λ-calculus, effects and call-by-push-value

Paul Blain Levy

University of Birmingham

April 2, 2023
Outline

1. Pure λ-calculus
 - Syntax
 - Denotational semantics
 - The $\beta\eta$-theory
 - Reversible rules
 - Operational semantics

2. Adding Effects
 - Outline
 - Errors and printing, operationally

3. Call-by-value with errors
 - Denotational semantics
 - Substitution and values
 - Fine-grain call-by-value

4. Call-by-name with errors

5. Call-by-push-value

6. Stacks

7. State

8. Control
We’re going to look at simply typed \(\lambda \)-calculus with arithmetic, including not just function types, but also sum and product types.

Here is the syntax of types:

\[
A ::= \text{bool} \mid \text{nat} \mid A \rightarrow A \mid 1 \mid A \times A \mid 0 \mid A + A
\]

\[
\mid \sum_{i \in \mathbb{N}} A_i \mid \prod_{i \in \mathbb{N}} A_i \quad \text{(optional extra)}
\]
We’re going to look at simply typed λ-calculus with arithmetic, including not just function types, but also sum and product types.

Here is the syntax of types:

$$ A ::= \text{bool} \mid \text{nat} \mid A \rightarrow A \mid 1 \mid A \times A \mid 0 \mid A + A \mid \sum_{i \in \mathbb{N}} A_i \mid \prod_{i \in \mathbb{N}} A_i \quad \text{(optional extra)} $$

Why no brackets?

- You might expect $A ::= \cdots \mid (A)$.
- But our definition is abstract syntax.
- This means a type—or a term—is a tree of symbols, not a string of symbols.
Typing Judgement

Example

\[\text{x : nat, y : nat} \vdash \lambda z_{\text{nat} \rightarrow \text{nat}} . z (x + x) : (\text{nat} \rightarrow \text{nat}) \rightarrow \text{nat} \]

In English:

Given declarations of \(x : \text{nat} \) and \(y : \text{nat} \),

\(\lambda z_{\text{nat} \rightarrow \text{nat}} . z (x + x) \) is a term of type \((\text{nat} \rightarrow \text{nat}) \rightarrow \text{nat}\).

The typing judgement takes the form \(\Gamma \vdash M : A \).

- \(\Gamma \) is a typing context, a list of typed distinct identifiers.
- \(M \) is a term.
- \(A \) is a type.
Identifiers

The most basic typing rules, not associated with any particular type.

Free identifier

$$\Gamma \vdash x : A \in \Gamma$$

Multiple local declaration, e.g. of two identifiers

$$\Gamma \vdash M : A \quad \Gamma \vdash M' : B \quad \Gamma, x : A, y : B \vdash N : C$$

$$\Gamma \vdash \text{let } (x \text{ be } M, \ y \text{ be } M'). \ N : C$$
Typing rules for $A \rightarrow B$

Introduction rule

$$
\frac{
\Gamma, x : A \vdash M : B
}{
\Gamma \vdash \lambda x_A. M : A \rightarrow B
}
$$

Elimination rule

$$
\frac{
\Gamma \vdash M : A \rightarrow B \quad \Gamma \vdash N : A
}{
\Gamma \vdash MN : B
}
$$

Type annotations in terms

- For Γ and M, there’s at most one A such that $\Gamma \vdash M : A$
- and at most one derivation of $\Gamma \vdash M : A$.
- This is because of our type annotations.
- Some formulations omit some or all of these.
Typing rules for bool

Two introduction rules:

\[\Gamma \vdash \text{true} : \text{bool} \quad \Gamma \vdash \text{false} : \text{bool} \]

Elimination rule

\[\Gamma \vdash M : \text{bool} \quad \Gamma \vdash N : B \quad \Gamma \vdash N' : B \]
\[\Gamma \vdash \text{match } M \text{ as } \{ \text{true. } N, \text{ false. } N' \} : B \]

It’s a pretentious notation for if \(M \) then \(N \) else \(N' \).
Typing rules for arithmetic

These are *ad hoc* rules.

\[
\begin{align*}
\Gamma &\vdash 17 : \text{nat} \\
\hline
\end{align*}
\]

\[
\begin{align*}
\Gamma &\vdash M : \text{nat} \quad \Gamma &\vdash M' : \text{nat} \\
\hline
\Gamma &\vdash M + M' : \text{nat}
\end{align*}
\]
Typing rules for $A + B$

Two introduction rules

$$\Gamma \vdash M : A \quad \Gamma \vdash inl^{A,B} M : A + B$$

$$\Gamma \vdash M : B \quad \Gamma \vdash inr^{A,B} M : A + B$$

Elimination rule

$$\Gamma \vdash M : A + B \quad \Gamma, x : A \vdash N : C \quad \Gamma, y : B \vdash N' : C$$

$$\Gamma \vdash \text{match } M \text{ as } \{ \text{inl } x. \ N, \ \text{inr } y. \ N' \} : C$$
Typing rules for $A + B$

Two introduction rules

\[
\Gamma \vdash M : A \\
\Gamma \vdash \text{inl}^{A,B} M : A + B
\]

\[
\Gamma \vdash M : B \\
\Gamma \vdash \text{inr}^{A,B} M : A + B
\]

Elimination rule

\[
\Gamma \vdash M : A + B \\
\Gamma, x : A \vdash N : C \\
\Gamma, y : B \vdash N' : C \\
\Gamma \vdash \text{match } M \text{ as } \{ \text{inl } x. \ N, \ \text{inr } y. \ N' \} : C
\]

Likewise for $\sum_{i \in \mathbb{N}} A_i$.
Typing rules for 0

Zero introduction rules

Elimination rule

\[
\Gamma \vdash M : 0 \\
\Gamma \vdash \text{match } M \text{ as } \{\}^A : A
\]
Typing rules for $A \times B$

Introduction rule

$$\Gamma \vdash M : A \quad \Gamma \vdash N : B$$

$$\Gamma \vdash \langle M, N \rangle : A \times B$$

Two options for elimination

- **Pattern-matching product.** Elimination rule

 $$\Gamma \vdash M : A \times B \quad \Gamma, x : A, y : B \vdash N : C$$

 $$\Gamma \vdash \text{match } M \text{ as } \langle x, y \rangle. \ N : C$$

- **Projection product.** Two elimination rules

 $$\Gamma \vdash M : A \times B$$

 $$\Gamma \vdash M^1 : A$$

 $$\Gamma \vdash M^r : B$$
Typing rules for $A \times B$

Introduction rule

\[
\begin{align*}
\Gamma \vdash M : A & \quad \Gamma \vdash N : B \\
\hline
\Gamma \vdash \langle M, N \rangle : A \times B
\end{align*}
\]

Two options for elimination

- **Pattern-matching product.** Elimination rule

\[
\begin{align*}
\Gamma \vdash M : A \times B & \quad \Gamma, x : A, y : B \vdash N : C \\
\hline
\Gamma \vdash \text{match } M \text{ as } \langle x, y \rangle. \ N : C
\end{align*}
\]

- **Projection product.** Two elimination rules

\[
\begin{align*}
\Gamma \vdash M : A \times B & \\
\hline
\Gamma \vdash M^1 : A
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash M : A \times B & \\
\hline
\Gamma \vdash M^r : B
\end{align*}
\]

$\prod_{i \in \mathbb{N}} A_i$ is a projection product.
Typing rules for \(1\)

Introduction rule

\[
\Gamma \vdash \langle \rangle : 1
\]

Two options for elimination

- **Pattern-match unit.** Elimination rule

 \[
 \Gamma \vdash M : 1 \quad \Gamma \vdash N : C
 \]

 \[
 \Gamma \vdash \text{match } M \text{ as } \langle \rangle . N : C
 \]

- **Projection unit.** Zero elimination rules
Weakening is admissible

Theorem

If $\Gamma \vdash M : A$ and $\Gamma \subseteq \Gamma'$ then $\Gamma' \vdash M : A$.
Example

The term \((x + y) + \text{let} (y \text{ be } 3). (x + y)\) has binding diagram

\[
(x+y) + \text{let} (\square \text{ be } 3). (x + \bigcirc)
\]

- Terms are \(\alpha\)-equivalent when they have the same binding diagram.

\[
M \equiv_\alpha N \iff \text{BD}(M) = \text{BD}(N)
\]

- The collection of binding diagrams forms an initial algebra [FPT; AR].
- We’ll skate over this issue. It’s not specific to \(\lambda\)-calculus.
Substitution is an operation on binding diagrams, not on terms.

Example

\[M = \lambda y. \text{nat}. y + 3 \]
\[M' = 7 \]
\[N = x(5 + y) \]
\[N[M/x, M'/y] = (\lambda z. \text{nat}. z + 3)(5 + 7) \]
Substitution

Substitution is an operation on binding diagrams, not on terms.

Multiple substitution, e.g. for two identifiers

If $\Gamma \vdash M : A$ and $\Gamma \vdash M' : B$ and $\Gamma, x : A, y : B \vdash N : C$, we define $\Gamma \vdash N[M/x, M'/y] : C$.

Example

\[
\begin{align*}
M &= \lambda y_{\text{nat}}. y + 3 \\
M' &= 7 \\
N &= x(5 + y) \\
N[M/x, M'/y] &= (\lambda z_{\text{nat}}. z + 3)(5 + 7)
\end{align*}
\]
Types denote sets

- Every type A denotes a set $[A]$.
- For example, $[\text{nat} \to \text{nat}]$ is the set of functions $\mathbb{N} \to \mathbb{N}$.
Types denote sets

- Every type A denotes a set $\llbracket A \rrbracket$.
- For example, $\llbracket \text{nat} \to \text{nat} \rrbracket$ is the set of functions $\mathbb{N} \to \mathbb{N}$.
- $\llbracket A \rrbracket$ is a semantic domain for terms of type A.
- This means: a closed term of type $\vdash M : A$ denotes an element of $\llbracket A \rrbracket$.
Types denote sets

- Every type A denotes a set $[A]$.

- For example, $[\text{nat} \to \text{nat}]$ is the set of functions $\mathbb{N} \to \mathbb{N}$.

- $[A]$ is a semantic domain for terms of type A.

- This means: a closed term of type $\vdash M : A$ denotes an element of $[A]$.

- For example, $\lambda x_{\text{nat}}. x + 3$ denotes $\lambda a \in \mathbb{N}. a + 3$.
Semantics of types

Notation

For sets \(X \) and \(Y \),

- \(X \rightarrow Y \) is the set of functions from \(X \) to \(Y \).
- \(X \times Y \) is \(\{\langle x, y \rangle \mid x \in X, y \in Y\} \).
- \(X + Y \) is \(\{\text{inl } x \mid x \in X\} \cup \{\text{inr } y \mid y \in Y\} \).

\[
\begin{align*}
\llbracket \text{bool} \rrbracket & = \mathbb{B} = \{\text{true, false}\} \\
\llbracket \text{nat} \rrbracket & = \mathbb{N} \\
\llbracket A \rightarrow B \rrbracket & = \llbracket A \rrbracket \rightarrow \llbracket B \rrbracket \\
\llbracket 1 \rrbracket & = 1 = \{\langle \rangle \} \\
\llbracket A + B \rrbracket & = \llbracket A \rrbracket + \llbracket B \rrbracket \\
\llbracket A \times B \rrbracket & = \llbracket A \rrbracket \times \llbracket B \rrbracket \\
\llbracket 0 \rrbracket & = \emptyset
\end{align*}
\]
Semantic environments

Let Γ be a typing context.

- A **semantic environment** ρ for Γ provides an element $\rho_x \in [A]$ for each $(x : A) \in \Gamma$.
- $[[\Gamma]]$ is the set of semantic environments for Γ.

$$[[\Gamma]] \overset{\text{def}}{=} \prod_{(x : A) \in \Gamma} [A]$$
Semantics of typing judgement

Given a typing judgement $\Gamma \vdash M : A$, we shall define $[M]$, or more precisely $[[\Gamma \vdash M : A]]$. It’s a function from $[[\Gamma]]$ to $[[A]]$.

Example

$x : \text{nat}, y : \text{nat} \vdash \lambda z_{\text{nat} \rightarrow \text{nat}}. z(x + y) : (\text{nat} \rightarrow \text{nat}) \rightarrow \text{nat}$

denotes the function

$$[[x : \text{nat}, y : \text{nat}]] \rightarrow (\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$$

$$\rho \mapsto \lambda z \in \mathbb{N} \rightarrow \mathbb{N}. z(\rho_x + \rho_y)$$
\[\Gamma \vdash 17 : \text{nat} \]
\[[17] : \rho \mapsto 17 \]
\[\begin{array}{c}
\Gamma \vdash M : \text{nat} \\
\Gamma \vdash M' : \text{nat}
\end{array} \]
\[\Gamma \vdash M + M' : \text{nat} \]
\[[M + M'] : \rho \mapsto [M] \rho + [M'] \rho \]
More semantic equations

\[
\Gamma \vdash x : A \\
\Gamma \vdash \lambda x.A. M : A \rightarrow B
\]

\[
[x] : \rho \mapsto \rho_x
\]

\[
\Gamma, x : A \vdash M : B
\]

\[
[\lambda x_A. M] : \rho \mapsto \lambda a \in [A]. [M](\rho, x \mapsto a)
\]
More semantic equations

\[
\Gamma \vdash M : A \\
\Gamma \vdash \text{inl}^{A,B} M : A + B \\
[[\text{inl}^{A,B} M]] : \rho \mapsto \text{inl} [[M]]\rho
\]

\[
\Gamma \vdash M : A + B \quad \Gamma, x : A \vdash N : C \quad \Gamma, y : B \vdash N' : C \\
\Gamma \vdash \text{match } M \text{ as } \{\text{inl } x. N, \text{inr } y. N'\} : C
\]

\[
[[\text{match } M \text{ as } \{\text{inl } x. N, \text{inr } y. N'\}]] : \rho \mapsto \text{match } [[M]]\rho \text{ as } \{\text{inl } a. [[N]](\rho, x \mapsto a), \text{inr } b. [[N']] (\rho, y \mapsto b)\}
\]
Basic properties

Semantic Coherence

If type annotations are omitted, then $\Gamma \vdash M : A$ can have more than one derivation.

