Thunkable implies central
Paul Blain Levy, University of Birmingham
June 14, 2020

It is established in [1, Proposition 2.20] that, for a strong monad on a cartesian category \(C \), any Kleisli map that is thunkable is also central. This note shows that (as expected) this generalizes to the setting where \(C \) is merely monoidal.

Firstly let \(C \) be a monoidal category with a monad \(T \) and left strength \(t_{A,B} : TA \otimes B \to T(A \otimes B) \).

For a \(T \)-algebra \((P, \theta) \) and map \(h : A \otimes \Delta \to P \), we write \(h^{\♯\theta} \) for the left Kleisli extension, i.e. the following composite:

\[
TA \times \Delta \xrightarrow{t_{A,\Delta}} T(A \times \Delta) \xrightarrow{Th} TP \xrightarrow{\theta} P
\]

Proposition 1. For a map \(f : \Gamma \to TA \), the following are equivalent.

(a) The map \(f \) is thunkable, i.e. the diagram

\[
\begin{array}{ccc}
\Gamma & \xrightarrow{f} & TA \\
\downarrow{f} & & \downarrow{\eta_T A} \\
TA & \xrightarrow{T\eta_A} & T^2A
\end{array}
\]

commutes.

(b) For any object \(\Delta \) and \(T \)-algebra \((P, \theta) \) and map \(h : \Delta \otimes TA \to P \), the diagram

\[
\begin{array}{ccc}
\Gamma \otimes \Delta & \xrightarrow{f \otimes \Delta} & TA \otimes \Delta \\
\downarrow{f \otimes \Delta} & & \downarrow{h} \\
TA \otimes \Delta & \xrightarrow{(\eta_T A \otimes h)^{\theta}} & P
\end{array}
\]

commutes.

Proof. For (a)\(\Rightarrow \) (b), we take

Surprisingly, the converse is also true in the case of a continuation monad [4, Remark 3.5]. But in general a central map need not be thunkable, even if it is an isomorphism. For example, the writer monad \(\mathbb{Z}_2 \times - \) on \(\text{Set} \) is commutative, so every Kleisli map is central, and in particular the Kleisli map \(1 \to 1 \) sending \(* \mapsto (1,*) \) is a central involution that is not thunkable, cf. [3, Section 5.2].

\[^1\text{Surprisingly, the converse is also true in the case of a continuation monad [4, Remark 3.5]. But in general a central map need not be thunkable, even if it is an isomorphism. For example, the writer monad } \mathbb{Z}_2 \times - \text{ on } \text{Set} \text{ is commutative, so every Kleisli map is central, and in particular the Kleisli map } 1 \to 1 \text{ sending } *\mapsto (1,*) \text{ is a central involution that is not thunkable, cf. [3, Section 5.2].}\]
For (b)⇒(a), we take Δ to be 1 and ignore − ⊗ 1, and we take (P, θ) to be the free algebra on TA. Then we have

![Diagram]

Corollary 1. For any algebra (P, θ) and maps h, k: TA ⊗ Δ → P, the following are equivalent.

(a) The diagram $A ⊗ Δ \xrightarrow{\eta_A \otimes Δ} TA \otimes Δ \xrightarrow{f} P$ commutes.

(b) For any object Γ and thunkable $f: Γ → TA$, the diagram

```
(1)
Γ \otimes Δ \xrightarrow{f \otimes Δ} TA \otimes Δ \xrightarrow{k} P
```

commutes.

Proof. The implication (a)⇒(b) follows from Proposition 1(a)⇒(b). For (b)⇒(a), put $Γ = A$ and $f = η_A$. □

Now suppose that T has bistrength consisting of $t_{A,B}: TA \otimes B → T(A \otimes B)$ and $t'_{A,B}: A \otimes TB → T(A \otimes B)$. (Recall from [2] that “bistrength” means that the two maps $(A \otimes TB) \otimes C → T((A \otimes B) \otimes C)$ are always equal. While this condition is not used in our argument, it is needed to ensure that the Kleisli category is premonoidal, specifically that the associator $A \otimes (B \otimes C) ≃ (A \otimes B) \otimes C$ is natural in B. In the case of a symmetric monoidal category, it follows from the condition that t and t' correspond across the symmetry. I do not know whether there are interesting examples of bistrong monads other than these.)

For maps $f: A → TB$ and $g: C → TD$, the condition that f commutes with g is equivalent to the instance of (b) where $(P, θ)$ is the free algebra on $A \otimes B$ and h is the composite

```
TA \otimes Δ \xrightarrow{T \otimes g} TA \otimes TB \xrightarrow{t_{A,B}} T(A \otimes TB) \xrightarrow{T T_{A,B}} T^2(A \otimes B) \xrightarrow{\mu_{A \otimes B}} T(A \otimes B)
```

and k is the composite

```
TA \otimes Δ \xrightarrow{T \otimes g} TA \otimes TB \xrightarrow{t'_{A,B}} T(TA \otimes B) \xrightarrow{T T_{A,B}} T^2(A \otimes B) \xrightarrow{\mu_{A \otimes B}} T(A \otimes B)
```

So if f is thunkable then it commutes with g. So thunkability implies left centrality, and likewise it implies right centrality.

References

