align*}
\]

This is standard.
State in call-by-value and call-by-name

For call-by-value we recover

\[\boxed{\text{bool}_{\text{CBV}}} = 1 + 1 \]
\[\boxed{A \rightarrow_{\text{CBV}} B} = \boxed{U(A \rightarrow FB)} \]
\[= S \rightarrow ([A] \rightarrow (S \times [B])) \]

This is standard.

For call-by-name we recover

\[\boxed{\text{bool}_{\text{CBN}}} = \boxed{F(1 + 1)} \]
\[= S \times (1 + 1) \]
\[\boxed{A \rightarrow_{\text{CBN}} B} = \boxed{UA \rightarrow B} \]
\[= (S \rightarrow [A]) \rightarrow [B] \]

This is O’Hearn’s semantics of types for a stateful CBN language.
Naming and changing the current stack

Extend the language with two instructions:

- letstk α means let α be the current stack.
- changestk α means change the current stack to α.

Similar to Crolard’s syntax. Numerous variations in the literature.
Naming and changing the current stack

Extend the language with two instructions:

- letstk α means let α be the current stack.
- changestk α means change the current stack to α.

Execution takes places in a bigger language.

$\Gamma \text{ letstk } \alpha. \ M \quad B \quad K \quad C | \Delta \quad \Rightarrow$

$\Gamma \ M[K/\alpha] \quad B \quad K \quad C | \Delta$

$\Gamma \text{ changestk } K. \ M \quad B' \quad L \quad C | \Delta \quad \Rightarrow$

$\Gamma \ M \quad B \quad K \quad C | \Delta$

Similar to Crolard's syntax. Numerous variations in the literature.
Typing judgements for control

We have typing judgements:

\[\Gamma \vdash^v V : A | \Delta \quad \Gamma \vdash^c M : B | \Delta \]

The stack context \(\Delta \) consists of declarations \(\alpha : B \), meaning \(\alpha \) is a stack from \(B \).
Typing judgements for control

We have typing judgements:

\[\Gamma \vdash^v V : A \mid \Delta \quad \Gamma \vdash^c M : B \mid \Delta \]

The stack context \(\Delta \) consists of declarations \(\alpha : B \), meaning \(\alpha \) is a stack from \(B \).

Example typing rules

\[
\frac{\Gamma \vdash^c M : B \mid \Delta, \alpha : B} {\Gamma \vdash^c \text{letstk } \alpha. \ M \mid \Delta}
\]

\[
\frac{\Gamma \vdash^c M : B \mid \Delta} {\Gamma \vdash^c \text{changestk } \alpha. \ M : B' \mid \Delta \quad (\alpha : B) \in \Delta}
\]
During execution, the top-level type C must be indicated:

$$
\Gamma \vdash^v V : A \ [C] \ \Delta \\
\Gamma \vdash^c M : B \ [C] \ \Delta \\
\Gamma \vdash^k K : B \rightarrow C \ | \ \Delta \\
\Gamma \vdash^{ck} (M, K) : C \ | \ \Delta \\
$$

Typically Γ and Δ would be empty and $C = F \text{ bool}$.
Typing judgements for execution language

During execution, the top-level type \(C \) must be indicated:

\[
\Gamma \vdash^y V : A \quad [C] \quad \Delta \\
\Gamma \vdash^c M : B \quad [C] \quad \Delta \\
\Gamma \vdash^k K : B \implies \quad C \quad | \quad \Delta \\
\Gamma \vdash^{ck} (M, K) : C \quad | \quad \Delta
\]

Typically \(\Gamma \) and \(\Delta \) would be empty and \(C = F \) `bool`.

Example typing rules

\[
\Gamma \vdash^k \alpha : B \implies \quad C \quad | \quad \Delta \\
\quad (\alpha : B) \in \Delta
\]

\[
\Gamma \vdash^k K : B \implies \quad C \quad | \quad \Delta \\
\quad \Gamma \vdash^c M : B \quad [C] \quad \Delta \\
\quad \Gamma \vdash^c \text{changestk } K. \quad M : B' \quad [C] \quad \Delta
\]
Fix a set R, the semantic domain for CK-configurations.

That means: a hypothetical extremely closed CK-configuration, with no free identifiers and no nil, would denote an element of R.
Fix a set R, the semantic domain for CK-configurations.

That means: a hypothetical extremely closed CK-configuration, with no free identifiers and no nil, would denote an element of R.

Moggi’s monad for control operators ("continuations") is $(\rightarrow R) \rightarrow R$.
Fix a set R, the semantic domain for CK-configurations.

That means: a hypothetical extremely closed CK-configuration, with no free identifiers and no nil, would denote an element of R.

Moggi’s monad for control operators (“continuations”) is $(- \rightarrow R) \rightarrow R$.

Maybe we can build a denotational semantics where a computation type B denotes an Eilenberg-Moore algebra $[B]_{\text{alg}}$, a semantic domain for computations.
The denotation of B is a semantic domain for stacks from B.

That means: a hypothetical extremely closed stack from B, with no free identifiers and no `nil', would denote an element of $[[B]]$.
The denotation of B is a semantic domain for stacks from B.

That means: a hypothetical extremely closed stack from B, with no free identifiers and no \textit{nil}, would denote an element of $[B]$.