We must prove that $\llbracket \Gamma \vdash M : A \rrbracket$ doesn’t depend on the derivation.
Semantic Coherence

If type annotations are omitted,
then $\Gamma \vdash M : A$ can have more than one derivation.

We must prove that $[\Gamma \vdash M : A]$ doesn’t depend on the derivation.

Weakening Lemma

If $\Gamma \vdash M : A$ and $\Gamma \subseteq \Gamma'$ then

$$[\Gamma' \vdash M : A] \rho = [\Gamma \vdash M](\rho \upharpoonright \Gamma)$$
We can give denotational semantics of binding diagrams.

\[[\Gamma \vdash M : A] = [\Gamma \vdash \text{BD}(M) : A] \]

So \(\alpha \)-equivalent terms have the same denotation.
We can give denotational semantics of binding diagrams.

\[[\Gamma \vdash M : A] = [\Gamma \vdash \text{BD}(M) : A]\]

So \(\alpha\)-equivalent terms have the same denotation.

Substitution Lemma

For binding diagrams \(\Gamma \vdash M : A\) and \(\Gamma \vdash M' : B\) and \(\Gamma, x : A \vdash N : C\), we can recover \([N[M/x, M'/y]]\) from \([N]\) and \([M]\) and \([M']\).

\[[N[M/x, M'/y]] : \rho \mapsto [N](\rho, x \mapsto [M]\rho, y \mapsto [M']\rho)\]
The β-law for $A \rightarrow B$

$$\Gamma \vdash M : A \quad \Gamma, x : A \vdash N : B$$

$$\Gamma \vdash (\lambda x_A. N) M = N[M/x] : B$$

Introduction inside an elimination may be removed.
The β-law for $A \rightarrow B$

$$
\Gamma \vdash M : A \quad \Gamma, x : A \vdash N : B
$$

$$
\Gamma \vdash (\lambda x_A. N) M = N[M/x] : B
$$

Introduction inside an elimination may be removed.

Two β-laws for projection product $A \times B$

$$
\Gamma \vdash M : A \quad \Gamma \vdash N : A'
$$

$$
\Gamma \vdash \langle M, N \rangle^1 = M : A
$$

Zero β-laws for projection unit 1
Two β-laws for bool

\[
\Gamma \vdash N : C \quad \Gamma \vdash N' : C
\]

\[
\Gamma \vdash \text{match true as } \{ \text{true. } N, \text{ false. } N' \} = N : C
\]
More β-laws

Two β-laws for bool

\[
\Gamma \vdash N : C \quad \Gamma \vdash N' : C
\]
\[
\Gamma \vdash \text{match } \text{true} \text{ as } \{\text{true}.N, \text{false}.N'\} = N : C
\]

Two β-laws for $A + B$

\[
\Gamma \vdash M : A \quad \Gamma, x : A \vdash N : C \quad \Gamma, y : B \vdash N' : C
\]
\[
\Gamma \vdash \text{match } \text{inl}^{A,B} M \text{ as } \{\text{inl } x.N, \text{inr } y.N'\} = N[M/x] : C
\]
More β-laws

Two β-laws for bool

\[
\Gamma \vdash N : C \quad \Gamma \vdash N' : C \\
\Gamma \vdash \text{match } \text{true} \text{ as } \{ \text{true}.N, \text{false}.N' \} = N : C
\]

Two β-laws for $A + B$

\[
\Gamma \vdash M : A \quad \Gamma, x : A \vdash N : C \quad \Gamma, y : B \vdash N' : C \\
\Gamma \vdash \text{match } \text{inl}^{A,B} M \text{ as } \{ \text{inl } x.N, \text{inr } y.N' \} = N[M/x] : C
\]

Zero β-laws for 0
\[
\Gamma \vdash M : A \quad \Gamma \vdash M' : B \quad \Gamma, x : A, y : B \vdash N : C
\]

\[
\Gamma \vdash \text{let } (x \text{ be } M, \ y \text{ be } M'). \ N = N[M/x, M'/y] : C
\]
η-laws

η-law for $A \rightarrow B$, everything is λ

\[
\frac{\Gamma \vdash M : A \rightarrow B}{\Gamma \vdash M = \lambda x_{A}. M \,x : A \rightarrow B} \quad x \not\in \Gamma
\]

Introduction outside an elimination may be inserted.
η-laws

η-law for $A \rightarrow B$, everything is λ

\[
\frac{\Gamma \vdash M : A \rightarrow B}{\Gamma \vdash M = \lambda x_A. M x : A \rightarrow B} \quad x \notin \Gamma
\]

Introduction outside an elimination may be inserted.

η-law for projection product $A \times B$, everything is a tuple

\[
\frac{\Gamma \vdash M : A \times B}{\Gamma \vdash M = \langle M^1, M^r \rangle : A \times B}
\]

η-law for projection unit 1, everything is a tuple

\[
\frac{\Gamma \vdash M : 1}{\Gamma \vdash M = \langle \rangle : 1}
\]
More η-laws

η-law for bool, **everything is true or false**

\[
\begin{align*}
\Gamma \vdash M : \text{bool} & \quad \Gamma, z : \text{bool} \vdash N : C \\
\Gamma \vdash N[M/z] = & \quad z \not\in \Gamma \\
\text{match } M \text{ as } \{ \text{true. } N[\text{true}/z], \text{false. } N[\text{false}/z] \} & : C
\end{align*}
\]
η-law for bool, everything is true or false

\[
\Gamma \vdash M : \text{bool} \quad \Gamma, z : \text{bool} \vdash N : C \\
\frac{}{\Gamma \vdash N[M/z] = \text{match } M \text{ as } \{ \text{true. } N[\text{true}/z], \text{false. } N[\text{false}/z] \} : C}
\]

η-law for \(A + B \), everything is inl or inr

\[
\Gamma \vdash M : A + B \quad \Gamma, z : A + B \vdash N : C \\
\frac{}{\Gamma \vdash N[M/z] = \text{match } M \text{ as } \{ \text{inl } x. N[\text{inl } x/z], \text{inr } y. N[\text{inr } y/z] \} : C}
\]
More η-laws

η-law for bool, everything is true or false

\[
\Gamma \vdash M : \text{bool} \quad \Gamma, z : \text{bool} \vdash N : C
\]

\[
\Gamma \vdash N[M/z] = \begin{cases}
\text{match } M \text{ as } \{\text{true. } N[\text{true}/z], \text{false. } N[\text{false}/z]\} : C
\end{cases}
\]

η-law for $A + B$, everything is inl or inr

\[
\Gamma \vdash M : A + B \quad \Gamma, z : A + B \vdash N : C
\]

\[
\Gamma \vdash N[M/z] = \begin{cases}
\text{match } M \text{ as } \{\text{inl x. } N[\text{inl x}/z], \text{inr y. } N[\text{inr y}/z]\} : C
\end{cases}
\]

η-law for 0, nothing exists

\[
\Gamma \vdash M : 0 \quad \Gamma, z : 0 \vdash N : C
\]

\[
\Gamma \vdash N[M/z] = \text{match } M \text{ as } \{\} : C
\]
We define $\Gamma \vdash M =_{\beta\eta} M' : A$ inductively as follows.

All the β- and η-laws are taken as axioms, and it is a congruence i.e. an equivalence relation preserved by each term constructor. For example:

$$\Gamma, x : A \vdash M = M' : B$$

$$\Gamma \vdash \lambda x_A. M = \lambda x_A. M' : A \to B$$
Closure Theorems

- $\beta\eta$ is closed under weakening. But not conversely, e.g.
 \[
 z : 0 \vdash \text{true} =_{\beta\eta} \text{false} : \text{bool}
 \]
 but not \[
 \vdash \text{true} =_{\beta\eta} \text{false} : \text{bool}
 \]

- $\beta\eta$ is closed under substitution.

Soundness theorem

If $\Gamma \vdash M =_{\beta\eta} M' : A$ then $[M] = [M'].$

Follows from the weakening and substitution lemmas.
The connective \rightarrow is **rightist**: it has a reversible rule

$$\Gamma, x : A \vdash B$$

$$\frac{}{\Gamma \vdash A \rightarrow B}$$

natural in Γ—we’ll skate over naturality.
Reversible rule for $A \to B$

The connective \to is **rightist**: it has a reversible rule

$$
\frac{\Gamma, x : A \vdash B}{\Gamma \vdash A \to B}
$$

natural in Γ—we’ll skate over naturality.

- Downwards, a term $\Gamma, x : A \vdash M : B$ is sent to $\lambda x_A. M$.
- Upwards, a term $\Gamma \vdash N : A \to B$ is sent to $N x$.
- These are inverse up to $=_{\beta \eta}$.
The connective \rightarrow is **rightist**: it has a reversible rule

$$
\Gamma, x : A \vdash B \\
\hline
\Gamma \vdash A \rightarrow B
$$

natural in Γ—we’ll skate over naturality.

- Downwards, a term $\Gamma, x : A \vdash M : B$ is sent to $\lambda x_A. M$.
- Upwards, a term $\Gamma \vdash N : A \rightarrow B$ is sent to $N \, x$.
- These are inverse up to $=_{\beta\eta}$.

$A \rightarrow B$ appears on the **right** of \vdash in the conclusion.
The (nullary) connective \texttt{bool} is \textbf{leftist}. That means: it has a reversible rule

\[
\frac{\Gamma \vdash C \quad \Gamma \vdash C}{\Gamma, z : \texttt{bool} \vdash C}
\]

natural in \(\Gamma\) and \(C\)—we’ll skate over naturality.

- Downwards, a pair \(\Gamma \vdash M : C\) and \(\Gamma \vdash M' : C\) is sent to match \(z\) as \{\text{true.} M, \text{false.} M'\}.
- Upwards, a term \(\Gamma, z : \texttt{bool} \vdash N : C\) is sent to \(N[\text{true}/z]\) and \(N[\text{false}/z]\).
- These are inverse up to \(=_{\beta\eta}\).

\texttt{bool} appears on the \textbf{left} of \(\vdash\) in the conclusion.
Reversible rule for $A + B$

The connective $+$ is leftist, having a reversible rule

$$\Gamma, x : A \vdash C \quad \Gamma, y : B \vdash C$$

$$\Gamma, z : A + B \vdash C$$

natural in Γ and C.
The connective $+$ is leftist, having a reversible rule

$$
\Gamma, x : A \vdash C \quad \Gamma, y : B \vdash C

\quad \frac{}{\Gamma, z : A + B \vdash C}
$$

natural in Γ and C.

The (nullary) connective 0 is leftist, having a reversible rule

$$
\quad \frac{}{\Gamma, z : 0 \vdash C}
$$

natural in Γ and C.
Bipartisan connectives

The connective \times has a reversible rule

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \times B}$$

natural in Γ, so it’s rightist.
Bipartisan connectives

The connective \times has a reversible rule

$$\Gamma \vdash A \quad \Gamma \vdash B \quad \frac{}{\Gamma \vdash A \times B}$$

natural in Γ, so it’s rightist.

It also has a reversible rule

$$\Gamma, x : A, y : B \vdash C \quad \frac{}{\Gamma, z : A \times B \vdash C}$$

natural in Γ and C, so it’s leftist.
Bipartisan connectives

The connective \times has a reversible rule

$$\Gamma \vdash A \quad \Gamma \vdash B$$

$$\Gamma \vdash A \times B$$

natural in Γ, so it’s rightist.

It also has a reversible rule

$$\Gamma, x : A, y : B \vdash C$$

$$\Gamma, z : A \times B \vdash C$$

natural in Γ and C, so it’s leftist.
Bipartisan connectives

The connective \times has a reversible rule

$$
\Gamma \vdash A \quad \Gamma \vdash B
\frac{}{\Gamma \vdash A \times B}
$$

natural in Γ, so it’s rightist.

It also has a reversible rule

$$
\Gamma, x : A, y : B \vdash C
\frac{}{\Gamma, z : A \times B \vdash C}
$$

natural in Γ and C, so it’s leftist.

In summary, the connective \times is bipartisan.
Likewise the (nullary) connective 1.
Most general leftist connective

The variant tuple type \(\sum \{ 0 \ A, A' ; \ 1 \ B, B', B'' \} \) denotes a sum of products
\[
([A] \times [A']) + ([B] \times [B'] \times [B''])
\]
This gives a leftist connective.

\[
\Gamma, A, A' \vdash C \quad \Gamma, B, B', B'' \vdash C
\]
\[
\Gamma, \sum \{ 0 \ A, A' ; \ 1 \ B, B', B'' \} \vdash C
\]
Most general leftist connective

The variant tuple type \(\sum \{ 0 \, A, A' ; \ 1 \, B, B', B'' \} \) denotes a sum of products

\[
([A] \times [A']) + ([B] \times [B'] \times [B''])
\]

This gives a leftist connective.

\[
\Gamma, A, A' \vdash C \quad \Gamma, B, B', B'' \vdash C
\]

\[
\Gamma, \sum \{ 0 \, A, A' ; \ 1 \, B, B', B'' \} \vdash C
\]

Here is its term syntax:

\[
\begin{align*}
\text{in}_0(M, M') \\
\text{in}_1(M, M', M'') \\
\text{match } M \text{ as } \{ \text{in}_0(x, x'). N, \text{in}_1(y, y', y''). N' \}
\end{align*}
\]
Most general rightist connective

The variant function type $\prod \{ 0 \; A, A' \vdash B; \; 1 \; C, C', C'' \vdash D \}$ denotes a product of multi-ary function types

$$((A \times A') \rightarrow B) \times ((C \times C' \times C''') \rightarrow D)$$

This gives a rightist connective.

$$\Gamma, A, A' \vdash B \quad \Gamma, C, C', C'' \vdash D$$

$$\Gamma \vdash \prod \{ 0 \; A, A' \vdash B; \; 1 \; C, C', C'' \vdash D \}$$
Most general rightist connective

The variant function type $\prod \{^0 A, A' \vdash B; ^1 C, C', C'' \vdash D\}$ denotes a product of multi-ary function types

$$((A \times A') \rightarrow B) \times ((C \times C' \times C'') \rightarrow D)$$

This gives a rightist connective.

$$
\begin{array}{c}
\Gamma, A, A' \vdash B \\
\Gamma, C, C', C'' \vdash D
\end{array}
\quad \Gamma \vdash \prod \{^0 A, A' \vdash B; ^1 C, C', C'' \vdash D\}
$$

Here is its term syntax:

$$\lambda \{^0 (x, x').M, ^1 (y, y', y'').M'\}
\quad M^0(N, N')
\quad M^1(N, N', N'')$$
Jumbo \(\lambda \)-calculus

Type syntax

\[
A ::= \sum_{i<n} \{ \overrightarrow{A_i} \} \quad | \quad \prod_{i<n} \{ \overrightarrow{A_i} \vdash B_i \} \quad (n \in \mathbb{N} \text{ or } n = \infty)
\]

Term syntax, with type annotations omitted

\[
M ::= x \quad | \quad \text{let} (x \text{ be } \overrightarrow{M}). \overrightarrow{M} \\
| \quad \text{in}_i(\overrightarrow{M}) \\
| \quad \text{match } \overrightarrow{M} \text{ as } \{ \text{in}_i(\overrightarrow{x}). \overrightarrow{M_i} \}_{i<n} \\
| \quad \lambda \{ i(\overrightarrow{x}). \overrightarrow{M_i} \}_{i<n} \\
| \quad \overrightarrow{M}^i(\overrightarrow{M})
\]
Jumbo λ-calculus

Type syntax

$$A ::= \sum \{ \overrightarrow{A_i} \}_{i<n} \quad | \quad \prod \{ \overrightarrow{A_i} \vdash B_i \}_{i<n} \quad \text{ (} n \in \mathbb{N} \text{ or } n = \infty \text{)}$$

Term syntax, with type annotations omitted

$$M ::= x \quad | \quad \text{let } (x \text{ be } \overrightarrow{M}) \cdot M$$
$$\quad | \quad \text{in}_i(\overrightarrow{M})$$
$$\quad | \quad \text{match } M \text{ as } \{ \text{in}_i(\overrightarrow{x}) \cdot M_i \}_{i<n}$$
$$\quad | \quad \lambda \{^i(\overrightarrow{x}) \cdot M_i \}_{i<n}$$
$$\quad | \quad M^i(\overrightarrow{M})$$

Includes both pattern-match product $A \times B$ and projection product $A \sqcap B$.
Jumbo λ-calculus is the most expressive form of simply typed λ-calculus: it contains all leftist and rightist connectives as primitives.
Jumbo λ-calculus is the most expressive form of simply typed λ-calculus: it contains all leftist and rightist connectives as primitives.

Modulo $\beta\eta$ it is no more expressive than the non-jumbo version.
Jumbo λ-calculus is the most expressive form of simply typed λ-calculus: it contains all leftist and rightist connectives as primitives.

Modulo $=_{\beta \eta}$ it is no more expressive than the non-jumbo version.

But the β- and η-laws are not going to survive.
Evaluating terms

We want to evaluate every closed term $\vdash M : A$ to a terminal term.

We want $\lambda x_A. M$ to be terminal, since M is not closed.

But there are many options.
Three decisions we must make

1. To evaluate \(\text{let} \ (x \text{ be } M, \ y \text{ be } M'). \ N, \) do we
 - evaluate \(M \) to \(T \) and \(M' \) to \(T' \), then evaluate \(N[T/x, T'/y] \)?
 - just evaluate \(N[M/x, M'/y] \)?
Three decisions we must make

1. To evaluate \(\text{let} \ (x \text{ be } M, \ y \text{ be } M'). \ N \), do we
 - evaluate \(M \) to \(T \) and \(M' \) to \(T' \), then evaluate \(N[T/x, T'/y] \)?
 - just evaluate \(N[M/x, M'/y] \)?

2. To evaluate \(M \ N \), we must evaluate \(M \) to \(\lambda x_A. \ P \). Do we
 - evaluate \(N \) to \(T \) (before or after evaluating \(M \)), then evaluate \(P[T/x] \)?
 - just evaluate \(P[N/x] \)?
Three decisions we must make

1. To evaluate \(\text{let } (x \text{ be } M, y \text{ be } M'). N\), do we
 - evaluate \(M\) to \(T\) and \(M'\) to \(T'\), then evaluate \(N[T/x, T'/y]\)?
 - just evaluate \(N[M/x, M'/y]\)?

2. To evaluate \(MN\), we must evaluate \(M\) to \(\lambda x A. P\). Do we
 - evaluate \(N\) to \(T\) (before or after evaluating \(M\)), then evaluate \(P[T/x]\)?
 - just evaluate \(P[N/x]\)?

3. Any terminal term of type \(A + B\) must be \(\text{inl } M\) or \(\text{inr } M\). Do we
 - deem \(\text{inl } T\) and \(\text{inr } T\) terminal only if \(T\) is terminal?
 - always deem \(\text{inl } M\) and \(\text{inr } M\) terminal?
One fundamental decision

Do we substitute terminal terms, or unevaluated terms?
One fundamental decision

Do we substitute **terminal** terms, or **unevaluated** terms?

Substituting terminal terms gives **call-by-value** or **eager** evaluation.

Substituting unevaluated terms gives **call-by-name**.
One fundamental decision

Do we substitute terminal terms, or unevaluated terms?

Substituting terminal terms gives call-by-value or eager evaluation.

Substituting unevaluated terms gives call-by-name.

Terminology: lazy and call-by-name

- “Lazy” evaluation usually means call-by-need, except in Abramsky’s “lazy λ-calculus”.

- In the untyped literature, “call-by-name” evaluation means reduction to head normal form.
To evaluate `let (x be M, y be M'). N`, do we

- evaluate `M` to `T` and `M'` to `T'`, then evaluate `N[T/x, T'/y]`? **Call-by-value**
- just evaluate `N[M/x, M'/y]`? **Call-by-name**
To evaluate MN, we must evaluate M to $\lambda x_A. P$. Do we

- evaluate N to T (before or after evaluating M), then evaluate $P[T/x]$? Call-by-value
- just evaluate $P[N/x]$? Call-by-name
Any terminal term of type \(A + B \) must be \(\text{inl} \ M \) or \(\text{inr} \ M \). Do we

- deem \(\text{inl} \ T \) and \(\text{inr} \ T \) terminal only if \(T \) is terminal? **Call-by-value**
- always deem \(\text{inl} \ M \) and \(\text{inr} \ M \) terminal? **Call-by-name**

Consider evaluation of match \(P \) as \(\{ \text{inl} \ x. N, \text{inr} \ y. N' \} \) to see this.
Definitional interpreter for call-by-value

CBV terminals $T ::= \text{true} \mid \text{false} \mid \text{inl } T \mid \text{inr } T \mid \lambda x.M$

To evaluate

- **true**: return `true`.
- **$M + N$**: evaluate M. If this returns m, evaluate N. If this returns n, return $m + n$.
- **$\lambda x.M$**: return $\lambda x.M$.
- **$\text{inl } M$**: evaluate M. If this returns T, return $\text{inl } T$.
- **let (x be M, y be M'). N**: evaluate M. If this returns T, evaluate M'. If this returns T', evaluate $N[T/x,T'/y]$.
- **match M as \{true. N, false. N'\}**: evaluate M. If this returns `true`, evaluate N, but if it returns `false`, evaluate N'.
- **match M as \{inl x. N, inr x. N'\}**: evaluate M. If this returns $\text{inl } T$, evaluate $N[T/x]$, but if it returns $\text{inr } T$, evaluate $N'[T/x]$.
- **MN**: evaluate M. If this returns $\lambda x.P$, evaluate N. If this returns T, evaluate $P[T/x]$.
Definitional interpreter for call-by-name

In CBN the terminals are true, false, inl M, inr M, $\lambda x.M$

To evaluate

- **true**: return `true`.
- **$M + N$**: evaluate M. If this returns m, evaluate N. If this returns n, return $m + n$.
- **$\lambda x.M$**: return $\lambda x.M$.
- **inl M**: return `inl M`.
- **let (**x** be **M**, **y** be **M')**. **N**: evaluate $N[M/x, M'/y]$.
- **match **M** as {$true. N$, $false. N'$}**: evaluate M. If this returns **true**, evaluate N, but if it returns **false**, evaluate N'.
- **match **M** as {$inl x. N$, $inr x. N'$}**: evaluate M. If this returns **inl** P, evaluate $N[P/x]$, but if it returns **inr** P, evaluate $N'[P/x]$.
- **MN**: evaluate M. If this returns $\lambda x.P$, evaluate $P[N/x]$.
We write $M \Downarrow T$ to mean that M evaluates to T.

This is defined inductively, for example

$$
\frac{M \Downarrow \lambda x_A. P \quad N \Downarrow T \quad P[T/x] \Downarrow T'}{
M \ N \Downarrow T'}
$$
We write $M \downarrow T$ to mean that M evaluates to T. This is defined inductively, for example

\[
M \downarrow \lambda x_A. P \quad N \downarrow T \quad P[T/x] \downarrow T' \\
\hline
MN \downarrow T'
\]

If $\vdash M : A$ then $M \downarrow T$ for unique T.

Moreover $\vdash T : A$ and $[M] = [T]$.
Big-step semantics for call-by-name

We write $M \downarrow T$ to mean that M evaluates to T. This is defined inductively, for example

\[
M \downarrow \lambda x_A. P \quad P[N/x] \downarrow T \\
\hline
MN \downarrow T
\]
We write $M \Downarrow T$ to mean that M evaluates to T. This is defined inductively, for example

\[
M \Downarrow \lambda x_A. P \quad P[N/x] \Downarrow T \\
\hline
M \; N \Downarrow T
\]

If $\vdash M : A$ then $M \Downarrow T$ for unique T.

Moreover $\vdash T : A$ and $\llbracket M \rrbracket = \llbracket T \rrbracket$.
The experiment

- Add effects to (jumbo) λ-calculus, with CBV or CBN evaluation.
- See what equations and isomorphisms survive.
- Seek a denotational semantics for each language.
Long story

The experiment

- Add effects to (jumbo) λ-calculus, with CBV or CBN evaluation.
- See what equations and isomorphisms survive.
- Seek a denotational semantics for each language.

Analyzing CBV with a microscope

- Look closely at the CBV models: there’s a pattern.
- CBV contains particles of meaning, constituting fine-grain call-by-value.
Long story

The experiment

- Add effects to (jumbo) λ-calculus, with CBV or CBN evaluation.
- See what equations and isomorphisms survive.
- Seek a denotational semantics for each language.

Analyzing CBV with a microscope

- Look closely at the CBV models: there’s a pattern.
- CBV contains particles of meaning, constituting fine-grain call-by-value.

Increasing the magnification

- Look very closely at the CBN and fine-grain CBV models: there’s a pattern.
- Both contain tiny particles of meaning, constituting call-by-push-value.
Both fine-grain call-by-value and call-by-push-value are obtained \textit{empirically}, by observing particles of meaning within a range of denotational models.
Where this story comes from

- Plotkin: semantics of recursion for call-by-name (PCF) and call-by-value (FPC)
- Moggi: list of monads for denotational semantics
- Moggi: monadic metalanguage
- Power and Robinson: Freyd categories
- Plotkin and Felleisen: call-by-value continuation semantics
- Reynolds’ Idealized Algol, a call-by-name language with state
- O’Hearn: semantics of type identifiers in such a language
- Streicher and Reus: call-by-name continuation semantics
- Filinski: Effect-PCF
Adding computational effects

Errors

Let $E = \{\text{CRASH, BANG}\}$ be a set of “errors”. We add

$$\Gamma \vdash \text{error}^B e : B \quad e \in E$$

To evaluate $\text{error}^B e$: halt with error message e.

Printing

Let $A = \{a, b, c, d, e\}$ be a set of “characters”. We add

$$\Gamma \vdash M : B \quad c \in A$$

$$\Gamma \vdash \text{print} \; c \; . \; M : B$$

To evaluate $\text{print} \; c \; . \; M$: print c and then evaluate M.
Exercises

1. Evaluate

\[
\text{let } (x \text{ be error CRASH}). 5
\]

in CBV and CBN.

2. Evaluate

\[
(\lambda x.(x + x))(\text{print } "hello". 4)
\]

in CBV and CBN.

3. Evaluate

\[
\text{match } (\text{print } "hello". \text{inr error CRASH}) \text{ as}
\{ \text{inl } x. x + 1, \text{inr } y. 5 \}
\]

in CBV and CBN.
Big-step semantics for errors

For call-by-value, we inductively define two big-step relations:

- $M \downarrow T$ means M evaluates to T.
- $M \not\downarrow e$ means M raises error e.