The behaviour of a computation $\Gamma \vdash^c M : B \mid \Delta$ depends on the environment, current stack and stack environment:

$$[M] : [\Gamma] \times [B] \times [\Delta] \rightarrow R$$

A value $\Gamma \vdash^v V : A \mid \Delta$ denotes

$$[V] : [\Gamma] \times [\Delta] \rightarrow [A]$$
Control: semantics of types

A stack from FA receives a value $x : A$ and then behaves as a configuration.

$$[FA] = [A] \rightarrow R$$

A stack from $A \rightarrow B$ is a pair $V :: K$.

$$[A \rightarrow B] = [A] \times [B]$$

A stack from $B \Pi B'$ is a tagged stack $\downarrow :: K$ or $\rhd :: K$.

$$[B \Pi B'] = [B] + [B']$$

A value of type UB can be forced alongside any stack K, giving a configuration.

$$[UB] = [B] \rightarrow R$$
The semantics of a term in the execution language depends not only on the environment and the stack environment but also on the **top-level stack**.
Semantics of the execution language

The semantics of a term in the execution language depends not only on the environment and the stack environment but also on the top-level stack.

In particular, a stack $\Gamma \vdash^k K : B \Longrightarrow C \mid \Delta$ denotes

$$\llbracket K \rrbracket : \llbracket \Gamma \rrbracket \times \llbracket C \rrbracket \times \llbracket \Delta \rrbracket \longrightarrow \llbracket B \rrbracket$$
The semantics of a term in the execution language depends not only on the environment and the stack environment but also on the top-level stack.

In particular, a stack $\Gamma \vdash^k K : B \rightarrow C \mid \Delta$ denotes

$$[K] : [\Gamma] \times [C] \times [\Delta] \rightarrow [B]$$

That gives an adjunction

$$\text{Set} \xrightarrow{\rightarrow R} \text{Set}^{\text{op}} \xleftarrow{\rightarrow R} \text{Set}^{\text{op}}$$

between values and stacks.
Control in call-by-value and call-by-name

Abbreviate $\neg X \overset{\text{def}}{=} X \rightarrow R$.

For call-by-value we recover

$$\llbracket [\llbracket \text{bool} \rrbracket] \rrbracket = 1 + 1$$

$$\llbracket [\llbracket A \rightarrow \text{CBV} B] \rrbracket = \llbracket [\llbracket U(A \rightarrow \text{FB})] \rrbracket = \neg (\llbracket [\llbracket A] \rrbracket \land \llbracket [\llbracket B] \rrbracket)$$

This is standard.

For call-by-name we recover

$$\llbracket [\llbracket \text{bool} \rrbracket] \rrbracket = \llbracket [\llbracket F(1 + 1)] \rrbracket = \neg (1 + 1)$$

$$\llbracket [\llbracket A \rightarrow \text{CBN} B] \rrbracket = \llbracket [\llbracket UA \rightarrow B] \rrbracket = \neg (\llbracket [\llbracket A] \rrbracket \land \llbracket [\llbracket B] \rrbracket)$$

This is Streicher and Reus' semantics for a CBN language with control operators.
Abbreviate $\neg X \overset{\text{def}}{=} X \rightarrow R$.

For call-by-value we recover

$$
\begin{align*}
[\text{bool}_{\text{CBV}}] &= 1 + 1 \\
[A \rightarrow_{\text{CBV}} B] &= [U(A \rightarrow FB)] \\
&= \neg([A] \times \neg[B])
\end{align*}
$$

This is standard.
Control in call-by-value and call-by-name

Abbreviate $\neg X \overset{\text{def}}{=} X \rightarrow R$.

For call-by-value we recover
\[
\begin{align*}
[bool_{\text{CBV}}] &= 1 + 1 \\
[A \rightarrow_{\text{CBV}} B] &= [U(A \rightarrow FB)] \\
&= \neg([A] \times \neg[B])
\end{align*}
\]
This is standard.

For call-by-name we recover
\[
\begin{align*}
[bool_{\text{CBN}}] &= [F(1 + 1)] \\
&= \neg(1 + 1) \\
[A \rightarrow_{\text{CBN}} B] &= [UA \rightarrow B] \\
&= \neg[A] \times [B]
\end{align*}
\]
This is Streicher and Reus' semantics for a CBN language with control operators.
For a set E, the adjunction $\mathsf{Set} \quad \begin{array}{c} F^E \downarrow \leftarrow \qquad \uparrow \quad U^E \end{array} \quad E/\mathsf{Set}$

models call-by-push-value with errors.
Summary: adjunctions between values and stacks

For a set E, the adjunction $\text{Set} \xrightarrow{\perp} \xleftarrow{\perp} E/\text{Set}$

models call-by-push-value with errors.

For a set S, the adjunction $\text{Set} \xrightarrow{\perp} \xleftarrow{\perp} \text{Set}$

models call-by-push-value with state.
Summary: adjunctions between values and stacks

For a set E, the adjunction $\text{Set} \xrightarrow{\perp} E/\text{Set} \xleftarrow{\perp} \text{Set}$
models call-by-push-value with errors.

For a set S, the adjunction $\text{Set} \xrightarrow{\perp} \text{Set} \xleftarrow{\perp} \text{Set}$
models call-by-push-value with state.

For a set R, the adjunction $\text{Set} \xrightarrow{-\to R} \text{Set}^{\text{op}} \xleftarrow{-\to R}$
models call-by-push-value with control.
Summary: adjunctions between values and stacks

For a set E, the adjunction $\mathbf{Set} \xleftarrow{\perp} E/\mathbf{Set} \xrightarrow{\perp} \mathbf{Set}$ models call-by-push-value with errors.

For a set S, the adjunction $\mathbf{Set} \xleftarrow{\perp} \mathbf{Set} \xrightarrow{\perp} \mathbf{Set}$ models call-by-push-value with state.

For a set R, the adjunction $\mathbf{Set} \xleftarrow{\perp} \mathbf{Set}^{\text{op}} \xrightarrow{\perp} \mathbf{Set}$ models call-by-push-value with control.