Here are the rules for application:

\[
\begin{align*}
&M \not\downarrow e & \quad & M \downarrow \lambda x. P & \quad & N \not\downarrow e \\
&M \downarrow \lambda x. P & \quad & N \downarrow T & \quad & P[T/x] \not\downarrow e \\
&M \downarrow \lambda x. P & \quad & N \downarrow T & \quad & P[T/x] \downarrow T' & \\
\end{align*}
\]

Likewise for call-by-name.
A program is a closed term of type \texttt{nat} or \texttt{bool}.

Two terms $\Gamma \vdash M, M' : B$ are observationally equivalent when $C[M]$ and $C[M']$ have the same behaviour for every program with a hole $C[\cdot]$.

Same behaviour means: print the same string, raise the same error, return the same boolean.

We write $M \simeq_{\text{CBV}} M'$ and $M \simeq_{\text{CBN}} M'$.
The \(\eta \)-law for boolean type: has it survived?

\(\eta \)-law for bool

Any term \(\Gamma, z : \text{bool} \vdash M : B \) can be expanded as

\[
\text{match } z \text{ as } \{ \text{true. } M[\text{true}/z], \text{false. } M[\text{false}/z] \}
\]

Anything of boolean type is a boolean.

This holds in CBV, because \(z \) can only be replaced by \text{true} or \text{false}.

But it’s broken in CBN, because \(z \) might raise an error. For example,

\[
\text{true } \not\sim \text{CBN} \quad \text{match } z \text{ as } \{ \text{true. true, false. true} \}
\]

because we can apply the context

\[
\text{let (z be error CRASH). } [\cdot]
\]

Similarly the \(\eta \)-law for sum types is valid in CBV but not in CBN.
The η-law for functions: has it survived?

η-law for $A \rightarrow B$ and $A \Pi B$

Any term $\Gamma \vdash M : A \rightarrow B$ can be expanded as $\lambda x. M x$.

Any term $\Gamma \vdash M : A \Pi B$ can be expanded as $\lambda \{^l. M^l, ^r. M^r \}$.

Although these fail in CBV, they hold in CBN. Consequences:

$$\text{error } e \simeq_{\text{CBN}} \lambda x. \text{error } e$$

$$\text{error } e \simeq_{\text{CBN}} \lambda \{^l. \text{error } e, ^r. \text{error } e \}$$

$$\text{print } c. \lambda x. M \simeq_{\text{CBN}} \lambda x. \text{print } c. M$$

$$\text{print } c. \lambda \{^l. M, ^r. N \} \simeq_{\text{CBN}} \lambda \{^l. \text{print } c. M, ^r. \text{print } c. N \}$$

Yet the two sides have different operational behaviour! What’s going on?

In CBN, a function gets evaluated only by being applied.
The pure λ-calculus satisfies all the β- and η-laws.

With computational effects,

- CBV satisfies η for leftist connectives (tuple types), but not rightist ones (function types)
- CBN satisfies η for rightist connectives (function types), but not leftist ones (tuple types).
Summary

The pure λ-calculus satisfies all the β- and η-laws.

With computational effects,
- CBV satisfies η for leftist connectives (tuple types), but not rightist ones (function types)
- CBN satisfies η for rightist connectives (function types), but not leftist ones (tuple types).

Similarly for isomorphisms:
- $(A + B) + C \cong A + (B + C)$ survives in CBV but not CBN.
- $A \times B \cong A \pi B$ survives in neither CBV nor CBN.
- $A \rightarrow (B \rightarrow C) \cong (A \pi B) \rightarrow C$ survives in CBN but not CBV.
Our first attempt.

Each type A denotes a set, a semantic domain for terms.

\[
\begin{align*}
[\text{bool}]^\ast & = \mathbb{B} + E \\
[\text{bool} + \text{bool}]^\ast & = (\mathbb{B} + \mathbb{B}) + E \\
[\text{bool} \times \text{bool}]^\ast & = (\mathbb{B} \times \mathbb{B}) + E
\end{align*}
\]
Naive CBV semantics

Our first attempt.

Each type A denotes a set, a semantic domain for terms.

$$\begin{align*}
[\text{bool}]^* &= \mathbb{B} + E \\
[\text{bool} + \text{bool}]^* &= (\mathbb{B} + \mathbb{B}) + E \\
[\text{bool} \times \text{bool}]^* &= (\mathbb{B} \times \mathbb{B}) + E
\end{align*}$$

Not easy to make this compositional, so we abandon it.
Each type denotes a set, a semantic domain for terminals.

\[
\begin{align*}
[\text{bool}] &= \mathbb{B} \\
[A + B] &= [A] + [B] \\
[A \to B] &= [A] \to ([B] + E) \\
[() \to B] &= [B] + E \\
[\Gamma] &= \prod_{(x:A) \in \Gamma} [A]
\end{align*}
\]
CBV denotational semantics

Each type denotes a set, a semantic domain for terminals.

\[
\begin{align*}
 [\text{bool}] &= \mathbb{B} \\
 [A + B] &= [A] + [B] \\
 [A \rightarrow B] &= [A] \rightarrow ([B] + E) \\
 [() \rightarrow B] &= [B] + E \\
 [\Gamma] &= \prod_{(x:A) \in \Gamma} [A]
\end{align*}
\]

Each term \(\Gamma \vdash M : B \) denotes a function \([M] : [\Gamma] \rightarrow ([B] + E)\).
Semantics of term constructors

\[
\begin{align*}
\Gamma, x : A \vdash M : B \\
\overline{\Gamma \vdash \lambda x \in A. M : A \to B}
\end{align*}
\]

\[
\begin{align*}
&\quad \Gamma \vdash \lambda x \in A. M : A \to B \\
&\quad \Gamma \notin \lambda x \in A. [\lambda x A. M] : \rho \mapsto \text{inl} \ \lambda a \in \lbrack A \rbrack. [\lbrack M \rbrack(\rho, x \mapsto a)]
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash M : A \to B & \quad \Gamma \vdash N : A \\
\overline{\Gamma \vdash MN : B}
\end{align*}
\]

\[
\begin{align*}
\quad \Gamma \notin \lambda x \in A. [\lambda x A. M] : \rho \mapsto \text{match} \ [\lbrack M \rbrack] \rho \text{ as }& \begin{cases}
\quad \text{inl } f. & \text{match} \ [\lbrack N \rbrack] \rho \text{ as } \begin{cases}
\text{inl } x. & f(x) \\
\text{inr } e. & \text{inr } e
\end{cases} \\
\text{inr } e. & \text{inr } e
\end{cases}
\end{align*}
\]
More term constructors

\[
\Gamma \vdash M : A \\
\Gamma \vdash \text{inl}^{A, B} M : A + B
\]

\[
[[\text{inl}^{A, B} M]] : \rho \mapsto \text{match } [[M]]\rho \text{ as } \begin{cases}
\text{inl } a. & \text{inl } \text{inl } a \\
\text{inr } e. & \text{inr } e
\end{cases}
\]
More term constructors

\[\frac{\Gamma \vdash M : A}{\Gamma \vdash \mathsf{inl}^{A,B} M : A + B} \]

\[[\mathsf{inl}^{A,B} M] : \rho \mapsto \text{match } [M] \rho \text{ as } \begin{cases} \mathsf{inl} \ a & \mathsf{inl} \ \mathsf{inl} \ a \\ \mathsf{inr} \ e & \mathsf{inr} \ e \end{cases} \]

To prove the soundness of the denotational semantics, we need a substitution lemma.
Can we obtain \([N [M/x]]\) from \([M]\) and \([N]\)?

Not in CBV.

Example that rules out a general substitution lemma

Define

\[

\begin{align*}
M &\overset{\vdash}{=} \text{error CRASH} \\
N &\overset{\vdash}{=} \text{true} \\
N' &\overset{\vdash}{=} \text{match } x \text{ as} \\
& \begin{cases}
\text{true}, \\
\text{false}.
\end{cases}
\end{align*}
\]

\([N] = [N']\) because \(N = \eta N'\)

\([N [M/x]] \neq [N' [M/x]]\)
Can we obtain \([N[M/x]]\) from \([M]\) and \([N]\)? Not in CBV.
Can we obtain \([N[M/x]]\) from \([M]\) and \([N]\)? Not in CBV.

Example that rules out a general substitution lemma

Define \(\vdash M : \text{bool}\) and \(\vdash x : \text{bool} \vdash N, N' : \text{bool}\).

\[
\begin{align*}
M & \overset{\text{def}}{=} \text{error CRASH} \\
N & \overset{\text{def}}{=} \text{true} \\
N' & \overset{\text{def}}{=} \text{match } x \text{ as } \{\text{true.true, false.true}\} \\
[N] & = [N'] \quad \text{because } N =_{\eta \text{bool}} N' \\
[N[M/x]] & \neq [N'[M/x]]
\end{align*}
\]
Can we obtain $[N[M/x]]$ from $[M]$ and $[N]$? Not in CBV.

Example that rules out a general substitution lemma

Define $\vdash M : \text{bool}$ and $x : \text{bool} \vdash N, N' : \text{bool}$.

\[
\begin{align*}
M & \overset{\text{def}}{=} \text{error CRASH} \\
N & \overset{\text{def}}{=} \text{true} \\
N' & \overset{\text{def}}{=} \text{match } x \text{ as } \{ \text{true.true, false.true} \} \\
[N] & = [N'] \quad \text{because } N =_{\eta \text{bool}} N'
\end{align*}
\]

$[N[M/x]] \neq [N'[M/x]]$

But we can give a lemma for the substitution of values.
The following terms are called values.

\[
V ::= \text{true} | \text{false} | \text{inl} \ V | \text{inr} \ V | \lambda x. M | x
\]

The closed values are just the terminals: we don’t allow “complex values” such as

\[
\text{match true as } \{\text{true.false, false.true}\}
\]
Denotational semantics of values

Each value $\Gamma \vdash V : A$ denotes a function $[V]^{val} : [\Gamma] \rightarrow [A]$.

- $[x]^{val} : \rho \mapsto \rho_x$
- $[true]^{val} : \rho \mapsto true$
- $[inl V]^{val} : \rho \mapsto inl [V]^{val} \rho$
- $[\lambda x_A. M]^{val} : \rho \mapsto \lambda a \in [A]. [M](\rho, x \mapsto [a])$

We can recover $[V]$ from $[V]^{val}$.

- $[V] : \rho \mapsto inl [V]^{val} \rho$
Substitution Lemma For Values

Given values $\Gamma \vdash V : A$ and $\Gamma \vdash W : B$ and a term $\Gamma, x : A, y : B \vdash M : C$
we can obtain $[M[V/x, W/y]]$ from $[V]^{\text{val}}$ and $[W]^{\text{val}}$ and $[M]$.

$$[M[V/x, W/y]] : \rho \mapsto [M](\rho, x \mapsto [V]^{\text{val}}\rho, y \mapsto [W]^{\text{val}}\rho)$$

Likewise for substitution of values into values.
If $M \downarrow V$ then $\llbracket M \rrbracket \varepsilon = \text{inl} (\llbracket V \rrbracket^{\text{val}} \varepsilon)$.

If $M \nmid e$ then $\llbracket M \rrbracket \varepsilon = \text{inr} e$.

Proof by induction, using the substitution lemma.
Fine-grain call-by-value has two judgements:

- A value $\Gamma \vdash^v V : A$ denotes a function $[V] : [\Gamma] \to [A]$.

Key typing rules

- $\Gamma \vdash^v V : A \\ \Gamma \vdash^c \text{return } V : A$
- $\Gamma \vdash^c M : A \quad \Gamma, x : A \vdash^c N : B \\ \Gamma \vdash^c M \text{ to } x. \ N : B$

Corresponds to Power and Robinson’s notion of a Freyd category.
Semantics of returning and sequencing

\[
\Gamma \vdash^v V : A \\
\frac{}{\Gamma \vdash^c \text{return } V : A}
\]

\[[\text{return } V] : \rho \mapsto \text{inl } [V]_{\rho}\]

\[
\begin{array}{ll}
\Gamma \vdash^c M : A & \Gamma, x : A \vdash^c N : B \\
\hline
\Gamma \vdash^c M \to x. N : B
\end{array}
\]

\[[M \to x. N] : \rho \mapsto \text{match } [M]_{\rho} \text{ as } \begin{cases}
\text{inl } a. & [N](\rho, x \mapsto a) \\
\text{inr } e. & \text{inr } e
\end{cases}\]
For connectives \texttt{bool}, $+$, \rightarrow the syntax is as follows.

\[
V ::= x \mid \texttt{true} \mid \texttt{false} \\
 \mid \texttt{inl} \ V \mid \texttt{inr} \ V \mid \lambda x. \ M \\
M ::= M \text{ to } x. \ M \mid \text{return } V \\
 \mid \text{let } (x \text{ be } V). \ M \mid V \ V \\
 \mid \text{match } V \text{ as } \{ \text{true. } M, \text{ false. } M \} \\
 \mid \text{match } V \text{ as } \{ \text{inl } x. \ M, \text{ inr } x. \ M \} \\
 \mid \text{error } e
\]
Syntax

For connectives bool, +, → the syntax is as follows.

\[
V ::= x \mid \text{true} \mid \text{false} \mid \text{inl } V \mid \text{inr } V \mid \lambda x. M
\]

\[
M ::= M \text{ to } x. M \mid \text{return } V \mid \text{let } (x \text{ be } V). M \mid V V \mid \text{match } V \text{ as } \{ \text{true. } M, \text{false. } M \} \mid \text{match } V \text{ as } \{ \text{inl } x. M, \text{inr } x. M \} \mid \text{error } e
\]

We don’t allow “complex values” such as

\[
\text{match true as } \{ \text{true. } \text{false, false. } \text{true} \}
\]

These would complicate the operational semantics.
We evaluate a closed computation $\vdash^c M : A$ to a closed value $\vdash^v V : A$. To evaluate

- **return V**: return V.
- **M to x. N**, evaluate M. If this returns V, evaluate $N[V/x]$.
- **let (x be V, y be W). M**, evaluate $M[V/x, W/y]$.
- **$(\lambda x. M) V$**, evaluate $M[V/x]$.
- **match inl V as {inl x. N, inr x. N'}**: evaluate $N[V/x]$.
Equational theory

\(\beta \)-laws

\[
\begin{align*}
\text{match } (\text{inl } V) \text{ as } \{\text{true. } M, \text{false. } M'\} &= M[V/x] \\
(\lambda x. M) V &= M[V/x] \\
\text{let } (x \text{ be } V, \ y \text{ be } W). \ M &= M[V/x, W/y]
\end{align*}
\]

\(\eta \)-laws

\[
\begin{align*}
M[V/z] &= \text{match } V \text{ as } \{\text{inl } x. M[\text{inl } x/z], \ \text{inr } y. M[\text{inr } x/z]\} \\
V &= \lambda x. Vx
\end{align*}
\]

Sequencing laws

\[
\begin{align*}
\text{(return } V) \text{ to } x. \ M &= M[V/x] \\
M &= M \text{ to } x. \text{ return } x \\
(M \text{ to } x. \ N) \text{ to } y. \ P &= M \text{ to } x. (N \text{ to } y. \ P)
\end{align*}
\]
Term $\Gamma \vdash M : A$ to computation $\Gamma \vdash^c \hat{M} : A$.

\[
\begin{align*}
x & \longrightarrow \ return\ x \\
\lambda x. M & \longrightarrow \ return\ \lambda x. \hat{M} \\
inl M & \longrightarrow \ \hat{M} \ to\ x.\ return\ inl\ x \\
M N & \longrightarrow \ \hat{M} \ to\ x.\ \hat{N} \ to\ y.\ xy \\
\text{let (x be M, y be M'). N} & \longrightarrow \ \hat{M} \ to\ x.\ \hat{M}' \ to\ y.\ \hat{N}
\end{align*}
\]

Value $\Gamma \vdash V : A$ to value $\Gamma \vdash^v \hat{V} : A$.

\[
\begin{align*}
x & \longrightarrow \ x \\
\lambda x. M & \longrightarrow \ \lambda x. \hat{M} \\
inl V & \longrightarrow \ inl \hat{V}
\end{align*}
\]
Nullary functions

Call-by-value programmers use nullary functions to delay evaluation, and call them **thunks**.

\[
TA \overset{\text{def}}{=} () \to A \\
thunk M \overset{\text{def}}{=} \lambda(). M \\
\text{force } V \overset{\text{def}}{=} V() \quad [TA] = [A] + E \\
[\text{thunk } M] = [M] \\
[\text{force } V] = [V]
\]
Nullary functions

Call-by-value programmers use nullary functions to delay evaluation, and call them *thunks*.

\[
TA \overset{\text{def}}{=} () \rightarrow A \\
\text{thunk } M \overset{\text{def}}{=} \lambda().M \\
\text{force } V \overset{\text{def}}{=} V() \\
[TA] = [A] + E \\
[\text{thunk } M] = [M] \\
[\text{force } V] = [V]
\]

The type \(TA \) has a reversible rule

\[
\frac{\Gamma \vdash^c A}{\Gamma \vdash^v TA}
\]
Call-by-value programmers use nullary functions to delay evaluation, and call them \textit{thunks}.

\[
T A \overset{\text{def}}{=} () \rightarrow A \\
\text{thunk } M \overset{\text{def}}{=} \lambda(). M \\
\text{force } V \overset{\text{def}}{=} V()
\]

\[[T A] = [A] + E \]
\[[\text{thunk } M] = [M] \]
\[[\text{force } V] = [V] \]

The type $T A$ has a reversible rule

\[
\frac{\Gamma \vdash^c A}{\Gamma \vdash^v T A}
\]

Fine-grain CBV (unlike the \textit{monadic metalanguage}) distinguishes computations from thunks.
Naive CBN semantics of errors

Each type denotes a set, a semantic domain for terms. For example:

\[
\begin{align*}
\llbracket \text{bool} \to (\text{bool} \to \text{bool}) \rrbracket_* &= (B + E) \to ((B + E) \to (B + E)) \\
\llbracket \text{bool} + \text{bool} \rrbracket_* &= ((B + E) + (B + E)) + E \\
\llbracket \text{bool} \Pi \text{bool} \rrbracket_* &= (B + E) \times (B + E)
\end{align*}
\]

Thus we define

\[
\begin{align*}
\llbracket \text{bool} \rrbracket_* &= B + E \\
\llbracket A + B \rrbracket_* &= ([A]_* + [B]_*) + E \\
\llbracket A \to B \rrbracket_* &= [A]_* \to [B]_* \\
\llbracket A \Pi B \rrbracket_* &= [A]_* \times [B]_* \\
\llbracket \Gamma \rrbracket &= \prod_{(x:A) \in \Gamma} [A]_*
\end{align*}
\]

Each term $\Gamma \vdash M : B$ should denote a function $\llbracket M \rrbracket : \llbracket \Gamma \rrbracket \to [B]_*$.
Naive semantics: what goes wrong

\[\Gamma \vdash \text{error CRASH} : B \]

denotes \(\rho \mapsto ? \)

Example: suppose \(B = \text{bool} \to (\text{bool} \to \text{bool}) \)
then \(B \) denotes \((B + E) \to ((B + E) \to (B + E)) \)
and \(\text{error CRASH} \simeq \text{CBN} \lambda x. \lambda y. \text{error CRASH} \)

Intuition: go down through the function types until we hit a tuple type.

A similar problem arises with \(\text{match} \).
Naive semantics: what goes wrong

\[\Gamma \vdash \text{error CRASH} : B \]

denotes \(\rho \mapsto ? \)

Example:

- Suppose \(B = \text{bool} \to (\text{bool} \to \text{bool}) \)
- Then \(B \) denotes \((\mathbb{B} + E) \to ((\mathbb{B} + E) \to (\mathbb{B} + E))\)
- And \(\text{error CRASH} \sim_{\text{CBN}} \lambda x. \lambda y. \text{error CRASH} \)
- So the answer should be \(\lambda x. \lambda y. \text{inr CRASH} \).

Intuition: go down through the function types until we hit a tuple type.
Naive semantics: what goes wrong

\[\Gamma \vdash \text{error CRASH} : B \]

denotes \(\rho \mapsto ? \)

Example:

- suppose \(B = \text{bool} \rightarrow (\text{bool} \rightarrow \text{bool}) \)
- then \(B \) denotes \((\text{bool} + E) \rightarrow ((\text{bool} + E) \rightarrow (\text{bool} + E))\)
- and \(\text{error CRASH} \simeq_{\text{CBN}} \lambda x. \lambda y. \text{error CRASH} \)
- so the answer should be \(\lambda x. \lambda y. \text{inr CRASH} \).

Intuition: go down through the function types until we hit a tuple type. A similar problem arises with match.
Solution: \(E \)-pointed sets

Definition

An \(E \)-pointed set is a set \(X \) with two distinguished elements \(c, b \in X \).

A type should denote an \(E \)-pointed set, a semantic domain for terms.
Solution: E-pointed sets

Definition

An E-pointed set is a set X with two distinguished elements $c, b \in X$.

A type should denote an E-pointed set, a semantic domain for terms.

Examples:

$$[[\text{bool} \to (\text{bool} \to \text{bool})]] = ((\mathbb{B} + E) \to ((\mathbb{B} + E) \to (\mathbb{B} + E))),$$

$$\lambda x.\lambda y.\text{inr CRASH},$$

$$\lambda x.\lambda y.\text{inr BANG})$$

$$[[\text{bool} + \text{bool}]] = (((\mathbb{B} + E) + (\mathbb{B} + E)) + E,$$

$$\text{inr CRASH},$$

$$\text{inr BANG})$$

$$[[\text{bool} \Pi \text{bool}]] = (((\mathbb{B} + E) \times (\mathbb{B} + E),$$

$$(\text{inr CRASH, inr CRASH}),$$

$$(\text{inr BANG, inr BANG}))$$
CBN semantics of errors

\[[\text{bool}] = (\mathbb{B} + E, \text{inr CRASH, inr BANG}) \]

If \([A] = (X, c, b)\) and \([B] = (Y, c', b')\)
then \([A + B] = ((X + Y) + E, \text{inr CRASH, inr BANG})\)
and \([A \rightarrow B] = (X \rightarrow Y, \lambda x. c', \lambda x. b')\)
and \([A \Pi B] = (X \times Y, (c, c'), (b, b'))\)
CBN semantics of errors

\[
[\text{bool}] = (\mathbb{B} + E, \text{inr CRASH}, \text{inr BANG})
\]

If \([A] = (X, c, b)\) and \([B] = (Y, c', b')\)

then \([A + B] = ((X + Y) + E, \text{inr CRASH}, \text{inr BANG})\)

and \([A \rightarrow B] = (X \rightarrow Y, \lambda x. c', \lambda x. b')\)

and \([A \Pi B] = (X \times Y, (c, c'), (b, b'))\)

\[
[\Gamma] = \prod_{(x:A) \in \Gamma} X
\]

\([A] = (X, c, b)\)

A term \(\Gamma \vdash M : B\) denotes a function \([M] : [\Gamma] \rightarrow [B]\).
Semantics of term constructors

\[\Gamma \vdash \text{true} : \text{bool} \]

\[\llbracket \text{true} \rrbracket : \rho \mapsto \text{inl true} \]

\[\Gamma \vdash M : \text{bool} \quad \Gamma \vdash N : B \quad \Gamma \vdash N' : B \]

\[\Gamma \vdash \text{match } M \text{ as } \{ \text{true. } N, \text{ false. } N' \} : B \]

\[\llbracket \text{match } M \text{ as } \{ \text{true. } N, \text{ false. } N' \} \rrbracket : \rho \mapsto \]

\[\text{match } \llbracket M \rrbracket \rho \text{ as } \begin{cases} \text{inl true. } & \llbracket N \rrbracket \rho \\ \text{inl false. } & \llbracket N' \rrbracket \rho \\ \text{inr CRASH. } & c \\ \text{inr BANG. } & b \end{cases} \]

where \(\llbracket B \rrbracket = (Y, c, b) \)
More term constructors

\[
\begin{align*}
[\lambda x. M] & : \rho \mapsto \lambda a. [M](\rho, x \mapsto a) \\
[M N] & : \rho \mapsto [M][N] \\
[x] & : \rho \mapsto \rho_x \\
\text{error CRASH} & : \rho \mapsto c
\end{align*}
\]

Soundness/adequacy

- If \(M \Downarrow T \) then \([M]_{\varepsilon} = [T]_{\varepsilon}\).
- If \(M \not\Downarrow \text{CRASH} \) then \([M]_{\varepsilon} = c\).
- If \(M \not\Downarrow \text{BANG} \) then \([M]_{\varepsilon} = b\).

Proved by induction, using the substitution lemma.
Notation for E-pointed sets

- **Free E-pointed set on a set X.**

 $$F^E X \overset{\text{def}}{=} (X + E, \text{inr CRASH}, \text{inr BANG})$$

- **Product of two E-pointed sets.**

 $$(X, c, b) \times (Y, c', b') \overset{\text{def}}{=} (X \times Y, (c, c'), (b, b'))$$

- **Unit E-pointed set.**

 $$1_\Pi \overset{\text{def}}{=} (1, (), ())$$

- **Product of a family of E-pointed sets.**

 $$\prod_{i \in I} (X_i, c_i, b_i) \overset{\text{def}}{=} (\prod_{i \in I} X_i, \lambda i. c_i, \lambda i. b_i)$$

- **Exponential E-pointed set.**

 $$X \rightarrow (Y, c, b) \overset{\text{def}}{=} \prod_{x \in X} (Y, c, b)$$

 $$= (X \rightarrow Y, \lambda x. c, \lambda x. b)$$

- **Carrier of an E-pointed set.**

 $$U^E(X, c, b) \overset{\text{def}}{=} X$$
Summary of call-by-name semantics

A type denotes an E-pointed set.

\[
\begin{align*}
[\text{bool}] &= F^E(1 + 1) \\
[A + B] &= F^E(UE[A] + UE[B]) \\
[A \to B] &= UE[A] \to [B] \\
[A \Pi B] &= [A] \Pi [B]
\end{align*}
\]

A typing context denotes a set.

\[
[\Gamma] = \prod_{(x:A) \in \Gamma} UE[A]
\]

A term $\Gamma \vdash M : B$ denotes a function $[\Gamma] \longrightarrow [B]$.
A type denotes a set.

\[
\begin{align*}
[\text{bool}] & = 1 + 1 \\
[A + B] & = [A] + [B] \\
[A \rightarrow B] & = U^E([A] \rightarrow F^E[B]) \\
[TB] & = U^E F^E[B]
\end{align*}
\]

A typing context denotes a set.

\[
[\Gamma] = \prod_{(x:A) \in \Gamma} [A]
\]

A computation \(\Gamma \vdash^c M : B \) denotes a function \([\Gamma] \rightarrow F^E[B]\).
Two kinds of type:

- A value type denotes a set.
- A computation type denotes an \(E \)-pointed set.
Call-By-Push-Value Types

Two kinds of type:

- A **value type** denotes a set.
- A **computation type** denotes an \(E \)-pointed set.

value type

\[
A ::= \quad UB \mid 1 \mid A \times A \mid 0 \mid A + A \mid \sum_{i \in \mathbb{N}} A_i
\]

computation type

\[
B ::= \quad FA \mid A \to B \mid 1_{\Pi} \mid B \Pi B \mid \Pi_{i \in \mathbb{N}} B_i
\]
Two kinds of type:

- A **value type** denotes a set.
- A **computation type** denotes an E-pointed set.

value type

\[
A ::= \; UB \; | \; 1 \; | \; A \times A \; | \; 0 \; | \; A + A \; | \; \sum_{i \in \mathbb{N}} A_i
\]

computation type

\[
B ::= \; FA \; | \; A \rightarrow B \; | \; 1_\Pi \; | \; B \Pi B \; | \; \prod_{i \in \mathbb{N}} B_i
\]

Strangely, function types are computation types, and $\lambda x.M$ is a computation.
An identifier gets bound to a value, so it has value type.
An identifier gets bound to a **value**, so it has **value type**.

A **context** Γ is a finite set of identifiers with associated **value type**

$$x_0 : A_0, \ldots, x_{m-1} : A_{m-1}$$
An identifier gets bound to a value, so it has value type.

A context Γ is a finite set of identifiers with associated value type

$$x_0 : A_0, \ldots, x_{m-1} : A_{m-1}$$

Two judgements:

- A value $\Gamma \vdash^V V : A$ denotes a function $[V] : [\Gamma] \rightarrow [A]$.
The type FA

A computation in FA aims to return a value in A.

\[
\frac{\Gamma \triangleright^\nu V : A}{\Gamma \vdash^c \text{return} V : FA}\]

\[
\frac{\Gamma \vdash^c M : FA \quad \Gamma, x : A \vdash^c N : B}{\Gamma \vdash^c M \text{ to } x. \ N : B}
\]

Sequencing in the style of Filinski’s “Effect-PCF”.

The type FA

A computation in FA aims to return a value in A.

$$
\Gamma \vdash^v V : A \\
\Gamma \vdash^c \text{return } V : FA
$$

$$
\Gamma \vdash^c M : FA \\
\Gamma, x : A \vdash^c N : B \\
\Gamma \vdash^c M \text{ to } x. \ N : B
$$

Sequencing in the style of Filinski’s “Effect-PCF”.

\begin{align*}
\llbracket \text{return } V \rrbracket : \rho &\mapsto \text{inl } \llbracket V \rrbracket \rho \\
\llbracket M \text{ to } x. \ N \rrbracket : \rho &\mapsto \begin{cases}
\text{inl } a. & \llbracket N \rrbracket(\rho, x \mapsto a) \\
\text{inr CRASH. } c & \\
\text{inr BANG. } b &
\end{cases} \\
\text{match } \llbracket M \rrbracket \rho \text{ as } & \\
\text{where } \llbracket B \rrbracket = (Y, c, b)
\end{align*}
The type UB

A value in UB is a thunk of a computation in B.

\[
\begin{align*}
\Gamma ⊢^c M : B & \quad \Gamma ⊢^v V : UB \\
\Gamma ⊢^v \text{thunk } M : UB & \quad \Gamma ⊢^c \text{force } V : B
\end{align*}
\]
The type UB

A value in UB is a thunk of a computation in B.

$$
\begin{align*}
\Gamma \vdash^c M : B & \quad & \Gamma \vdash^v V : UB \\
\Gamma \vdash^v \text{thunk } M : UB & & \Gamma \vdash^c \text{force } V : B
\end{align*}
$$

$$
[\text{thunk } M] = [M]
$$

$$
[\text{force } V] = [V]
$$
Identifiers

An identifier is a value.

$$\Gamma \vdash^v x : A$$

$$\Gamma \vdash^v V : A \quad \Gamma \vdash^v W : B \quad \Gamma, x : A, y : B \vdash^c M : C$$

$$\Gamma \vdash^c \text{let } (x \text{ be } V, y \text{ be } W). \ M : C$$
Tuples

\[
\begin{align*}
\Gamma \vdash^\nu V &: A & \quad \Gamma \vdash^\nu V &: A' \\
\Gamma \vdash^\nu \text{inl } V &: A + A' & \quad \Gamma \vdash^\nu \text{inr } V &: A + A'
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash^\nu V &: A + A' & \quad \Gamma, x : A \vdash^c M &: B & \quad \Gamma, y : A' \vdash^c M' &: B \\
\Gamma \vdash^c \text{match } V \text{ as } \{\text{inl } x. M, \text{inr } y. M'\} &: B
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash^\nu V &: A & \quad \Gamma \vdash^\nu V' &: A' \\
\Gamma \vdash^\nu \langle V, V' \rangle &: A \times A'
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash^\nu V &: A \times A' & \quad \Gamma, x : A, y : A' \vdash^c M &: B \\
\Gamma \vdash^c \text{match } V \text{ as } \langle x, y \rangle . M &: B
\end{align*}
\]

The rules for 1 are similar.
Functions

$$\Gamma, x : A \vdash^c M : B$$

$$\Gamma \vdash^c \lambda x. M : A \to B$$

$$\Gamma \vdash^c M : A \to B \quad \Gamma \vdash^v V : A$$

$$\Gamma \vdash^c MV : B$$

$$\Gamma \vdash^c M : B \quad \Gamma \vdash^c M' : B'$$

$$\Gamma \vdash^c \lambda \{^1. M, \ r. M'\} : B \sqcap B'$$

$$\Gamma \vdash^c M : B \sqcap B'$$

$$\Gamma \vdash^c M^1 : B$$

$$\Gamma \vdash^c M : B \sqcap B'$$

$$\Gamma \vdash^c M^r : B'$$
Functions

\[\Gamma, x : A \vdash^c M : B \]

\[\Gamma \vdash^c \lambda x.M : A \to B \]

\[\Gamma \vdash^c M : A \to B \quad \Gamma \vdash^v V : A \]

\[\Gamma \vdash^c MV : B \]

\[\Gamma \vdash^c M : B \quad \Gamma \vdash^c M' : B' \]

\[\Gamma \vdash^c \lambda \{^1.M, ^r.M'\} : B \oplus B' \]

\[\Gamma \vdash^c M : B \oplus B' \]

\[\Gamma \vdash^c M^1 : B \]

\[\Gamma \vdash^c M : B \oplus B' \]

\[\Gamma \vdash^c M^r : B' \]

It is often convenient to write applications operand-first, as \(V^1.M \) and \(^1.M \) and \(^r.M \).
Definitional interpreter for call-by-push-value

The terminals are **computations**:

- `return V`
- `\lambda x. M`
- `\lambda \{^l M, ^r M' \}`
The terminals are **computations**: \(\text{return } V \quad \lambda x. M \quad \lambda\{^1. M, \ r. M'\} \)

To evaluate

- **return \(V \)**: return \(\text{return } V \).
- **\(M \) to \(x. \ N \)**: evaluate \(M \). If this returns \(\text{return } V \), then evaluate \(N[V/x] \).
- **\(\lambda x. N \)**: return \(\lambda x. N \).
- **\(MV \)**: evaluate \(M \). If this returns \(\lambda x. N \), evaluate \(N[V/x] \).
- **\(\lambda\{^1. M, \ r. M'\} \)**: return \(\lambda\{^1. M, \ r. M'\} \).
- **\(M^1 \)**: evaluate \(M \). If this returns \(\lambda\{^1. N, \ r. N'\} \), evaluate \(N \).
- **let (\(x \) be \(V \), \(y \) be \(W \)). \(M \)**: evaluate \(M[V/x, W/y] \).
- **force thunk \(M \)**: evaluate \(M \).
- **match \(\text{inl } V \) as \{\(\text{inl } x. M, \ \text{inr } y. M'\}\)**: evaluate \(M[V/x] \).
- **match \(\langle V, V'\rangle \) as \(\langle x, y\rangle. M \)**: evaluate \(M[V/x, V'/y] \).
- **error \(e \)**, print error message \(e \) and stop.
Equational theory

\(\beta\)-laws

- force thunk \(M\) \(= M\)
- \(\text{match } \text{inl } V \text{ as } \{\text{true. } M, \text{false. } M'\} \) \(= M[V/x]\)
- \(\lambda x. M \) \(V \) \(= M[V/x]\)
- \(\text{let } (x \text{ be } V, \ y \text{ be } W). \ M \) \(= M[V/x, W/y]\)

\(\eta\)-laws

- \(V \) \(= \) thunk force \(V\)
- \(M[V/z] \) \(= \) match \(V\) as \(\{\text{inl } x. M[\text{inl } x/z], \text{inr } y. M[\text{inr } x/z]\}\)
- \(M \) \(= \) \(\lambda x. Mx\)

Sequencing laws

- \((\text{return } V) \text{ to } x. \ M \) \(= M[V/x]\)
- \(M \) \(= M \text{ to } x. \text{ return } x\)
- \((M \text{ to } x. \ N) \text{ to } y. \ P \) \(= M \text{ to } x. (N \text{ to } y. \ P)\)
Decomposing CBV into CBP

A CBV type translates into a value type.

\[
\begin{align*}
A \rightarrow B & \quad \mapsto \quad U(A \rightarrow FB) \\
TB & \quad \mapsto \quad UFB
\end{align*}
\]
Decomposing CBV into CBPV

A CBV type translates into a value type.

\[A \rightarrow B \mapsto U(A \rightarrow FB) \]
\[TB \mapsto UFB \]

A fine-grain CBV computation \(x : A, y : B \vdash^c M : C \)
translates as \(x : A, y : B \vdash^c M : FC \).
Decomposing CBV into CBPV

A CBV type translates into a value type.

\[A \rightarrow B \quad \mapsto \quad U(A \rightarrow FB) \]
\[TB \quad \mapsto \quad UFB \]

A fine-grain CBV computation \(x : A, y : B \vdash^c M : C \) translates as \(x : A, y : B \vdash^c M : FC \).

\[\lambda x. M \quad \mapsto \quad \text{thunk} \ \lambda x. M \]
\[VW \quad \mapsto \quad (\text{force } V)W \]
Decomposing CBV into CBPV

A CBV type translates into a value type.

\[A \rightarrow B \mapsto U(A \rightarrow FB) \]
\[TB \mapsto UFB \]

A fine-grain CBV computation \(x : A, y : B \vdash^c M : C \) translates as \(x : A, y : B \vdash^c M : FC \).

\[\lambda x. M \mapsto\text{thunk } \lambda x. M \]
\[V W \mapsto (\text{force } V)W \]

Therefore a CBV term \(x : A, y : B \vdash M : C \) translates as \(x : A, y : B \vdash^c M : FC \)

\[x \mapsto \text{return } x \]
\[\lambda x. M \mapsto \text{return thunk } \lambda x. M \]
\[M \ N \mapsto M \text{ to } f. N \text{ to } y. ((\text{force } f) y) \]
Decomposing CBN into CBPV

A CBN type translates into a computation type.

\[
\begin{align*}
\text{bool} & \mapsto F(1 + 1) \\
A + B & \mapsto F(UA + UB) \\
A \rightarrow B & \mapsto UA \rightarrow B
\end{align*}
\]
Decomposing CBN into CBPV

A CBN type translates into a computation type.

\[
\begin{align*}
\text{bool} & \mapsto F(1 + 1) \\
A + B & \mapsto F(UA + UB) \\
A \to B & \mapsto UA \to B
\end{align*}
\]

A CBN term \(x : A, y : B \vdash M : C \) translates as \(x : UA, y : UB \vdash^c M : C \).

\[
\begin{align*}
x & \mapsto \text{force } x \\
\text{let } (x \text{ be } M, y \text{ be } M'). N & \mapsto \text{let } (x \text{ be thunk } M, y \text{ be thunk } M'). N \\
\lambda x. M & \mapsto \lambda x. M \\
M \ N & \mapsto M \ (\text{thunk } N) \\
inl M & \mapsto \text{return inl thunk } M
\end{align*}
\]
Summary

We’ve seen

- the call-by-push-value calculus
- its operational semantics
- denotational semantics for errors.
We’ve seen

- the call-by-push-value calculus
- its operational semantics
- denotational semantics for errors.

The translations from CBV and CBN into CBPV preserve these semantics.
Summary

We’ve seen
- the call-by-push-value calculus
- its operational semantics
- denotational semantics for errors.

The translations from CBV and CBN into CBPV preserve these semantics.

Moggi’s TA is UFA.
We’ve seen
- the call-by-push-value calculus
- its operational semantics
- denotational semantics for errors.

The translations from CBV and CBN into CBPV preserve these semantics.

Moggi’s TA is UFA.

But
We’ve seen

- the call-by-push-value calculus
- its operational semantics
- denotational semantics for errors.

The translations from CBV and CBN into CBPV preserve these semantics.

Moggi’s TA is UFA.

But

- our error semantics makes thunk and force invisible
We’ve seen

- the call-by-push-value calculus
- its operational semantics
- denotational semantics for errors.

The translations from CBV and CBN into CBPV preserve these semantics.

Moggi’s TA is UFA.

But

- our error semantics makes thunk and force invisible
- we still don’t understand why a function is a computation.
CK-machine

An operational semantics due to Felleisen and Friedman (1986). And Landin, Krivine, Streicher and Reus, Bierman, Pitts, …

It is suitable for sequential languages whether CBV, CBN or CBPV.

At any time, there’s a computation (C) and a stack of contexts (K).

Initially, K is empty.

Some authors make K into a single context, called an “evaluation context”.
To evaluate $M \to x. \ N$: evaluate M. If this returns return V, then evaluate $N[V/x]$.

\[
\begin{array}{c}
M \to x. \ N & \quad K & \rightsquigarrow \\
M & \to x. \ N :: K
\end{array}
\]

\[
\begin{array}{c}
\text{return } V & \to x. \ N :: K & \rightsquigarrow \\
N[V/x] & \quad K
\end{array}
\]
Transitions for application

To evaluate $V' M$: evaluate M. If this returns $\lambda x. N$, evaluate $N[V/x]$.

\[
\begin{array}{c}
V' M & K \rightsquigarrow \\
M & V :: K \\
\end{array}
\]

\[
\begin{array}{c}
\lambda x. N & V :: K \rightsquigarrow \\
N[V/x] & K \\
\end{array}
\]
Those function rules again

\[
\begin{align*}
V' M & \quad K \quad \rightsquigarrow \\
M & \quad V :: K
\end{align*}
\]

\[
\begin{align*}
\lambda x. N & \quad V :: K \quad \rightsquigarrow \\
N[V/x] & \quad K
\end{align*}
\]

We can read V' as an instruction “push V”. We can read $\lambda x. N$ as an instruction “pop x”.

Revisiting some equations:

\[
V' \lambda x. M = M[V/x] \quad \text{fresh}
\]

error $e = \lambda x. error e$

print c.

$\lambda x. M = \lambda x. print c. M$
Those function rules again

\[
\begin{array}{c}
V'M & K \\
M & V :: K
\end{array}
\quad \rightsquigarrow
\begin{array}{c}
\lambda x. N & V :: K \\
N[V/x] & K
\end{array}
\]

We can read \(V' \) as an instruction “push \(V \)”.
We can read \(\lambda x \) as an instruction “pop \(x \)”.

Paul Blain Levy (University of Birmingham) \(\lambda \)-calculus, effects and call-by-push-value
April 2, 2023 100 / 128
Those function rules again

\[
\begin{array}{c}
V' M & K & \leadsto \\
M & V :: K \\
\end{array}
\]

\[
\begin{array}{c}
\lambda x. N & V :: K & \leadsto \\
N[V/x] & K \\
\end{array}
\]

We can read \textit{V'} as an instruction “push \textit{V}”.

We can read \textit{λx} as an instruction “pop \textit{x}”.

Revisiting some equations:

\[
V' \lambda x. M = M[V/x]
\]

\[
M = \lambda x. x' M \quad \text{(x fresh)}
\]

\[
\text{error } e = \lambda x. \text{error } e
\]

\[
\text{print c. } \lambda x. M = \lambda x. \text{print c. } M
\]
A value is, a computation does.

- A value of type UB is a thunk of a computation of type B.
- A value of type $A + A'$ is a tagged value $\text{inl } V$ or $\text{inr } V$.
- A value of type $A \times A'$ is a pair $\langle V, V' \rangle$.

- A computation of type FA aims to return a value of type A.
- A computation of type $A \to B$ aims
to pop a value of type A and then behave in B.
- A computation of type $B \Pi B'$ aims
to pop the tag l and then behave in B
or pop the tag r and then behave in B'.
What’s in a stack?

A stack consists of

- **arguments** that are values
- **arguments** that are tags
- **frames** taking the form $\text{to } x. \ N$.

Paul Blain Levy (University of Birmingham) \(\lambda\)-calculus, effects and call-by-push-value April 2, 2023 102 / 128
Example program of type $F\text{nat}$ (with complex values)

```ml
print "hello0".
let (x be 3,
   y be thunk (
      print "hello1".
      λz.
      print "we just popped " + z.
      return x + z
   )).
print "hello2".
(print "hello3".
  7'
  print "we just pushed 7".
  force y
) to w.
print "w is bound to " + w.
return w + 5
```
Typing the CK-machine

Initial configuration to evaluate $\Gamma \vdash^c P : C$

\[\Gamma \quad P \quad C \quad \text{nil} \quad C\]

Transitions

\[\begin{array}{l}
\Gamma \quad M \text{ to } x. \ N \quad B \quad K \quad C \quad \leadsto \\
\Gamma \quad M \quad FA \quad \text{to } x. \ N :: K \quad C
\end{array}\]

\[\begin{array}{l}
\Gamma \quad \text{return } V \quad FA \quad \text{to } x. \ N :: K \quad C \quad \leadsto \\
\Gamma \quad N[V/x] \quad B \quad K \quad C
\end{array}\]

Typically Γ would be empty and $C = F \text{ bool}$.
Typing the CK-machine

Initial configuration to evaluate $\Gamma \vdash^c P : C$

<table>
<thead>
<tr>
<th>Γ</th>
<th>P</th>
<th>C</th>
<th>nil</th>
<th>C</th>
</tr>
</thead>
</table>

Transitions

<table>
<thead>
<tr>
<th>Γ</th>
<th>M to x. N</th>
<th>B</th>
<th>K</th>
<th>C</th>
<th>\leadsto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ</td>
<td>M</td>
<td>FA</td>
<td>to x. $N :: K$</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Γ</th>
<th>return V</th>
<th>FA</th>
<th>to x. $N :: K$</th>
<th>C</th>
<th>\leadsto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ</td>
<td>$N[V/x]$</td>
<td>B</td>
<td>K</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Typically Γ would be empty and $C = F \text{ bool}$.

We write $\Gamma \vdash^k K : B \rightarrow C$ to mean that K can accompany a computation of type B during evaluation.
Typing rules, read off from the CK-machine

Typing a stack

\[
\begin{align*}
\Gamma & \vdash^k \text{nil} : C \rightarrow C \\
\Gamma & \vdash^k K : B \rightarrow C \\
\Gamma & \vdash^k 1 :: K : B \sqcap B' \rightarrow C
\end{align*}
\]

\[
\begin{align*}
\Gamma, x : A & \vdash^c M : B \\
\Gamma & \vdash^k K : B \rightarrow C \\
\Gamma & \vdash^k \text{to } x. \ M :: K : FA \rightarrow C
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash^v V : A \\
\Gamma & \vdash^k K : B \rightarrow C \\
\Gamma & \vdash^k V :: K : A \rightarrow B \rightarrow C
\end{align*}
\]
Typing rules, read off from the CK-machine

Typing a stack

- $\Gamma \vdash^k \text{nil} : C \Rightarrow C$
- $\Gamma \vdash^k K : B \Rightarrow C$
- $\Gamma \vdash^k \mathbf{1} :: K : B \Pi B' \Rightarrow C$
- $\Gamma, x : A \vdash^c M : B$
- $\Gamma \vdash^k K : B \Rightarrow C$
- $\Gamma \vdash^k \text{to x. } M :: K : FA \Rightarrow C$

Typing a CK-configuration

- $\Gamma \vdash^c M : B$
- $\Gamma \vdash^k K : B \Rightarrow C$
- $\Gamma \vdash^{ck} (M, K) : C$
- $\Gamma \vdash^v V : A$
- $\Gamma \vdash^k K : B \Rightarrow C$
- $\Gamma \vdash^k V :: K : A \rightarrow B \Rightarrow C$
Given a stack $\Gamma \vdash^k K : B \Rightarrow C$, we can **weaken it or substitute** values.
Operations on Stacks

1. Given a stack $\Gamma \vdash^k K : B \Rightarrow C$, we can weaken it or substitute values.

2. A stack $\Gamma \vdash^k K : B \Rightarrow C$ can be dismantled onto a computation $\Gamma \vdash^c M : B$, giving a computation $\Gamma \vdash^c M \bullet K : C$.
1. Given a stack $\Gamma \vdash^k K : B \Rightarrow C$, we can weaken it or substitute values.

2. A stack $\Gamma \vdash^k K : B \Rightarrow C$ can be dismantled onto a computation $\Gamma \vdash^c M : B$, giving a computation $\Gamma \vdash^c M \bullet K : C$.

3. Stacks $\Gamma \vdash^k K : B \Rightarrow C$ and $\Gamma \vdash^k L : C \Rightarrow D$ can be concatenated to give $\Gamma \vdash^k K \bowtie L : B \Rightarrow D$.
A **continuation** is a stack from an F type, e.g. $\text{to } x. \ M :: K$. It describes everything that will happen once a value is supplied.
A continuation is a stack from an F type, e.g. $\text{to } x. M :: K$. It describes everything that will happen once a value is supplied.

In CBV, all computations have F type, so all stacks are continuations.
Special Stacks

Continuations

A continuation is a stack from an F type, e.g. $\text{to } x. \ M :: K$. It describes everything that will happen once a value is supplied. In CBV, all computations have F type, so all stacks are continuations.

Top-Level Stack

The top-level stack is $\Gamma |-^k \text{nil} : C \Rightarrow C$. The top-level type is C.
Continuations

A continuation is a stack from an F type, e.g. $\text{to } x. \ M :: K$. It describes everything that will happen once a value is supplied.

In CBV, all computations have F type, so all stacks are continuations.

Top-Level Stack

The top-level stack is $\Gamma \vdash^k \text{nil} : C \Rightarrow C$.

The top-level type is C.

If C is $F\text{bool}$ (the usual situation), then nil is the top-level continuation: it receives a boolean and returns it to the user.
Stacks denote homomorphisms

Consider a stack $\Gamma \vdash^k K : B \Longrightarrow C$

where $\llbracket B \rrbracket = (X, c, b)$ and $\llbracket C \rrbracket = (Y, c', b')$.

What should K denote?
Stacks denote homomorphisms

Consider a stack $\Gamma \vdash^k K : B \implies C$

where $\llbracket B \rrbracket = (X, c, b)$ and $\llbracket C \rrbracket = (Y, c', b')$.

What should K denote?

It acts on computations by $M \mapsto M \bullet K$.

So we want $\llbracket K \rrbracket : \llbracket \Gamma \rrbracket \times X \to Y$.

Paul Blain Levy (University of Birmingham)
λ-calculus, effects and call-by-push-value
April 2, 2023 108 / 128
Stacks denote homomorphisms

Consider a stack $\Gamma \vdash^k K : B \Rightarrow C$

where $[B] = (X, c, b)$ and $[C] = (Y, c', b')$.

What should K denote?

It acts on computations by $M \mapsto M \bullet K$.

So we want $[K] : [\Gamma] \times X \rightarrow Y$.

This function should be homomorphic in its second argument:

$$[K](\rho, c) = c'$$

$$[K](\rho, b) = b'$$

because if M throws an error then so does $M \bullet K$.
Stacks denote homomorphisms

Consider a stack $\Gamma \vdash^k K : B \rightarrowtail C$

where $[B] = (X, c, b)$ and $[C] = (Y, c', b')$.

What should K denote?

It acts on computations by $M \mapsto M \bullet K$.

So we want $[K] : [\Gamma] \times X \rightarrow Y$.

This function should be homomorphic in its second argument:

$$[K](\rho, c) = c'$$
$$[K](\rho, b) = b'$$

because if M throws an error then so does $M \bullet K$.

We assume there's no exception handling.
Operations on stacks

We define $\llbracket K \rrbracket$ by induction on K.

Then we prove

- a weakening lemma
- a substitution lemma
- a dismantling lemma
- a concatenation lemma

providing a semantic counterpart for each operation on stacks.
What should a CK-configuration $\Gamma \vdash_{ck} (M, K) : C$ denote?
Soundness of CK-machine

What should a CK-configuration \(\Gamma \vdash_{\text{ck}} (M, K) : C \) denote?

\[
[(M, K)] : [\Gamma] \rightarrow [C] \\
\rho \mapsto [K](\rho, [M]\rho)
\]

Properties:

1. If \((M, K) \leadsto (M', K')\) then \([(M, K)] = [(M', K')] \).
2. \([\text{error CRASH}, K]\] \(\rho = c'\).
3. \([\text{error BANG}, K]\] \(\rho = b'\).
Adjunction between values and stacks

We have an adjunction between the category of values (sets and functions) and the category of stacks (E-pointed sets and homomorphisms).

$$\text{Set} \quad \xleftarrow{\bot} \quad E/\text{Set} \quad \xrightarrow{F^E}$$

This resolves the exception monad $X \mapsto X + E$ on Set.
Consider CBPV extended with two storage cells:
1 stores a natural number, and 1′ stores a boolean.
Consider CBPV extended with two storage cells:
1 stores a natural number, and 1′ stores a boolean.

\[\Gamma \vdash V : \text{nat} \quad \Gamma \vdash^c M : B \]
\[\Gamma \vdash^c 1 := V. M : B \]
\[\Gamma, x : \text{nat} \vdash^c M : B \]
\[\Gamma \vdash^c \text{read } 1 \text{ as } x. M : B \]
Consider CBPV extended with two storage cells: l stores a natural number, and l' stores a boolean.

\[
\frac{\Gamma \vdash V : \text{nat} \quad \Gamma \vdash^c M : B}{\Gamma \vdash^c l := V. M : B} \quad \frac{\Gamma, x : \text{nat} \vdash^c M : B}{\Gamma \vdash^c \text{read} l \text{ as } x. M : B}
\]

A state is $l \mapsto n, l' \mapsto b$.

The set of states is $S \cong \mathbb{N} \times \mathbb{B}$.
The big-step semantics takes the form $s, M \downarrow s', T$.

A pair (s, M) is called an SC-configuration.

We can type these using

$$
\Gamma \vdash^c M : B
$$

$$
\frac{}{\Gamma \vdash^{sc} (s, M) : B}
$$

$s \in S$
How can we give a denotational semantics for call-by-push-value with state?

- Algebra semantics.
- Intrinsic semantics.
Moggi’s monad for state is \(S \to (S \times -) \).
Its Eilenberg-Moore algebras were characterized by Plotkin and Power.
Moggi’s monad for state is $S \to (S \times -)$.

Its Eilenberg-Moore algebras were characterized by Plotkin and Power.

A value type A denotes a set $\llbracket A \rrbracket$, a **semantic domain for values**.

A computation type B denotes an Eilenberg-Moore algebra $\llbracket B \rrbracket_{\text{alg}}$, a **semantic domain for computations**.
Moggi’s monad for state is $S \rightarrow (S \times -)$. Its Eilenberg-Moore algebras were characterized by Plotkin and Power.

A value type A denotes a set $[A]$, a semantic domain for values.

A computation type B denotes an Eilenberg-Moore algebra $[B]_{\text{alg}}$, a semantic domain for computations.

We complete the story with an adequacy theorem:

If $s, M \Downarrow s', T$ then $[s, M]_{\varepsilon} = [s', T]_{\varepsilon}$

This requires an SC-configuration to have a denotation.
A value type \(A \) denotes a set \([A]\), a semantic domain for values.

A computation type \(B \) denotes a set \([B]\), a semantic domain for SC-configurations.
A value type A denotes a set $[[A]]$, a semantic domain for values.

A computation type B denotes a set $[[B]]$, a semantic domain for SC-configurations.

The behaviour of an SC-configuration $\Gamma \vdash^{sc} (s, M) : B$ depends on the environment:

$$[[(s, M)]] : [[\Gamma]] \rightarrow [[B]]$$
Intrinsic semantics of state

A value type A denotes a set $[[A]]$, a semantic domain for values.

A computation type B denotes a set $[[B]]$, a semantic domain for SC-configurations.

The behaviour of an SC-configuration $\Gamma \vdash^{sc} (s, M) : B$ depends on the environment:

$$[[s, M]] : [[\Gamma]] \rightarrow [[B]]$$

The behaviour of a computation $\Gamma \vdash^{c} M : B$ depends on the state and environment:

$$[[M]] : S \times [[\Gamma]] \rightarrow [[B]]$$
An SC-configuration of type FA will terminate as s, return V.

$$[FA] = S \times [A]$$

An SC-configuration of type $A \rightarrow B$ will pop $x : A$ and then behave in B.

$$[A \rightarrow B] = [A] \rightarrow [B]$$

An SC-configuration of type $B \Pi B'$ will pop 1 and then behave in B, or pop r and then behave in B'.

$$[B \Pi B'] = [B] \times [B']$$

A value $\Gamma \vdash^v V : U B$ can be forced in any state s, giving an SC-configuration s, force V.

$$[UB] = S \rightarrow [B]$$
Consider a stack $\Gamma \vdash^k K : B \Rightarrow C$

What should K denote?
Consider a stack $\Gamma \vdash^k K : B \implies C$

What should K denote?

It acts on SC-configurations by $s, M \mapsto s, M \bullet K$.

Consider a stack $\Gamma \vdash^k K : B \Rightarrow C$

What should K denote?

It acts on SC-configurations by $s, M \mapsto s, M \cdot K$.

This gives an adjunction

\[
\begin{array}{c}
\text{Set} \xrightarrow{S \times -} \text{Set} \\
\downarrow \quad \quad \downarrow \\
\text{Set} \xleftarrow{S \rightarrow -}
\end{array}
\]

between values and stacks.
State in call-by-value and call-by-name

For call-by-value we recover

\[
\begin{align*}
\lbrack \text{bool}_{\text{CBV}} \rbrack &= 1 + 1 \\
\lbrack A \to_{\text{CBV}} B \rbrack &= \lbrack U(A \to FB) \rbrack \\
&= S \to (\lbrack A \rbrack \to (S \times \lbrack B \rbrack))
\end{align*}
\]

This is standard.
State in call-by-value and call-by-name

For call-by-value we recover

\[
\begin{align*}
[\text{bool}_{\text{CBV}}] &= 1 + 1 \\
[A \rightarrow_{\text{CBV}} B] &= [U(A \rightarrow FB)] \\
&= S \rightarrow ([A] \rightarrow (S \times [B]))
\end{align*}
\]

This is standard.

For call-by-name we recover

\[
\begin{align*}
[\text{bool}_{\text{CBN}}] &= [F(1 + 1)] \\
&= S \times (1 + 1) \\
[A \rightarrow_{\text{CBN}} B] &= [UA \rightarrow B] \\
&= (S \rightarrow [A]) \rightarrow [B]
\end{align*}
\]

This is O’Hearn’s semantics of types for a stateful CBN language.
Naming and changing the current stack

Extend the language with two instructions:

- `letstk α` means let α be the current stack.
- `changestk α` means change the current stack to α.
Naming and changing the current stack

Extend the language with two instructions:

- \texttt{letstk } \alpha \texttt{ means } \text{let } \alpha \texttt{ be the current stack.}
- \texttt{changepstk } \alpha \texttt{ means } \text{change the current stack to } \alpha.

Execution takes places in a bigger language.

\[
\frac{\Gamma \; \text{letstk } \alpha. \; M \quad B \quad K \quad C \mid \Delta}{\Gamma \; M[K/\alpha] \quad B \quad K \quad C \mid \Delta}
\]

\[
\frac{\Gamma \; \text{changepstk } K. \; M \quad B' \quad L \quad C \mid \Delta}{\Gamma \; M \quad B \quad K \quad C \mid \Delta}
\]

Similar to Crolard's syntax. Numerous variations in the literature.
We have typing judgements:

$$\Gamma \vdash^y V : A \mid \Delta \quad \Gamma \vdash^c M : B \mid \Delta$$

The **stack context** Δ consists of declarations $\alpha : B$, meaning α is a stack from B.
Typing judgements for control

We have typing judgements:

\[\Gamma \vdash^V V : A \mid \Delta \quad \Gamma \vdash^C M : B \mid \Delta \]

The stack context \(\Delta \) consists of declarations \(\alpha : B \), meaning \(\alpha \) is a stack from \(B \).

Example typing rules

\[
\begin{align*}
\Gamma \vdash^C M : B & \mid \Delta, \alpha : B \\
\hline
\Gamma \vdash^C \text{letstk } \alpha.\ M & \mid \Delta
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash^C M : B & \mid \Delta \\
\hline
\Gamma \vdash^C \text{changestk } \alpha.\ M : B' & \mid \Delta \quad (\alpha : B) \in \Delta
\end{align*}
\]
During execution, the top-level type C must be indicated:

\[
\Gamma \vdash^v V : A [C] \Delta \quad \Gamma \vdash^c M : B [C] \Delta \\
\Gamma \vdash^k K : B \rightarrow C | \Delta \quad \Gamma \vdash^{ck} (M, K) : C | \Delta
\]

Typically Γ and Δ would be empty and $C = F\text{bool}$.
Typing judgements for execution language

During execution, the top-level type C must be indicated:

$$\begin{align*}
\Gamma \vdash^v V : A [C] \Delta & \quad \Gamma \vdash^c M : B [C] \Delta \\
\Gamma \vdash^k K : B \rightarrow C \mid \Delta & \quad \Gamma \vdash^{ck} (M, K) : C \mid \Delta
\end{align*}$$

Typically Γ and Δ would be empty and $C = F\text{bool}$.

Example typing rules

$$\frac{\Gamma \vdash^k \alpha : B \rightarrow C \mid \Delta}{(\alpha : B) \in \Delta}$$

$$\frac{\Gamma \vdash^k K : B \rightarrow C \mid \Delta \quad \Gamma \vdash^c M : B [C] \Delta}{\Gamma \vdash^c \text{changestk} K. M : B' [C] \Delta}$$
Fix a set R, the semantic domain for CK-configurations.

That means: a hypothetical extremely closed CK-configuration, with no free identifiers and no nil, would denote an element of R.
Fix a set R, the semantic domain for CK-configurations.

That means: a hypothetical extremely closed CK-configuration, with no free identifiers and no nil, would denote an element of R.

Moggi’s monad for control operators (“continuations”) is $(- \to R) \to R$.
Fix a set R, the semantic domain for CK-configurations.

That means: a hypothetical extremely closed CK-configuration, with no free identifiers and no \texttt{nil}, would denote an element of R.

Moggi’s monad for control operators ("continuations") is $(\rightarrow R) \rightarrow R$.

\textbf{Maybe} we can build a denotational semantics where a computation type B denotes an Eilenberg-Moore algebra \mathbb{B}_{alg}, a semantic domain for computations.
Intrinsic semantics of control

The denotation of \(B \) is a semantic domain for stacks from \(B \).

That means: a hypothetical extremely closed stack from \(B \), with no free identifiers and no \texttt{nil},
would denote an element of \([B]\).
Intrinsic semantics of control

The denotation of \(B \) is a semantic domain for stacks from \(B \).

That means: a hypothetical extremely closed stack from \(B \), with no free identifiers and no \texttt{nil}, would denote an element of \(\llbracket B \rrbracket \).

The behaviour of a computation \(\Gamma \vdash^c M : B \mid \Delta \) depends on the environment, current stack and stack environment:

\[
\llbracket M \rrbracket : \llbracket \Gamma \rrbracket \times \llbracket B \rrbracket \times \llbracket \Delta \rrbracket \to R
\]

A value \(\Gamma \vdash^v V : A \mid \Delta \) denotes

\[
\llbracket V \rrbracket : \llbracket \Gamma \rrbracket \times \llbracket \Delta \rrbracket \to \llbracket A \rrbracket
\]
A stack from FA receives a value $x : A$ and then behaves as a configuration.

$$[FA] = [A] \rightarrow R$$

A stack from $A \rightarrow B$ is a pair $V :: K$.

$$[A \rightarrow B] = [A] \times [B]$$

A stack from $B \Pi B'$ is a tagged stack $^1 :: K$ or $^r :: K$.

$$[B \Pi B'] = [B] + [B']$$

A value of type UB can be forced alongside any stack K, giving a configuration.

$$[UB] = [B] \rightarrow R$$
The semantics of a term in the execution language depends not only on the environment and the stack environment but also on the top-level stack.
The semantics of a term in the execution language depends not only on the environment and the stack environment but also on the top-level stack.

In particular, a stack \(\Gamma \vdash^k K : B \rightarrow C \mid \Delta \) denotes

\[
[K] : [\Gamma] \times [C] \times [\Delta] \rightarrow [B]
\]
The semantics of a term in the execution language depends not only on the environment and the stack environment but also on the top-level stack.

In particular, a stack $\Gamma \vdash^k K : B \rightarrow C \ | \ \Delta$ denotes

$$[[K]] : [[\Gamma]] \times [[C]] \times [[\Delta]] \rightarrow [[B]]$$

That gives an adjunction

$$\text{Set} \xleftarrow{-\rightarrow R} \rightarrow \text{Set}^\text{op} \xrightarrow{-\rightarrow R}$$

between values and stacks.
Abbreviate ¬\(X \) \(\overset{\text{def}}{=} X \rightarrow R \).
Control in call-by-value and call-by-name

Abbreviate $\neg X \overset{\text{def}}{=} X \to R$.

For call-by-value we recover

$$
\begin{align*}
[\text{bool}_{CBV}] &= 1 + 1 \\
[A \to_{CBV} B] &= [U(A \to FB)] \\
&= \neg([A] \times \neg[B])
\end{align*}
$$

This is standard.
Abbreviate \(\neg X \overset{\text{def}}{=} X \to R \).

For call-by-value we recover

\[
\begin{align*}
[\text{bool}_{\text{CBV}}] &= 1 + 1 \\
[A \to_{\text{CBV}} B] &= [U(A \to FB)] \\
&= \neg([A] \times \neg[B])
\end{align*}
\]

This is standard.

For call-by-name we recover

\[
\begin{align*}
[\text{bool}_{\text{CBN}}] &= [F(1 + 1)] \\
&= \neg(1 + 1) \\
[A \to_{\text{CBN}} B] &= [UA \to B] \\
&= \neg[A] \times [B]
\end{align*}
\]

This is Streicher and Reus' semantics for a CBN language with control operators.
For a set E, the adjunction

\[
\begin{array}{c}
\text{Set} \\ \downarrow^{U^E} \\
\text{E/Set}
\end{array}
\xleftarrow{F^E} \xrightarrow{\perp}
\]

models call-by-push-value with errors.
Summary: adjunctions between values and stacks

For a set E, the adjunction $\text{Set} \xleftarrow{U^E} E/\text{Set} \xrightarrow{F^E} \text{Set}$ models call-by-push-value with errors.

For a set S, the adjunction $\text{Set} \xleftarrow{S\rightarrow\cdot} \xrightarrow{\cdot\times\cdot} \text{Set}$ models call-by-push-value with state.
For a set E, the adjunction $\text{Set} \xrightarrow{\perp} E/\text{Set} \xleftarrow{\perp} \text{Set}$ models call-by-push-value with errors.

For a set S, the adjunction $\text{Set} \xrightarrow{\perp} \text{Set} \xleftarrow{\perp} \text{Set}$ models call-by-push-value with state.

For a set R, the adjunction $\text{Set} \xrightarrow{\perp} \text{Set}^{\text{op}} \xleftarrow{\perp} \text{Set}$ models call-by-push-value with control.
Summary: adjunctions between values and stacks

For a set E, the adjunction $\mathbf{Set} \xleftarrow{U^E} \xrightarrow{F^E} E/\mathbf{Set}$ models call-by-push-value with errors.

For a set S, the adjunction $\mathbf{Set} \xleftarrow{\mathbf{Set}} \xrightarrow{S \times -} \mathbf{Set}$ models call-by-push-value with state.

For a set R, the adjunction $\mathbf{Set} \xleftarrow{- \rightarrow R} \xrightarrow{- \rightarrow R} \mathbf{Set}^{\text{op}}$ models call-by-push-value with control.